
Keyword Extraction From Specification Documents
for Planning Security Mechanisms

Jeffy Jahfar Poozhithara
Computer & Software Systems

University of Washington
Bothell, USA
jeffyj@uw.edu

Hazeline U. Asuncion
Computer & Software Systems

University of Washington
Bothell, USA

hazeline@uw.edu

Brent Lagesse
Computer & Software Systems

University of Washington
Bothell, USA

lagesse@uw.edu

Abstract—Software development companies heavily invest both
time and money to provide post-production support to fix
security vulnerabilities in their products. Current techniques
identify vulnerabilities from source code using static and dy-
namic analyses. However, this does not help integrate security
mechanisms early in the architectural design phase. We develop
VDocScan, a technique for predicting vulnerabilities based on
specification documents, even before the development stage. We
evaluate VDocScan using an extensive dataset of CVE vulner-
ability reports mapped to over 3600 product documentations.
An evaluation of 8 CWE vulnerability pillars shows that even
interpretable whitebox classifiers predict vulnerabilities with up
to 61.1% precision and 78% recall. Further, using strategies
to improve the relevance of extracted keywords, addressing
class imbalance, segregating products into categories such as
Operating Systems, Web applications, and Hardware, and using
blackbox ensemble models such as the random forest classifier
improves the performance to 96% precision and 91.1% recall.
The high precision and recall shows that VDocScan can anticipate
vulnerabilities detected in a product’s lifetime ahead of time
during the Design phase to incorporate necessary security mech-
anisms. The performance is consistently high for vulnerabilities
with the mode of introduction: architecture and design.

Index Terms—Security, Vulnerability Prediction, CVE, CWE,
Keyword Extraction, Documentation

I. INTRODUCTION

Software projects typically undergo continuous security
testing after deployment in pre-production environments which
costs software development companies significant time and
money [1]. Moreover, vulnerabilities detected at this stage
can lead to multiple code revisions, causing unexpected de-
lays. Proactive software maintenance engineering [2] offers a
solution to eliminate security flaws prior to release, thereby
reducing costs and potential damaging litigation to the soft-
ware company [3]. A reliable mechanism to list potential
vulnerabilities that are likely to be encountered based on
the functional and technical specifications helps incorporate
appropriate architectural design decisions such as security
design patterns before the development stage.

CWE (Common Weakness Enumeration) [4] is a
community-developed list of software and hardware
weakness types, used to establish baselines for weakness
identification, mitigation, and prevention. The CWE database
contains the vulnerability description, observed examples and
consequences, modes of introduction, applicable platforms and

mitigation measures. This is one of the most comprehensive
collections of security weaknesses currently available and
is useful for identifying weaknesses across all phases
of software development. While our tool focuses on the
design phase, other tools such as GitHub’s CodeQL1 use it
during the implementation phase. Among the vulnerabilities
in CWE, early identification can be especially useful in
addressing vulnerabilities where the mode of introduction
is ‘architecture and design’ (e.g., CWE-284: Improper
Access Control, CWE-693: Protection Mechanism Failure)
or ‘implementation’ (e.g., CWE-703: Improper Check or
Handling of Exceptional Conditions, CWE-707: Improper
Neutralization). Such vulnerabilities may be mitigated during
the design phase through the use of security mechanisms
such as secure design patterns [5], [6], protection mechanisms
[7], and architectural security tactics [8]. For example,
CWE-284 can be addressed using Authentication Enforcer
pattern, CWE-703 through Exception Shielding pattern or
Safe Data Buffer, and CWE-707 through Layered Encryption
or Morphed Representation patterns [9]. While the CWE
database is useful for design phase detection of software
security flaws, our approach is not strictly tied to it, and
could be extended to utilize additional datasets that may be
created in the future.

Many vulnerability prediction tools require the source code
[10]–[13] to determine correlations between vulnerabilities
and component characteristic(s) like code churn, complexity
metrics [14], dependencies, code coverage [15], developer
activity metrics [16], import statements [17], code gadgets
(number of semantically related lines of code) [18], or an-
alyzing raw source code as text [3], [19]. However as we
mention above, incorporating these fixes post-development
requires more time if system-wide architectural changes are
required.

Machine learning-based techniques that rely on source code
also suffers from overfitting when applied to cross-project vul-
nerability prediction, where a model is trained on one project
and tested on another project (or another codebase) [11]. It
relies on the unverifiable assumption that certain underlying
attributes of source code will universally indicate the presence

1https://codeql.github.com/

of vulnerabilities, regardless of which codebase or project
contains these attributes. Features based on natural language
such as documentation are more likely to be universal across
projects and codebases.

Vulnerability prediction tools that rely primarily on docu-
mentation are few [20]–[23]. Moreover they do not strictly
enable vulnerability prediction at the design phase since they
use post-development insights, source code metrics or graph-
s/flow diagrams generated from source code [21], [23], or
are restricted to a specific programming language [11]–[13],
domain or vulnerability type [20], [24], [25].

Our method, VDocScan, is novel as its only pre-requisite
is specification documents that are prepared before product
implementation begins, and it is domain and programming
language agnostic. We exploit the fact that software companies
create the technical and functional specification document for
each product prior to development. We use these documents
to find correlations between keywords (or n-grams) in these
files and the vulnerabilities that were reported in CWE and
CVE (Common Vulnerabilities and Exposures) [26].

Figure 1 summarizes the practical application of VDocScan.
Requirements engineering refers to the first phase of the
software engineering process, wherein user requirements are
collected, understood, and specified for developing quality
software products [27]. Once the technical and functional
specifications are documented, it may be used as input to
VDocScan. VDocScan evaluates the documentation against
numerous vulnerability classes and outputs a list of vulner-
abilities that are likely to be identified over the course of
the product’s lifecycle. This list may in turn be used for
proactive software development and software maintenance,
such as planning security mechanisms.

While there is a large body of work in defect prediction
[28] and bug localization [29], [30], the body of work on
vulnerability prediction is smaller [31]. The lack of a standard
dataset for vulnerability prediction is a major hurdle. The
rarity of vulnerabilities further complicates the situation as it
leads to severe class imbalance between vulnerable and neutral
software components, increasing the difficulty of building
effective prediction models [11]. Yet, with even the aforemen-
tioned challenges, VDocScan predicts multiple vulnerabilities,
including in closed source projects, as well as over different
product types like Web applications, Hardware/Firmeware and
Operating systems.

Our contributions are as follows:
1) an end-to-end vulnerability prediction technique that

includes data preparation to model evaluation,
2) strategies for addressing class imbalance in the dataset,
3) an extensive dataset, mapping product specification with

vulnerability reports.
Performance of machine learning-based vulnerability pre-

diction methods is heavily influenced by the dataset used [13].
Since there is currently no dataset that maps specification with
vulnerabilities, we created a dataset leveraging vulnerability
reports on CVE [26] and publicly available product documen-
tations. We created tools to automatically (1) retrieve historical

Fig. 1: VDocScan usage in practice

vulnerability reports published on CVE, and (2) download
publicly available specification documents for products listed
in CVE from their respective vendor websites. The dataset
created consists of 296,931 vulnerability reports from CVE
comprising 52,110 products from 23,971 vendors. Specifica-
tion documents for over 3,602 these products from 20 different
vendors were used to evaluate the effectiveness of keyword
extraction in predicting vulnerabilities.
We evaluate VDocScan via the following research questions:
RQ1: Can interpretable whitebox classifiers such as decision
trees make robust predictions of security vulnerabilities based
on the extracted keywords?
RQ2: Can blackbox classifiers such as ensemble models
improve the prediction accuracy?
RQ3: Does segregating products into categories such as Ap-
plications, Operating Systems, Hardware (embedded firmware)
improve the relevance of the extracted keywords and predict
better?
RQ4: Can a correlation analysis provide insights into poten-
tially co-occurring vulnerabilities, thereby allowing simultane-
ous fixes?

Broadly, our results are as follows: The model was able to
achieve up to 61.1% precision and 78% recall with whitebox
classifiers, and up to 81.1% precision and 83.9% recall with
blackbox classifiers using data from just 3,602 products. Due
to the unbalanced nature of the dataset, a balanced class
weighted random forest classifier was found to be the most ef-
fective binary classifier for predicting vulnerabilities. Further,
we were also able to identify highly correlated vulnerabilities
by analyzing over 296,931 vulnerability reports. We elaborate
on these results in Section III.

II. METHOD

The major steps in VDocScan are Data Collection and
Preparation, Model Selection and Feature Extraction, and
Model Prediction/Evaluation. An overview of this approach is
shown in Figure 2, where the steps are identified with dashed
rectangles. The upcoming sections elaborate on each of these.

Data Collection and Preparation

Model Selection and Feature Election

Feature Extraction

Pre-processing Classifier Selection

Performance Evaluation

Model Evaluation

For Each Vulnerability

Hyperparameter
Tuning

CVE
Database

Web scraping

Vendor 1

Vendor
N

.

.

. Web scraping

Specification
Documents

Vulnerability
Reports

PyPDF
GLOB

libraries to
convert

heterogeneous
data to .txt

Difflib
match CVE

Product
identifiers with
documentation

OneHotEncoder
Convert CWE
IDs to binary

labels

CountVectorizer
+ NLTK
Remove

frequent words
and stopwords

in corpus

TF-IDFVectorizer

RAKE NLTK

Decision Tree

Logistic Regression

Random Forest

K-Nearest Neighbours

Multi-layer Perceptron

SVM

k-fold
Crossvalidation

weighted
average f1-score

Selected
Classifier

Training Set

Test Set

k-fold
Crossvalidation

weighted average
f1-score

Classification
Report

Fig. 2: Approach overview

A. Data Collection & Preparation

1) Data Collection: We created two web scraping tools to
extract data from CVE and Vendor websites.
Webscraper 1: To extract vulnerability reports, we created
a tool that downloads each product’s metadata per vendor
in the CVE website. The output is a CSV file of 52,110
products from 23,971 vendors. The CSV file was then used to
further extract vulnerability reports of each of those products,
resulting in a CSV file containing 296,931 vulnerability
reports. The composition of vulnerability types coverage in
this dataset is summarized in Figure 3.

Webscraper 2: To download the specification documents
for products in the CVE data, we scrape/crawl each company’s
website. This required a custom website parsing logic for each
vendor based on their website structure, depending on where
documentations are staged. To minimize the manual effort
while maximizing the number of specification documents
downloaded, we identified vendors with the most number of
products from the CVE Dataset produced by Webscraper 1.
We further identified vendors whose websites had a central
webpage linking to their products’ documentation/manuals.
We then created a web scraping program to apply the required
security handshake protocols to fetch data (where documenta-
tion files are in HTML or JSON format) from API/Web service
endpoints or to download files in .txt or .pdf formats.

Although the data parsed from CVE contains vulnerability
reports from 52,110 products, due to the customization re-
quired for each vendor and the manual work to pre-process
and clean the heterogeneous data collected, we only collected
7,000 unique products’ documentations for evaluation. This
includes documentation for products like Microsoft’s Xamarin
[32] and GNU tar [33]. To allow the dataset to be extended
via crowd-sourcing, we make both the source code for the two

(a) Vulnerability types

(b) Product categories

Fig. 3: Summary chart of the CVE dataset composition

webscraping tools and the current dataset available at [34] and
[35] respectively.

Product Name Matching: Since the product name men-
tioned on CVE does not always match the documentation file
name, we cannot directly perform text matching to map the
documentations to the CVE data. While some differences such

#Vulnerability Reports #vendors #products #CVE IDs #CWE IDs #Vulnerability types
Initial 296931 23971 52110 111561 277 192
Filter 1: Remove missing CWE IDs 223363 18527 41028 81576 276 181
Transform1: Group by metadata 89633 18527 41028 - 276 -
Transform 2: One-hot encoding - 18527 41028 - 276 -
Filter 2: Matching documentation found - 18 3602 - 164 -

TABLE I: Evolution of dataset sizes through our data cleaning via the indicated filters and transformations.

Fig. 4: Chart summarizing the composition of vendors in the
documentations dataset

as capitalization mismatch may be ignored, others, such as
the presence of special characters or abbreviations needs to be
specially handled. To overcome this challenge, we used a text
similarity scoring library: difflib [36] to identify the closest
matching filenames for each product referred in the CVE data.
We set a cut-off threshold of 0.6 so that a documentation file
is fetched only if there is a potential match. Sample product
names as per CVE and their corresponding matching filenames
found in the website parsing output is shown below:

1

2 ----Libswresample-----
3 [’libswresample’, ’libswscale’, ’Audio resampler’]
4 ----Git Changelog-----
5 [’git-changelog_’, ’changelog-history_’, ’gitlab-logo_’]
6 ----Gearman-----
7 [’gearman-plugin_’, ’variant_’, ’vagrant_’]
8 ----Gerrit Trigger-----
9 [’gerrit-trigger_’, ’urltrigger_’, ’ivytrigger_’]

10 ----Mod Pagespeed-----
11 [’PageSpeed Module’, ’Cloud Storage’, ’Cost Management’]

Although we download more than 7,000 files, due to mis-
match in the filenames or due to re-branding or changing of
ownership due to company buyouts, the final dataset used for
evaluations contained only 3,602 products. The composition of
products per vendor in the dataset is summarized in Figure 4.
When the cutoff applied was too low (0.3 - 0.5), the number
of false positives was high. When the cutoff applied was too
high (>0.7), the number of false negatives was high. At a
cutoff of 0.6, we were able to achieve a significant number of
true positives with very low false positives. By ensuring that
we only compare the documentation files of a vendor with the
subset of the CVE dataset corresponding to the same vendor,
the 214 false positives were reduced to 0. Resolving false
negatives requires manual verification and mapping, however
for our preliminary analysis we simply eliminate them from
the dataset, see Table I.

2) Data Pre-Processing: The dataset pre-processing in-
volves:

1) Homogenization of file formats to plain text - plain
text or strings are required formats for classification
algorithms

2) Verification of the encoding and content of text data
extracted from PDF and HTML file types - due to
differences in character encoding across filetypes, we
manually verify the parsed text to ensure removal of
wrongly decoded content.

3) Transformation of the vulnerability reports to a
(feature set, label) pair format - format required by
our classifier.

Gold Standard: The CVE Program identifies, defines, and
catalogs publicly disclosed cybersecurity vulnerabilities [37].
Vulnerabilities are first discovered, then reported to the CVE
Program. Once the reported vulnerability is confirmed by the
identification of the minimum required data elements for a
CVE Record, the record is published to the CVE List. CVE
Records are published by CVE Program partners from around
the world.

This thorough process ensures that CVE Records can be
used as our gold standard dataset. While a product may
have more than one vulnerability, we focus on predicting one
vulnerability at a time, reducing the vulnerability prediction
problem into a series of binary classification problems. This
also overcomes the missing class problem that non-exhaustive
datasets may introduce when directly approached as multi-
class classification [38]. We further ensure the integrity of our
dataset by verifying that the accuracy remains intact on multi-
fold cross validation [39].

To formulate the problem as a binary classification task, we
associate vulnerability reports with a 0 or 1 label. That is,
instead of a dataset where each row represents a vulnerability
report, we need rows to represent a specific product. We
transform the dataset of vulnerability reports to a dataset of
3,602 rows where each row represents a product. We chose
CWE IDs as the binary label as these IDs are not changed
every year (in contrast to CVE-IDs). There were 81,576
CVE IDs for 41,028 products, whereas there were only 276
unique CWE IDs for the same data (see Table I). Among the
3,602 products that remained after the product-documentation
matching, there were only 164 unique CWE IDs in the dataset.
Finally, we use one-hot encoding [40] to convert each CWE
ID to a column that receives a label of 1 if the product has the
vulnerability reported. Otherwise, the column receives a zero-
label. The dataset after the above transformation is shown in

Vendor Product Documentation 435 682 703 691 284 693 664 707
1 GNU Gzip gzip reduces the size of the named files using Lempel–Ziv

coding (LZ77). Whenever possible, each file is replaced by one
with the extension ‘.gz’, while keeping the same ownership ...

0 0 0 0 0 0 0 1

2 Ffmpeg Libavcodec The libavcodec library provides a generic encoding/decoding
framework and contains multiple decoders and encoders for
audio, video and subtitle streams, and several bitstream ...

0 0 0 1 0 0 1 1

3 Ffmpeg Libswresample The libswresample library performs highly optimized audio
resampling, rematrixing and sample format conversion opera-
tions. Specifically, this library performs the following ...

0 0 1 0 0 0 0 0

4 Debian APT Advanced package tool, or APT, is a free-software user inter-
face that works with core libraries to handle the installation
and removal of software on Debian, and Debian-based Linux...

0 0 0 0 0 0 1 1

5 Microsoft Xamarin Xamarin is an open-source platform for building modern and
performant applications for iOS, Android, and Windows with
.NET. Xamarin is an abstraction layer that manages...

0 0 0 0 1 0 1 0

TABLE II: Sample rows from the dataset after one-hot encoding CWE IDs for binary classification

Table II.
Count Vectorizer for custom stopwords: Stopwords are

words frequently encountered in text data. For text data in the
English language, this list consists of words like a, the, at,
of etc. In addition to the default stopwords list for English
language, this specific dataset also contains frequent occur-
rences of certain technology-related terms like technology,
service, and solution which may receive undue significance.
We identify such words by using CountVectorizer to select
words that have high frequency across the documentation files
in the dataset. We add these words to the default stopwords
list to exclude them from the extracted keywords.

B. Model Selection and Feature Extraction

CWE provides weakness information for over 900 different
software and hardware quality and security issues. Out of
these, only 164 CWE IDs had at least one sample in our
dataset. The dataset is sparse with the most reported vulner-
ability (CWE-79) having only 633 samples. Evaluating the
frequency distribution of vulnerability reports, the median was
9 samples per CWE ID with 75th quantile = 38 samples and
95th quantile = 282 samples. The dataset needed resampling
to fewer labels/categories to improve the sampling percentage
per vulnerability and thereby the accuracy of the model.

CWE has a hierarchical system of five types of abstractions
that embeds relationships between the weaknesses. Four well-
defined hierarchical types have been reserved, from most
abstract to most specific: Pillar, Class, Base, and Variant [4].
These types correlate with the nature of information contained
in the CWEs as described by dimensions such as behavior,
property, technology, language, and resource. A graphical
visualization of the classification of vulnerabilities to parent
pillars, classes and variants is available in [41]. A segment of
this graph visualizing the hierarchy under CWE-284 is shown
in Figure 5.

By relabeling vulnerability reports to the highest level of
abstraction (pillars), we reduced the number of labels with
non-zero samples to 8 vulnerability pillars (see Figure 6) with
median number of samples per vulnerability = 305, 75th and
95th percentile = 610 and 1,171 samples, respectively. Labels
of child vulnerabilities were merged under parent vulnerability

284: Improper

Access Control

1290: Incorrect Decoding
of Security Identifiers

1317: Missing Security
Checks in Fabric Bridge

1270: Generation of
Incorrect Security Tokens

1302: Missing
Security Identifier

1292: Incorrect Conversion
of Security Identifiers

1294: Insecure Security
Identifier Mechanism

Fig. 5: Graphical Visualization of the vulnerability classifica-
tion to parent pillar, classes and variants for CWE-284

pillars. For example, all samples under CWE-74: Improper
Neutralization of Special Elements in Output Used by a
Downstream Component (’Injection’) was merged under CWE-
707: Improper Neutralization. When a child vulnerability has
multiple parent pillars, samples were added to each parents’
subset. The 8 vulnerability pillars are:

1) CWE 435 - Improper Interaction Between Multiple
Correctly-Behaving Entities

2) CWE 682 - Incorrect Calculation
3) CWE 703 - Improper Check or Handling of Exceptional

Conditions
4) CWE 691 - Insufficient Control Flow Management
5) CWE 284 - Improper Access Control
6) CWE 693 - Protection Mechanism Failure
7) CWE 664 - Improper Control of a Resource Through its

Lifetime
8) CWE 707 - Improper Neutralization
Among our parent pillars, CWE-664 contains the greatest

fraction of the top 25 CWE vulnerabilities [42], which still has
only 8/25, followed by CWE-707 with 5/25 vulnerabilities,
and so on. Although not uniformly distributed among our
7 parent pillars, the top 25 vulnerabilities are reasonably
separated in our classification.

1) Feature Extraction: The features consist of the key-
words extracted from the documentation. Many tools exist

Fig. 6: Number of samples per CWE ID after grouping by
parent pillars

TF-IDF Vectorizer RAKE
Word

Frequency
Degree to

Frequency Ratio
Word

Degree
fdk ncompute ncompute headaches
mainframe rfc0959 rfc0959 peap
latency securex securex complexity
reviewing rudimentary rudimentary x98tl
subsystems envmon envmon 1493
fpga unhidden unhidden accompanies
fulfillment polls polls dreams
pak x98sub2 x98sub2 sequences
insights whois whois 006d
nexus nfamily nfamily 370w
js typeset typeset namespaces
started shasum shasum x98none
maximo dist lisp lisp dist lisp lisp orthis
sterling memoir memoir calc
netcool nfailures nfailures parking
drupal nsuccess nsuccess nbd

TABLE III: Top keywords from each feature selection method

for extracting keywords. Rapid Automatic Keyword Extraction
Algorithm (RAKE) [43], [44] and Term Frequency-Inverse
Document Frequency (TF-IDF) vectorizer are simple methods
that achieve the state of the art results in terms of both
relevance and computational efficiency in many keyword ex-
traction tasks [44].

We used the TF-IDF vectorizer and RAKE to break down
the content to words/unigrams, bigrams, and trigrams. While
TF-IDF vectorizer internally performs a word embedding task
to convert each text sample to a feature vector, a word
embedding algorithm was used to convert keywords extracted
using RAKE to a feature vector. Both TF-IDF Vectorizer and
RAKE support custom stopword specification [44], [45].

The top keywords extracted by TF-IDF Vectorizer and
RAKE using different metrics are shown in Table III. We ob-
served that the Degree to Frequency Ratio metric of RAKE
performed the best in identifying keywords that are related to
different functionalities and technologies used (for example,
rfc0959 is an FTP protocol). RAKE also reduced the dimen-
sionality of the feature set over TF-IDF (23,303 vs 168,531)
that led to significantly improved computation times. We chose
RAKE for feature selection in our experiments.

2) Class Imbalance Strategies: The vulnerability predic-
tion task, akin to any fraud detection or anomaly detection
model, inherently faces the challenge of an imbalanced dataset.
That is, the number of samples labeled as 1 (i.e., presence
of the vulnerability) will be significantly smaller than the
number of samples labeled as 0. This is shown in Figure 6.
Out of 3,602 products, even the more common vulnerabilities
such as CWE 707 and CWE 664 are found only in 1,390
and 1,361 products which account for less than 50% of the
samples. When training models using imbalanced datasets,
unless countermeasures are explicitly added, models tend to
overestimate the likelihood of a test sample to be labeled
as 0. That is, when samples are predominantly of class 0,
predicting every test sample as a 0 can give a high accuracy
even if other measures (precision, recall, f1-score, roc-auc)
are compromised. We use the following countermeasures to
address class imbalance:

Importance Sampling: To correct the prior probability
calculation by a classifier, the number of samples from each
class should be balanced. Down-sampling the majority class
(reducing the number of samples) can help the model avoid
overestimating the likelihood of the majority class [46]. This
may be performed by selecting all minority class items and
randomly selecting the same number of samples from the
majority class. The model can then be trained on the re-
sampled balanced dataset. To check if the model has actually
learned features correctly to predict both classes, the model
can be tested on Stratified Data (data with the ratio of samples
of each class matching the original dataset).

Alternate Metrics: In the past few years, several new met-
rics have been proposed [47] which measure the classification
performance on majority and minority classes independently.
When executing cross-validation to benchmark the perfor-
mance of different classifiers, alternate metrics such as the
recall, f1-score, or Matthews correlation coefficient may be
used to flag models that do not counter the class imbalance
effect. In this study, we look at the weighted average f1-score
in our classifier selection and hyperparameter tuning. Weighted
average f1-score is calculated as the average of the f1-scores
across labels, weighted by their support sizes (the number
of true instances for each label), thus accounting for label
imbalance.

Penalized Algorithms: Some algorithms have penalties or
regularization parameters to counter class imbalance [46].
For example, SVM and random forest classifiers support
“balanced” or “balanced subsample” class weight mode that
automatically adjusts weights inversely proportional to class
frequencies in the input data.

III. EVALUATION

The following experiments answer our research questions.

A. Whitebox Classifiers (RQ1)

Experiment: We evaluate the performance of the deci-
sion tree classifier in predicting the 8 vulnerability classes
in the dataset. The dataset was split into training (1,967

Fig. 7: Decision trees for vulnerability prediction

samples) and test sets (492 samples) at a 4:1 ratio. 43,409
features (keywords extracted using RAKE NLTK) were used
for model evaluation after excluding 279 frequently occuring
words retrieved from the dataset using a CountVectorizer. We
used hyperparameter tuning with 5-fold cross validation for
each vulnerability class to find the optimal size of the tree
(max depth) and the minimum number of samples at each
leaf (min samples leaf). Following the standard process for
decision tree training, each node split was decided based on
using the Gini impurity as well as the information gain [48].
Further, to account for label imbalance, we used the weighted
f1-score (the weighted average of the f1-scores corresponding
to the 0 and 1 labels) as the scoring metric in the hyperpa-
rameter grid search.

Results: The structure of the decision tree corresponding
to each vulnerability allows us to derive meaningful insights.
In a decision tree, the features close to the root are the
more ‘important’ discriminators [49]. For CWE-435 (Improper
Interaction Between Multiple Correctly-Behaving Entities),
the decision tree included ftpserver as a feature of significant
importance (see Figure 7), aligning with its vulnerability
description: An interaction error occurs when two entities
have correct behavior when running independently of each
other, but when they are integrated as components in a larger
system or process, they introduce incorrect behaviors that
may cause resultant weaknesses [4]. Similarly, for CWE-682
(Incorrect Calculation), the decision tree included pthread
as an important feature (Figure 7). This may be because
multi-threaded programs with incorrect resource allocation are
closely related to CWE-682, whose vulnerability description
reads: software performs a calculation that generates incorrect
or unintended results that are later used in security-critical
decisions or resource management. The decision tree rendered
for CWE-284 (Improper Access Control) had scada as the
root node. SCADA (acronym for Supervisory Control and
Data Acquisition) is a computer-based system for gathering
and analyzing real-time data to monitor and control equipment
that deals with critical and time-sensitive materials or events
[50]. Upon manual validation, it was observed that all 8
decision trees rendered had keywords relevant to the respec-

CWEID # s H P R f1 A
435 2 gini, 2, 5 0.000 0.000 0.000 0.998
682 15 gini, 2, 5 0.000 0.000 0.000 0.992
703 62 gini, 5, 5 0.333 0.083 0.133 0.974
691 210 gini, 100, 5 0.200 0.075 0.109 0.900
284 400 gini, 20, 5 0.389 0.171 0.237 0.817
693 424 gini, 10, 5 0.350 0.171 0.230 0.809
664 1166 entropy, 20, 10 0.553 0.780 0.647 0.630
707 1174 gini, 100, 5 0.611 0.579 0.595 0.626

TABLE IV: Evaluation of the decision tree classifier
s: Number of samples, P: Precision, R: Recall, f1: f1-score, A: Accuracy,
H: Hyperparameters as (criterion, max depth, min samples leaf)

Fig. 8: Classifier selection by comparing accuracy

tive vulnerability with significant importance. The decision
trees rendered for each vulnerability class are available as
supplementary material [51]. The precision, recall, f1-score
and accuracy observed in predicting the 8 vulnerability classes
using the tuned hyper-parameters, are summarized in Table IV.
Number of samples represent the number of 1-label entries
corresponding to the vulnerability in the dataset. Note that the
trivial values for precision, recall and f1-scores observed for
CWE-435 and CWE-682 are due to the significantly fewer
samples (just 2 and 15 samples respectively) in the dataset.

These results suggest that whitebox classifiers are able to
predict vulnerabilities with non-trivial precision and recall
when the model has over 1,000 samples to train.

B. Blackbox and Ensemble Models (RQ2)

1) Classifier Selection: We do a grid search with 5 fold
cross-validation with f1-score and accuracy as our scoring
metrics to identify the blackbox classifier model that works
best. We compared the K-nearest neighbor classifier, logistic
regression, support vector machines, multi-layer perceptron
(MLP), and random forest classifier. The classifier selection in-
volved: (1) hyperparameter tuning for each candidate classifier
model, (2) grid search with 5-fold cross validation of candidate
classifiers with selected hyperparameter combination.

Results: For hyperparameter tuning we used applicable
class imbalance counter measures such as penalized algorithms
and enabled class weighting. Further, we use the weighted
f1-score as the scoring metric. The results of 5-fold cross
validation with the 5 candidate classifiers (each initialized
with best hyperparameter values tuned for CWE-664) using
accuracy and f1-score as scoring metrics are shown in Fig-
ures 8 and 9 respectively. For each classifier, the 5 dots in
the box plot shows the scoring metric value for each fold
in the 5-fold cross validation. Accuracy metric was found to

Fig. 9: Classifier selection by comparing f1-score

be heavily influenced by the dataset imbalance and we used
an f1-score based evaluation to decide the best classifier. The
random forest classifier trumps the other classifiers in both
the mean and variance of the f1-score and we chose it for
the experiments that follow. Moreover, as the random forest
classifier is an ensemble of decision trees, it offers a natural
extension to our whitebox model.

(a) CWE-664 (b) CWE-707 (c) CWE-693

Fig. 10: Confusion matrix for predicting with the random
forest classifier

Vulnerability precision recall f1-score FAR train/test
size

CWE-664 0.668 0.667 0.667 0.358 1967/492
CWE-707 0.639 0.704 0.669 0.362 1967/492
CWE-693 0.811 0.839 0.8 0.375 1967/492

TABLE V: Performance of the random forest classifier

2) Best Estimator Evaluation: We evaluate the perfor-
mance of the selected random forest classifier in predicting the
top 3 vulnerability classes. We used the same test-train split
ratio, feature set, and stopwords as the experiments for RQ1 to
ensure a fair comparison with the whitebox classifier. For each
vulnerability class, we perform a 5-fold hyperparameter grid
search to tune the following parameters: ‘bootstrap’ (decides
whether bootstrap samples or the entire dataset is used to build
each tree),‘max depth’, ‘max features’,‘min samples leaf’,
and ‘n estimators’ (number of trees in the forest). The con-
fusion matrix from this evaluation is shown in Figure 10.
The performance of the random forest classifier in predicting
CWE-693, CWE-664, and CWE-707 is summarized in Ta-
ble V. There was an average improvement of 52.4%, 132.8%,
and 88.0% in precision, recall and f1-score respectively. The
average False Alarm Rate (FAR) observed was 36.5%. Here,
FAR is computed as False Positive / (False Positive + True
Positive).

(a) CWE - 664 (b) CWE - 707 (c) CWE - 693

Fig. 11: Operating Systems

(a) CWE - 664 (b) CWE - 707 (c) CWE - 693

Fig. 12: Hardware

C. Segregating Products into Categories (RQ3)

Experiment: Instead of using all 3,602 products together
in the dataset for training and testing, we split the dataset
based on product types (Applications, Hardware or Operating
Systems). We then extracted frequent words to be excluded for
each category using Count Vectorizer. The custom stopwords
list, hence generated, was used to extract keyword features
using RAKE from documentations of the specific category.
This is similar to a semi-supervised learning approach as cat-
egory segregation allows grouping similar products together.
The objective of this experiment was to evaluate if category
segregation improves the relevance of the keywords extracted
as they are more targeted to the domain/context.

Results: The performance of the random forest classifier
in predicting CWE-664, CWE-693 and CWE-707 for each
category is summarized in Figure 11,12,13, and Table VI. For
Operating Systems, we observed an improvement of 11.33%,
4.75%, and 7.96% respectively for precision, recall and f1-
score. Performance improvement for Hardware was 19.26%,
10.72%, and 14.89% respectively for precision, recall and f1-

(a) CWE - 664 (b) CWE - 707 (c) CWE - 693

Fig. 13: Applications

Type Vulnerability precision recall f1-score FAR

Operating
Systems

CWE-664 0.828 0.815 0.795 0.111
CWE-707 0.73 0.704 0.713 0.526
CWE-693 0.8 0.796 0.798 0.353

Hardware
CWE-664 0.796 0.804 0.797 0.307
CWE-707 0.77 0.732 0.731 0.130
CWE-693 0.96 0.911 0.926 0.555

Apps
CWE-664 0.599 0.592 0.589 0.433
CWE-707 0.56 0.559 0.559 0.454
CWE-693 0.719 0.842 0.776 1

TABLE VI: Precision, recall and f1-scores using a random
forest model on dataset segregated by product category

score. However, for Applications, the performance deteriorated
by 11.33%, 9.82% and 19.38% respectively for precision,
recall and f1-score. The performance deterioration for Ap-
plications might be due to the reduced sampling percentage.
While the improvement is modest, note that these results are
achieved with a drastically smaller dataset when split into the
above product categories. For vulnerabilities where enough
samples are maintained in the dataset after splitting, there was
a significant performance improvement (e.g., for CWE-693 in
the Hardware category (Figure 12), the performance increased
up to 96% precision, 91.1% recall and 92.6% f1-score). The
improvement may be tied to the increased relevance of the
extracted keywords. For example, when manually inspecting
the extracted stopwords for the Hardware category, it was
observed that words like ‘network’ (frequency: 5,513), ‘power’
(frequency: 5,185), ‘mib’ (frequency: 4,343), ‘ethernet’ (fre-
quency: 3,862), ‘series’ (frequency: 3,828), ‘ports’ (frequency:
3,733) had a very high frequency, and were consequently
removed from the feature list. This led to novel, less fre-
quent, and arguably more discriminative keywords such as
‘pwrinj6’ (a power injector model name) becoming part of the
feature set. The FAR significantly improved when segregating
products into categories, for example, the FAR for CWE-
664 in operating systems was only 11% and for CWE-707
in hardware was 13%, with an average FAR of 33% for
both categories. FAR, however, regressed for the applications
category (similar behavior to precision and recall) likely due
to the reduced sampling for that category.

D. Correlation Analysis (RQ4)

We perform a correlation analysis to compute the pair-
wise correlation of columns (CWE IDs) to analyze the co-
occurrence of different vulnerabilities. As correlation analysis
is not constrained by documentation availability, we are able
to consider all 223,363 vulnerability reports with CWE IDs
(see Table I). This analysis is especially useful if there are
resource or time constraints, where prediction of a subset of
vulnerabilities may be desirable. If two CWE IDs are highly
correlated, separate binary classification of the two labels may
not be required. Moreover, the feature set (keywords extracted
from the documents) can be merged to create a more fine-
tuned classifier.

We were able to identify more than 30 highly correlated
vulnerability pairs (correlation>0.65, p-value<0.001) where

the co-occurrence was large enough for combined prediction,
or where one vulnerability can be used as proxy/indication
of another. We manually verified that these vulnerability
pairs were not directly related (parent-child relationships)
through vulnerability classification relationships. The 10 most
correlated vulnerabilities are listed in Table VII. When two
vulnerabilities are highly correlated, detection of one can
help plan ahead to implement security mechanisms to ad-
dress correlated vulnerabilities. While the high correlation of
vulnerability reports may be due to insecure coding prac-
tices causing the system to be prone to multiple types of
vulnerabilities, developers without domain expertise may be
able to use these relationships to proactively fix a correlated
vulnerability before its detection. For example, CWE-317 is
a Sensitive Data Protection Vulnerability usually addressed
using Information Obscurity or Secure Communication pattern
[9]. If this vulnerability is detected in a system, engineers can
also check for potential Logging And Audit Vulnerabilities
and incorporate Secure Logger pattern where applicable.

E. Comparison with Related Tools

Since this is the first study that makes domain-agnostic
and programming language-agnostic predictions of security
vulnerabilities from specification document text, no direct
comparison is possible for the precision, recall, accuracy, and
f1-score measures discussed in the evaluations. Most other
studies have considered predicting vulnerabilities in at most
3-5 products. For example, [18] predicted CWE 190 in Xen
4.6.0, and CWE 119 in Seamonkey 2.31 and Libav 10.2.
To compare how our model performs on these products, the
documentation of these 3 products were downloaded, text
extracted, tokenized, and evaluated by training our model for
both CWE 190 and CWE 119. We were careful to ensure
that the above products were not part of our training set. Our
model was able to correctly predict the presence of CWE 119
in Seamonkey and Libav. VDocScan did not detect CWE 190
in the three products. This may be due to the dataset having
very low sampling size for CWE 190 (only 8 products in the
dataset of 3,602 reported CWE 190).

IV. DISCUSSION

We now revisit the research questions discussed earlier in
the paper:

RQ1: Can interpretable whitebox classifiers such as
decision trees make robust predictions of security vulner-
abilities based on the extracted keywords?
Yes, with enough vulnerability report samples, decision trees
can be trained to predict vulnerabilities while also provid-
ing interpretable tree plots. Tree plots can help engineers
make informed decisions about addressing vulnerabilities and
understand which features/technical dependencies cause the
security flaw. Even with a small sample of 3,602 products, we
were able to achieve upto 61% precision and 78% recall with
decision tree classifier.

RQ2: Can blackbox classifiers such as ensemble models
improve the prediction accuracy?

Vulnerability 1 Vulnerability 2 Correlation
317 - Cleartext Storage of Sensitive Information in GUI 778 - Insufficient Logging 1
98 - Improper Control of Filename for Include/Require Statement in PHP 644 - Improper Neutralization of HTTP Headers for Scripting Syntax 1
87 - Improper Neutralization of Alternate XSS Syntax 98 - Improper Control of Filename for Include/Require Statement in PHP 1
87 - Improper Neutralization of Alternate XSS Syntax 644 - Improper Neutralization of HTTP Headers for Scripting Syntax 1
313 - Cleartext Storage in a File or on Disk 317 - Cleartext Storage of Sensitive Information in GUI 1
313 - Cleartext Storage in a File or on Disk 778 - Insufficient Logging 1
299 - Improper Check for Certificate Revocation 1286 - Improper Validation of Syntactic Correctness of Input 1
805 - Buffer Access with Incorrect Length Value 1284 - Improper Validation of Specified Quantity in Input 0.91286
240 - Improper Handling of Inconsistent Structural Elements 1284 - Improper Validation of Specified Quantity in Input 0.91286
240 - Improper Handling of Inconsistent Structural Elements 805 - Buffer Access with Incorrect Length Value 0.833309

TABLE VII: Most correlated vulnerability pairs (p-value < 0.001)

The random forest classifier was able to achieve the highest
average precision, recall and f1-score as well as the least
variance in these metrics when evaluated on different sub-
samples of the dataset. With appropriate counter measures
for class imbalance, random forest classifier achieved up to
81.1% precision, 83.9% recall and 80% f1-score in predicting
vulnerabilities.

RQ3: Does segregating products into categories such as
Applications, Operating Systems, Hardware (embedded
firmware) improve the relevance of the extracted keywords
and predict better?
Yes, segregating products into categories helps the feature
extraction process to boost significance of keywords relevant
to the domain or category. However the performance im-
provement upon segregation is contingent on having sufficient
samples per category.

RQ4: Can a correlation analysis provide insights into
potentially co-occurring vulnerabilities and thereby allow
implementation of simultaneous fixes?
Yes, our current results suggest that there is significant
correlation between many vulnerabilities. Highly correlated
security vulnerabilities are especially helpful as detecting one
vulnerability can be used as a warning for the other. Engineers
can use this evaluation to plan security fixes for undetected
vulnerabilities ahead of time when a correlated vulnerability
is predicted in the architecture and design phase, or post-
development based on source code analysis.

A. Challenges

A major challenge is the creation of the dataset as there are
no existing datasets that can be re-used for this study. While
we have created programs that can automatically download
products to vulnerability mapping from the CVE website,
downloading documentation files corresponding to products
in the CVE list is difficult. Some open-source websites like
GNU [52] contain text-based documentation available for
most of their products that can be automatically downloaded
using a webscraper. However, for most other vendors and
products, the documentation cannot be downloaded in bulk as
the webpage for each product differs in structure. Moreover,
many companies build both software and hardware products,
and identifying the products that are part of the CVE dataset is
time-consuming. Most products have online HTML-based or
PDF documentation. If the documentation is in PDF format,
this can cause encoding issues and invalid characters due

to incorrect conversion of special characters and media files
embedded in the document. We addressed this issue by homog-
enizing the dataset into plain text format, using appropriate
libraries (e.g., PyPDF for PDF files to txt conversion).

Another challenge is the computational complexity due
to the large number of features. The size of specification
documents can range anywhere between 10-5,000 pages. Even
if we select only the top 1,000 keywords from each document,
this can add up to a significant number when keywords from
all documents are combined to create the final feature set.
We used RAKE NLTK to extract top keywords instead of
an exhaustive list of features to address the computational
complexity without compromising performance.

B. Limitations

Since not all CWE labels have enough samples for the clas-
sifiers to converge with reasonable accuracy, VDocScan may
not be able to make accurate predictions on all vulnerabilities.
Our method is also prone to temporal gaps, as data that the
model is trained on will always be older than the data it will
be evaluated on. To bridge the gap, the model will need to be
well calibrated using backtesting [53].

C. Threats to Validity

Internal validity: To avoid selection bias, we used all
known vulnerability reports for an application as per CVE.
We selected reports without regard to the severity or the type
of vulnerability reported. The criteria to select applications
for which documentation was downloaded was not arbitrary.
We chose vendors with a large number of products, each with
a significant number of vulnerability reports, to have a large
dataset of product documentation and vulnerabilities for model
building and prediction. We used CVE reports as the ground
truth to avoid any manual bias in labeling whether the products
were vulnerable.

External validity: Unlike existing studies where results
might be specific to the chosen application, we cross-validated
our model and evaluated it over a dataset of 3,602 products.
These products are of different types (Applications, Operat-
ing Systems, Hardware/Appliances), from different domains,
and written in different programming languages. Further, we
consider documentation styles that range from open source
projects with complete documentation and closed source pro-
prietary projects whose documentation focuses on usage (e.g.,
user manual, installation guide, getting started guide etc). This

diversity may allow our results to generalize across program-
ming languages, product types, and documentation styles.

D. Future Directions

D1: A direct extension of our work is a recommendation
system that suggests security mechanisms to be included in
the source code based on the predicted vulnerabilities. Using
design pattern detection mechanism [54] to validate whether
a security design pattern has been properly implemented,
VDocScan can also be used during the implementation phase.

D2: In this work we use ngram-based keyword extraction
and simple models such as logistic regression and random
forest models due to the limited vulnerability-specification
document dataset. As ours is the first work connecting specifi-
cation documents and vulnerability reports, we needed to build
a new dataset and were constrained by the limited intersection
between retrievable documentation and available vulnerability
reports. We skipped deep learning models due to the large
datasets they require to obtain comparable accuracy to simple
classifiers. In time, as the dataset becomes larger, it may
enable more complex and data intensive techniques such as
those based on static [55] or dynamic embeddings [56] and
deep learning models. This may also reduce the amount of
feature engineering required, enabling a more robust end to
end system.

D3: It would be of interest to study performance improve-
ments in post-release vulnerability prediction methods from
augmenting specification documents as a feature in addition
to temporal information such as the version control history
that they presently rely on.

V. LITERATURE REVIEW

While many researchers have used vulnerability databases
like CVE, CWE, NVD, it is often for studying vulnerability
characteristics and life cycle [13], [18], [57]–[60]. Other
text classification based security vulnerability identification
systems rely on vulnerability descriptions as its input [61].
We use vulnerability databases as the ground truth just as in
these works, but differ in that our method takes specification
documents as input. This approach is similar in spirit to [62]–
[64] that apply ML techniques on specification documents.
However, we are the first to apply ML techniques on specifi-
cation documents for vulnerability prediction.

Other works (e.g. [20], [65]–[69]) identify vulnerabilities
in source code based on code snippet samples. They primarily
study the influence of various factors on vulnerability detection
such as the dataset source, feature extraction, class imbalance
and vectorization methods, the classifier choice, user-defined
name replacement, etc. [12] proposes a hybrid technique based
on combining N-gram analysis and feature selection algo-
rithms for predicting vulnerable software components where
features are defined as continuous sequences of tokens in
source code files, i.e, Java class files. While these methods
perform well in detecting security issues using source code,
they do not enable making architectural and design decisions

to avoid these security vulnerabilities before the development
phase.

VI. CONCLUSION

While no predictive model can be expected to be 100%
accurate, this tool is expected to be used to provide check-
points for software engineers. Our objective is to reduce the
number of vulnerabilities that are detected post release. The
implication of false positives are less severe as it only leads
to more secure coding practices. False negatives, however,
are lost opportunities to fix the vulnerabilities ahead of time
that could have saved the company both time and money.
Our correlation analysis may also be used by developers to
watch out for correlated vulnerabilities while making architec-
tural/design decisions. When a vulnerability is detected post-
development, our correlation analysis can also be used to
proactively correct correlated vulnerabilities before they can
be exploited by malicious actors.

Although many organizations have established vulnerability
description databases for information on security vulnerabil-
ities, the differences in their descriptions make it difficult to
apply security precautions [70], [71]. This study also enables
developers without expertise in cybersecurity to make design
decisions that mitigate security vulnerabilities. Early detection
of vulnerabilities using VDocScan may also benefit Open
Source users from being at a disadvantage due to disclosure
latency while OSS developers make silent fixes [72].

ACKNOWLEDGMENT

The authors thank Vaishakh Ravindrakumar (University of
California San Diego), Alex Christensen, Martin Rudzis, Dinh
Liu, Aidar Kurmanbek-Uulu, Matthew Hewitt, Harminder
Simplay and Sayali Kudale of the University of Washington
Bothell for their assistance with performing evaluations and
reviewing results. This effort is partly supported by the Univer-
sity of Washington Bothell Computing and Software Systems
(CSS) Division Project & the CSS Division Graduate Research
funds.

REFERENCES

[1] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual
model for automated DevSecOps using open-source software over cloud
(ADOC),” Computers & Security, vol. 97, p. 101967, 2020.

[2] N. Hanebutte and P. W. Oman, “Software vulnerability mitigation as
a proper subset of software maintenance,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 17, no. 6, pp. 379–400,
2005.

[3] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden, “Software
vulnerability prediction using text analysis techniques,” in Proc of the
4th Int’l Workshop on Security Measurements and Metrics, 2012, pp.
7–10.

[4] MITRE, “CWE - common weakness enumeration,” https://cwe.mitre.
org/, 2006, (accessed December 13,2020).

[5] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi,
“Secure design patterns,” Carnegie Mellon Univ Pittsburgh PA Software
Engineering Inst, Tech. Rep., 2009.

[6] X. Wang, “A secure computing platform for building automation using
microkernel-based operating systems,” Ph.D. dissertation, University of
South Florida, 2018.

[7] A. K. Jones and R. J. Lipton, “The enforcement of security policies for
computation,” in Proc of the 5th ACM Symposium on Operating Systems
Principles, 1975, pp. 197–206.

[8] J. C. Santos, A. Peruma, M. Mirakhorli, M. Galstery, J. V. Vidal, and
A. Sejfia, “Understanding software vulnerabilities related to architectural
security tactics: An empirical investigation of chromium, php and
thunderbird,” in Proc of the IEEE Int’l Conf on Software Architecture
(ICSA). IEEE, 2017, pp. 69–78.

[9] P. Anand, J. Ryoo, and R. Kazman, “Vulnerability-based security pattern
categorization in search of missing patterns,” in Proc of the 9th Int’l Conf
on Availability, Reliability and Security. IEEE, 2014, pp. 476–483.

[10] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “DeepCVA: Automated
commit-level vulnerability assessment with deep multi-task learning,”
in Proc of the 36th IEEE/ACM Int’l Conf on Automated Software
Engineering (ASE). IEEE, 2021, pp. 717–729.

[11] J. Stuckman, J. Walden, and R. Scandariato, “The effect of dimen-
sionality reduction on software vulnerability prediction models,” IEEE
Transactions on Reliability, vol. 66, no. 1, pp. 17–37, 2016.

[12] Y. Pang, X. Xue, and A. S. Namin, “Predicting vulnerable software
components through n-gram analysis and statistical feature selection,” in
Proc of the 14th IEEE Int’l Conf on Machine Learning and Applications
(ICMLA). IEEE, 2015, pp. 543–548.

[13] W. Zheng, J. Gao, X. Wu, F. Liu, Y. Xun, G. Liu, and X. Chen,
“The impact factors on the performance of machine learning-based
vulnerability detection: A comparative study,” Journal of Systems and
Software, vol. 168, p. 110659, 2020.

[14] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang,
“LEOPARD: Identifying vulnerable code for vulnerability assessment
through program metrics,” in Proc of the 41st IEEE/ACM Int’l Conf on
Software Engineering (ICSE). IEEE, 2019, pp. 60–71.

[15] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle
in a haystack: Predicting security vulnerabilities for windows vista,”
in Proc of the 3rd Int’l Conf on Software Testing, Verification and
Validation. IEEE, 2010, pp. 421–428.

[16] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE Transactions on Software Engineering,
vol. 37, no. 6, pp. 772–787, 2010.

[17] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proc of the 14th ACM Conf on
Computer and Communications Security, 2007, pp. 529–540.

[18] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[19] V.-A. Nguyen, V. Nguyen, T. Le, Q. H. Tran, D. Phung et al., “ReGVD:
Revisiting graph neural networks for vulnerability detection,” in Proc of
the 44th IEEE/ACM Int’l Conf on Software Engineering: Companion
Proc. IEEE, 2022, pp. 178–182.

[20] Y. Chen, L. Xing, Y. Qin, X. Liao, X. Wang, K. Chen, and W. Zou,
“Devils in the guidance: predicting logic vulnerabilities in payment
syndication services through automated documentation analysis,” in Proc
of the 28th USENIX Security Symposium (USENIX Security 19), 2019,
pp. 747–764.

[21] M. Ghorbanzadeh and H. R. Shahriari, “Detecting application logic
vulnerabilities via finding incompatibility between application design
and implementation,” IET Software, vol. 14, no. 4, pp. 377–388, 2020.

[22] C. Batur Şahin and L. Abualigah, “A novel deep learning-based fea-
ture selection model for improving the static analysis of vulnerability
detection,” Neural Computing and Applications, vol. 33, no. 20, pp.
14 049–14 067, 2021.

[23] S. Salva and S. R. Zafimiharisoa, “APSET, an android application
security testing tool for detecting intent-based vulnerabilities,” Int’l
Journal on Software Tools for Technology Transfer, vol. 17, no. 2, pp.
201–221, 2015.

[24] C. Shou, I. B. Kadron, Q. Su, and T. Bultan, “CorbFuzz: Checking
browser security policies with fuzzing,” in Proc of the 36th IEEE/ACM
Int’l Conf on Automated Software Engineering (ASE). IEEE, 2021, pp.
215–226.

[25] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract
static analysis for detecting practical reentrancy vulnerabilities in smart
contracts,” in Proc of the 35th IEEE/ACM Int’l Conf on Automated
Software Engineering (ASE). IEEE, 2020, pp. 1029–1040.

[26] MITRE, “CVE - common vulnerabilities and exposures,” https://cve.
mitre.org/, 1999, (accessed December 13,2020).

[27] D. Pandey, U. Suman, and A. K. Ramani, “An effective requirement
engineering process model for software development and requirements

management,” in Proc of the Int’l Conf on Advances in Recent Tech-
nologies in Communication and Computing. IEEE, 2010, pp. 287–291.

[28] Z. Xu, J. Liu, X. Luo, Z. Yang, Y. Zhang, P. Yuan, Y. Tang, and T. Zhang,
“Software defect prediction based on kernel PCA and weighted extreme
learning machine,” Information and Software Technology, vol. 106, pp.
182–200, 2019.

[29] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in Proc of the 34th Int’l Conf on Software Engineering (ICSE).
IEEE, 2012, pp. 14–24.

[30] R. Widyasari, G. A. A. Prana, S. A. Haryono, S. Wang, and D. Lo, “Real
world projects, real faults: evaluating spectrum based fault localization
techniques on python projects,” Empirical Software Engineering, vol. 27,
no. 6, pp. 1–50, 2022.

[31] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and
N. B. Anuar, “The rise of software vulnerability: Taxonomy of software
vulnerabilities detection and machine learning approaches,” Journal of
Network and Computer Applications, vol. 179, p. 103009, 2021.

[32] Microsoft, “What is xamarin,” https://docs.microsoft.com/en-us/
xamarin/get-started/what-is-xamarin, (accessed August 30,2022).

[33] GNU, “GNU tar 1.34,” https://www.gnu.org/software/tar/manual/tar.
html, (accessed August 30,2022).

[34] J. J. Poozhithara, “Artifacts for Keyword Extraction From Specification
Documents for Planning Security Mechanisms,” May 2022. [Online].
Available: https://doi.org/10.5281/zenodo.7578926

[35] ——, “Artifacts for Keyword Extraction From Specification Documents
for Planning Security Mechanisms,” May 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7578909

[36] T. Python Software Foundation, “difflib — helpers for computing
deltas,” https://docs.python.org/3.8/library/difflib.html, 2019, (accessed
May 24,2021).

[37] MITRE, “CVE program overview - process,” https://www.cve.org/
About/Process, 2022, (accessed August 30,2022).

[38] M. M. Dundar, E. D. Hirleman, A. K. Bhunia, J. P. Robinson, and
B. Rajwa, “Learning with a non-exhaustive training dataset: a case study:
detection of bacteria cultures using optical-scattering technology,” in
Proc of the 15th ACM SIGKDD Int’l Conf on Knowledge Discovery
and Data Mining, 2009, pp. 279–288.

[39] T. S. Wiens, B. C. Dale, M. S. Boyce, and G. P. Kershaw, “Three
way k-fold cross-validation of resource selection functions,” Ecological
Modelling, vol. 212, no. 3-4, pp. 244–255, 2008.

[40] D. Harris and S. L. Harris, Digital design and computer architecture.
Morgan Kaufmann, 2010.

[41] MITRE, “CWE relationship graph visualization,” https://cwe.mitre.org/
data/pdf/1000 abstraction colors.pdf, 2022, (accessed August 30,2022).

[42] ——, “2022 CWE top 25 most dangerous software weaknesses,” https:
//cwe.mitre.org/top25/archive/2022/2022 cwe top25.html, 2022, (ac-
cessed February 5,2022).

[43] S. J. Rose, V. L. Crow, N. O. Cramer et al., “Rapid automatic keyword
extraction for information retrieval and analysis,” Pacific Northwest
National Lab.(PNNL), Richland, WA (United States), Tech. Rep., 2012.

[44] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword
extraction from individual documents,” Text Mining: Applications and
Theory, vol. 1, pp. 1–20, 2010.

[45] S. Robertson, “Understanding inverse document frequency: on theoret-
ical arguments for IDF,” Journal of Documentation, 2004.

[46] N. Japkowicz, “The class imbalance problem: Significance and strate-
gies,” in Proc of the Int’l Conf on Artificial Intelligence, vol. 56.
Citeseer, 2000.

[47] C. D. Manning, P. Raghavan, and H. Schütze, “Probabilistic information
retrieval,” Introduction to Information Retrieval, pp. 220–235, 2009.

[48] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the
gini index and information gain criteria,” Annals of Mathematics and
Artificial Intelligence, vol. 41, no. 1, pp. 77–93, 2004.

[49] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[50] S. A. Boyer, SCADA: supervisory control and data acquisition. Int’l
Society of Automation, 2009.

[51] J. J. Poozhithara, “Vdocscan - dataset,” May 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.6526011

[52] GNU, “GNU operating system,” https://www.gnu.org/manual/manual.
html, 2020, (accessed May 24,2021).

[53] R. Giacomini and I. Komunjer, “Evaluation and combination of condi-
tional quantile forecasts,” Journal of Business & Economic Statistics,
vol. 23, no. 4, pp. 416–431, 2005.

[54] J. Poozhithara, H. Asuncion, and B. Lagesse, “Towards lightweight
detection of design patterns in source code,” in Proc of the 34th Interna-
tional Conference on Software Engineering & Knowledge Engineering
(SEKE), 2022, pp. 95–99.

[55] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, vol. 30, 2017.

[57] C. Elbaz, L. Rilling, and C. Morin, “Automated keyword extraction from
”one-day” vulnerabilities at disclosure,” in Proc of the NOMS IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2020, pp. 1–
9.

[58] S. Neuhaus and T. Zimmermann, “Security trend analysis with CVE
topic models,” in Proc of the 21st IEEE Int’l Symposium on Software
Reliability Engineering. IEEE, 2010, pp. 111–120.

[59] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an automated
vulnerability detection system based on code similarity analysis,” in Proc
of the 32nd Annual Conf on Computer Security Applications, 2016, pp.
201–213.

[60] X. Li, J. Chen, Z. Lin, L. Zhang, Z. Wang, M. Zhou, and W. Xie, “A
mining approach to obtain the software vulnerability characteristics,” in
Proc of the 5th Int’l Conf on Advanced Cloud and Big Data (CBD).
IEEE, 2017, pp. 296–301.

[61] S. Yitagesu, Z. Xing, X. Zhang, Z. Feng, X. Li, and L. Han, “Unsuper-
vised labeling and extraction of phrase-based concepts in vulnerability
descriptions,” in Proc of the 36th IEEE/ACM Int’l Conf on Automated
Software Engineering (ASE). IEEE, 2021, pp. 943–954.

[62] F. Iwama, T. Nakamura, and H. Takeuchi, “Constructing parser for
industrial software specifications containing formal and natural language
description,” in Proc of the 34th Int’l Conf on Software Engineering
(ICSE), 2012, pp. 1012–1021.

[63] P. R. Anish, P. Lawhatre, R. Chatterjee, V. Joshi, and S. Ghaisas,
“Automated labeling and classification of business rules from software
requirement specifications,” in Proc of the 44th IEEE/ACM Int’l Conf on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2022, pp. 53–54.

[64] S. Imtiaz, M. R. Amin, A. Q. Do, S. Iannucci, and T. Bhowmik,
“Predicting vulnerability for requirements,” in Proc of the 22nd IEEE
Int’l Conf on Information Reuse and Integration for Data Science (IRI).
IEEE, 2021, pp. 160–167.

[65] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun, and H. Jin, “A comparative
study of deep learning-based vulnerability detection system,” IEEE
Access, vol. 7, pp. 103 184–103 197, 2019.

[66] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of
malicious code by applying machine learning classifiers on static fea-
tures: A state-of-the-art survey,” Information Security Technical Report,
vol. 14, no. 1, pp. 16–29, 2009.

[67] C. LeDoux and A. Lakhotia, “Malware and machine learning,” in
Intelligent Methods for Cyber Warfare. Springer, 2015, pp. 1–42.

[68] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection
approaches using data mining techniques,” Human-centric Computing
and Information Sciences, vol. 8, no. 1, pp. 1–22, 2018.

[69] Z. Xu, S. Li, J. Xu, J. Liu, X. Luo, Y. Zhang, T. Zhang, J. Keung,
and Y. Tang, “LDFR: Learning deep feature representation for software
defect prediction,” Journal of Systems and Software, vol. 158, p. 110402,
2019.

[70] K. Shi, Y. Dai, and J. Xu, “Construction of a security vulnerability
identification system based on machine learning,” Journal of Sensors,
vol. 2020, 2020.

[71] L. A. B. Sanguino and R. Uetz, “Software vulnerability analysis using
CPE and CVE,” arXiv preprint arXiv:1705.05347, 2017.

[72] J. Zhou, M. Pacheco, Z. Wan, X. Xia, D. Lo, Y. Wang, and A. E.
Hassan, “Finding a needle in a haystack: Automated mining of silent
vulnerability fixes,” in Proc of the 36th IEEE/ACM Int’l Conf on
Automated Software Engineering (ASE). IEEE, 2021, pp. 705–716.

