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Abstract—Fully Homomorphic Encryption (FHE) schemes al-
low computations over encrypted data without access to the
decryption key. This technique can be a valuable tool for building
privacy into crowdsensing systems; however, many existing FHE
implementations, such as Microsoft’s SEAL, are difficult to im-
plement into mobile applications. This paper presents a natively
compiled Dart plugin that abstracts the underlying C/C++ SEAL
library. The FHE Library plugin enables developers to access
SEAL’s full functionality within other Dart plugins and Flutter
applications and is extensible to other encryption libraries.

To evaluate the versatility of the plugin, we develop a
Dart plugin to calculate several distance measures between two
sets of encrypted inputs and we develop a Flutter application
called GhostPeerShare. The Distance Measure plugin imple-
ments Kullback-Leibler Divergence, Bhattacharyya Coefficient,
and Cramer Distance. GhostPeerShare demonstrates the use of
a plugin by re-implementing Proof of Presence Share (Pop-
Share), a mobile application that privately identifies similar
videos recorded by users, as a Flutter application. Through
these applications, we demonstrate that performance is similar
to native applications and that utilizing FHE is more accessible
to researchers developing crowdsensing applications.

Index Terms—Privacy, Fully Homomorphic Encryption, Mo-
bile Crowdsensing

I. INTRODUCTION

A significant challenge in mobile crowdsensing is the
privacy of data collected by the participants. As this data
often contains personally identifiable information or is highly
correlated to personally identifiable information, it needs to
be protected. For example, spatio-temporal data can reveal
information about commonly visited locations of a user such as
their home, school, or work. Most crowdsensing systems make
assumptions about the trustworthiness of centralized servers or
other users in the system; however, that may not always be
true. To address this, some systems will use homomorphic
encryption to perform operations on encrypted data so that
its content is not revealed to any third party [1]–[5]. In
this work, we are particularly focused on fully homomorphic
encryption (FHE) as it gives the developer the most flexibility
in their application development, but this work could also
be applied to partially homomorphic cryptosystems. Existing
FHE libraries are primarily focused on desktop and cloud
computing rather than on mobile computing, thus making
implementation difficult for many people who would benefit
from FHE in their crowdsensing mobile apps. In this work we

have developed an abstraction and implementation for FHE
to make it more accessible to mobile application developers
through Dart and Flutter.

This project contributes a modular Dart plugin12 that ab-
stracts and implements Microsoft Simple Encrypted Arith-
metic Library (SEAL) [6]. The abstraction design enables
the integration and versioning of additional backend libraries.
With the use of CMake configurations, each C library can
be synchronized and recompiled as new versions become
available, simplifying the update process. Automating these
compilations reduces maintenance overhead, ensuring that the
libraries remain up-to-date with minimal manual intervention.

To assess the library’s performance and accuracy, we re-
implement the Proof of Presence Share (PoP-Share) [7]
methodology34 which was originally developed as a Java
application along with native C++ designed to run on Android.
PoP-Share is a mobile crowdsensing application that allows
users to record video of events and then aggregate these videos
from multiple users at the even in a privacy-preserving manner
that only allows people who contribute videos of an event to
view the videos of others.

II. BACKGROUND AND RELATED WORK

Microsoft’s Simple Encryption Arithmetic Library (SEAL)
provides a C++ library for efficient homomorphic encryption,
which made it accessible to the open-source community of
security researchers and developers. SEAL was among the first
of many libraries within the homomorphic encryption commu-
nity. Other libraries included the Homomorphic Encryption
Library (HElib) [8] and Privacy-Preserving Approximate Se-
cure Computation for Encrypted Data (PALISADE) [9]. Col-
lectively, the open-source community aimed to combine their
efforts into the Open-Source Fully Homomorphic Encryption
Library (OpenFHE). A flexible, community-driven project that
was initially released in 2022. Compared to SEAL, OpenFHE
offers support for additional encryption schemes for evaluating
Boolean circuits and arbitrary functions over larger plaintext
spaces using lookup tables. However, OpenFHE is a relatively
new framework with a growing community but requires further

1https://pub.dev/packages/fhel
2https://github.com/jeffmur/fhel
3https://github.com/jeffmur/fhe-video-similarity
4https://github.com/jeffmur/fhe-similarity-score



adoption in the research community to assess its proficiency.
Currently, developers and security researchers are limited in
creating FHE applications within the programming language
constraints of C or C++, as a result, the mobile crowdsensing
community must overcome significant hurdles to access this
functionality.

The Pyfhel library [10] provides a native Python interface
to SEAL cryptosystems, abstracting core SEAL functionalities
into a more generic interface. While Pyfhel supports cross-
platform compatibility on Windows, Linux, and macOS, it
currently lacks support for mobile platforms, e.g. Android and
iOS. This project adopts a similar approach, creating a modular
interface that supports multiple backend libraries.

Flutter, a state-of-the-art software development kit by
Google captured 46% of the cross-platform application market
[11]. This framework is built on top of Dart, a programming
language recognized for its high performance and robust
plugin system. Together, they provide compatibility with all
major operating systems, specifically Android, Linux, macOS,
iOS, and Windows. As a beneficiary of this work, the growing
Flutter community may integrate Fully Homomorphic Encryp-
tion (FHE) into existing or new applications. This framework
enables security researchers and developers to rapidly develop
applications without the required prerequisite knowledge of
the underlying C FHE libraries.

III. SYSTEM DESIGN

A. Fully Homomorphic Encryption Library

This implementation adheres to the core design principle of
modularity, remaining agnostic to the underlying C++ library.
Instead of directly invoking methods within the plugin, the
plugin uses the Bridge and Adapter structural design patterns
inspired by the work of Alberto Ibarrondo and Alexander
Viand [10]. The Bridge pattern decouples the high-level Dart
API from the specific C++ implementation by defining an
abstract interface. The Adapter pattern connects the Dart
interface to the C++ implementation through a C-based inter-
mediary, translating Dart requests into operations understood
by the native library. This approach enables compatibility
with multiple Fully Homomorphic Encryption (FHE) backends
without modifying the Dart API.

Figure 1 demonstrates a simplified example of how Dart,
Afhe Dart, performs C calls with the Interface, fhe C, and in-
teracts with C objects, SEAL C, within the memory stack. The
glue between Afhe Dart and fhe C uses dart:ffi, a Dart plugin,
to facilitate communication between components. Abstract
Fully Homomorphic Encryption, Afhe Dart, library invokes
methods in the C interface, fhe C from Dart. The adapter
design shown in Figure 2 demonstrates the Dart abstraction
layer invokes the C adapter layer. Using dart:ffi, Dart can
execute C functions, reference memory addresses of C objects,
and convert primitive data types.

Abstract Fully Homomorphic Encryption defines a set of
commands to perform basic functionalities of existing Fully
Homomorphic Encryption (FHE) libraries written in C. The
bridge design shown in Figure 3 of this library implements

TABLE I
CLASS STRUCTURE OVERVIEW

File Class Description
seal.dart Seal Entry-point for the end-user API in Dart
afhe.dart Afhe Dart adapter connecting to the C interface
fhe.cpp N/A C interface bridging Dart and C++
afhe.h Afhe Pure abstract class defining the FHE contract
aseal.cpp Aseal Concrete implementation of the Afhe abstraction

an abstraction layer over existing FHE libraries. Through
abstraction, we can interface with various backend libraries
via the same function calls. The interface layer, fhe C, exposes
Afhe C concrete classes, ex. SEAL C, lower level C function.
Through the use of pointers, we can create/destroy/reference
C objects from Dart.

The Fully Homomorphic Encryption Library provides a
modular API that integrates Microsoft SEAL with the Flutter
ecosystem. It offers a straightforward interface for developers,
abstracting low-level complexities while delivering access to
advanced encryption functionalities required for secure ap-
plications. The topology of this Dart plugin ensures a clear
separation of responsibilities to promote maintainability and
extensibility. Table I outlines the distinct roles of each com-
ponent, including the high-level API, the adapter interface, and
the concrete implementation.

The seal.dart file provides the primary entry point for
the end-user API, allowing developers to interact with the
encryption library in Dart. The afhe.dart file acts as the
adapter, invoking lower-level C functions. The Afhe Dart class
exposes abstracted data types such as Keys, Ciphertext, and
Plaintext objects. The fhe.cpp file defines the C interface. It
exposes the inherited methods from afhe.h and references the
memory address of the underlying C++ object. Depending on
the reference, the corresponding concrete implementation will
be invoked. For example, aseal.cpp manages Microsoft SEAL
objects.

The Foreign Function Interface (FFI) is this plugin’s core
dependency; It enables Dart to interact with the pre-compiled
C binary. For each target platform, the dynamically linked
library must be accessible on the local file system. This
plugin exposes methods to cast native C data types into
Dart objects and vice versa. Our implementation creates Dart
objects that mirror their corresponding underlying C++ class.
For example, in Microsoft SEAL, a Ciphertext can be saved or
loaded. We expose save ciphertext and load ciphertext in the
C interface. In Dart, we create a Ciphertext class that contains
both save and load, referencing the memory address of the
underlying abstract Ciphertext object. This implementation
pattern is consistent and transparent for security researchers
familiar with the underlying C++ API. For new developers,
our implementation mirrors the structure of Microsoft SEAL,
providing a clear and familiar interface.

The following example demonstrates what the code would
look like to implement Cramer Distance using our plugin
in Dart. In this example, a mobile crowdsensing application
would have received an encrypted list of values that have been



Fig. 1. Foreign Function Interface Between Dart & C/C++ Libraries

sensed by another user, x, and would then compute the Cramer
distance between their list of values that they have collected, y,
and return the result to user x. In this instance, user y does not
need to encrypt their plaintext values since they never leave
their device and FHE works much faster when computing on
an encrypted value and a plaintext value than it does when
computing on two encrypted values.

List<Ciphertext> cramer(Afhe fhe,
List<Ciphertext> x, List<double> y) {

List<Ciphertext> result = [];
for (int i = 0; i < x.length; i++) {

CipherText r =
fhe.square(fhe.subtractPlain(x[i],
fhe.encodeDouble(y[i])));

result.add(r);
}
return result;

}

IV. EVALUATION

A. Computational Performance

In this section, we compare the performance of the Dart
and Flutter implementation to the original Java and C++
implementation to demonstrate that there is not a significant
degradation of performance by switching to a more usable
programming framework.

Experiments used one-minute videos with h.264 encoding.
GhostPeerShare was run on a Pixel 3XL that has 8 threads at
about 2.5 GHz with 4 GB of memory. From the Pop-Share
benchmark, the Pixel 2 has 8 threads at about 2.35 GHz with
4 GB of memory. While not exactly the same hardware, we
determined that it is close enough to demonstrate our point
that our system does not result in a shift in performance that
would render existing systems unusable.

The Fully Homomorphic Encryption computations, shown
in Table II, are within ±20% of Pop-Share, validating our
abstraction design and interface implementation. This perfor-
mance increase is likely due to the advancements in Microsoft
SEAL. Pop-Share used version v3.3, while our implementation
uses v4.1.



Fig. 2. Dart to C Adapter Class Diagram

Fig. 3. C++ Bridge Class Diagram

TABLE II
COMPARISON OF FHE OPERATIONS (IN MILLISECONDS) ON ANDROID

Algorithm Pop-Share (ms) GhostPeerShare (ms) % diff
KLD 400 345 -13.5%
BC 386 202 -19.4%
CD 186 309 +9.1%

Overall, this study benchmarked the performance of our
implementation on Android to the existing Pop-Share appli-
cation. The results show that, while not an exact replication
of the original system due to the availability of hardware and
changes in software libraries, the performance of our system
is comparable to the performance of the original Java and C++
based implementation.

B. Noise Accumulation

When performing fully homomorphic operations, a small
amount of noise is introduced that affects the accuracy of
the decrypted distance measure. If too much noise is accumu-

TABLE III
DIFFERENCE OF MEAN ERROR FOR EACH ALGORITHM

Function Pop-Share GhostPeerShare
KLD 4× 10−9 1.71× 10−11

Cramer 4× 10−4 1.61× 10−9

BC 8× 10−4 3.85× 10−10

lated, the plaintext cannot be recovered. Table III represents
the baseline Mean Error from Pop-Share [7], compared to
our implementation. For Kullback-Leibler Divergence (KLD),
Cramer Distance (CD), and Bhattacharyya Coefficient (BC),
our implementation introduced half the amount of noise com-
pared to the original. This was computed by subtracting the
mean error of GhostPeerShare (GPS) from Pop-Share (PS),
such that PS−GPS resulted in approximately the same value
as Pop-Share. This difference is likely attributed to the changes
in the security parameters and advances in Microsoft SEAL
between v3.3 and v4.1, respectively.



TABLE IV
DIRECT COMPARISON OF SSO-BASED SYSTEMS

System F1 (%) Precision (%) Recall (%) Accuracy (%) Error (%)
GhostPeerShare 97.09 96.14 98.05 98.05 1.95
Handheld[2] 97.97 99.32 96.67 98.00 2.00
SSO[6] 96.13 92.56 100.00 96.30 3.70
PoP-Share[2] 96.63 97.73 95.56 95.16 4.84

C. Field of View

A significant contribution from Pop-Share [7] was the ability
to accurately classify videos from various angles for similarity.
Applying the methodology from Similarity of Simultaneous
Observation (SSO) [12], [13] to compare videos, Pop-Share
re-used the pre-processing procedure to convert videos into
a byte-count array. Instead of comparing videos to capture
network traffic, the application of SSO was altered to compare
two videos to each other for similarity. In addition, Pop-
Share expanded upon the distance measure implementation to
support Fully Homomorphic Encryption, requiring a new set
of algorithms that were simplified into basic arithmetic.

The field-of-view experiment demonstrated that comparing
two videos taken at the same time and place of the same
subject could be accurately classified using an Artificial Neural
Network (ANN). This machine-learning model was trained
on the distance measure scores between two videos comput-
ing using three probability distribution functions: Kullback-
Leibler Divergence (KLD), Bhattacharyya Coefficient (BC),
and Cramer Distance (CD). For supervised training, the binary
labeling system assigns a one when two scenes are identical,
or the first comparison pair is labeled as one to train the model
to match similar videos. Otherwise, a zero is assigned for all
other comparison pairs, regardless of visual similarity.

SSO and Pop-Share models shown in Table IV were trained
for 15 hours using a Nexus 6p and a D-Link Wi-Fi camera
(DCS-936L) fixed-motion cameras. The video data from the
two cameras include video captures at different resolutions
and different relative angles, such as 0, 90, and 180 degrees
offset from each other. The videos were also taken at varying
distances from each other, ranging from 1 to 25 meters away.
In addition, the videos were taken from both an indoor and
an outdoor environment with varying levels of motion and
lighting conditions.

The Handheld model shown in Table IV was tested using
150 minutes of training data recorded with a Google Pixel 2,
a Motorola Moto Z, a Lenovo Phab2 Pro, an LG Nexus 5, and
a Huawei Nexus 6p. All phones captured video using h.264
with 3840x2160 resolution at 30 FPS with Optical Image
Stabilization (OIS) enabled except the Nexus 5 and Phab2
Pro, which only support 1920x1080 resolution, and the Nexus
6p, which only has Electronic Image Stabilization (EIS).

GhostPeerShare shown in Table IV was trained and tested
on a less diverse dataset of 100 minutes of raw videos, which
included three twenty-minute videos of low movement featur-
ing an individual sitting at his desk and two twenty-minute
videos of high movement capturing an individual vacuuming

his living room. The video data was recorded on fixed-motion
phones: Pixel 3XL using h.264 with 1920x1080 resolution at
30 FPS and Samsung S9 using h.264 with 1280x720 resolution
at 30 FPS. The phones were placed at different relative angles
and varying distances. However, all videos were filmed indoors
with relatively similar lighting.

For a practical analysis, the ANN was trained on a high-
movement scene and tested on a low-movement scene, achiev-
ing an Accuracy and Recall score of 98.05%, a Precision Score
of 96.14%, and an F1 Score of 97.09%. The lack of diversity
within the training and testing dataset is likely a contributing
factor to the lower scores for F1 and Precision. Recording
more video data in various locations with a wide variety
of devices and environments, the F1 and Precision scores
may improve. This model demonstrates that GhostPeerShare
consistently generates a unique representation of video data
and can accurately predict the binary label given the three
distance measure scores for a different dataset.

V. FUTURE WORK

In order to address the usability of our Flutter application
and Dart plugins, this section aims to propose methods of
gathering qualitative metrics of our implementation that benefit
the crowdsensing community. For developer surveys, we aim
to gather information about each individual’s programming
knowledge or familiarity. Using a Likert-scale questionnaire,
we may rate the clarity of our API documentation on a scale of
1 to 5. Using open-ended questions to capture insightful feed-
back from users who may be seeking additional functionality
or identify gaps in our implementation. This structured survey
format enables maintainers to assess the level of difficulty in
integrating the plugins relative to each individual’s experience
with open-source projects. Gathering data on the consumers of
our packages will help us understand their use cases and the
greater impact of this project within the Flutter community.
These surveys may be available on the distribution platforms
the packages are hosted on, specifically GitHub and Pub.Dev.

To capture the adoption rate of our packages, we may
leverage the platforms on which they are hosted. The source
code for this project is available on GitHub. Using the star
functionality is a popular method of endorsing a project to
receive notifications on development updates. The maintainers
of this project may visualize the number of stars over time to
measure the project’s popularity.

While this work only utilized SEAL as a cryptographic
backend, other cryptographic backends could be adopted. In
future work, we will provide additional libraries that can be
selected by crowdsensing application developers within Dart.



VI. CONCLUSIONS

Key contributions demonstrate the efficiency of the Fully
Homomorphic Encryption Library (FHEL) and ease of in-
tegration into other Dart plugins or Flutter applications. To
measure the efficiency of our application, we benchmark
GhostPeerShare against Proof of Presence Share (Pop-Share).

When trained on a dataset with continuous movement and
tested on a dataset with infrequent movement, the application
achieved 0.9614 precision and an F1 score of 0.9709. These
results indicate that GhostPeerShare consistently generated a
distinct representation of each video in the dataset. When exe-
cuting FHE operations, GhostPeerShare demonstrated similar
performance to Pop-Share.

Ultimately, this project lays the foundation for future ap-
plications of FHE in mobile environments, especially in fields
like healthcare and secure data transactions, where privacy and
accuracy are paramount. By making SEAL accessible within
a mobile-compatible, modular framework, we are opening
pathways for broader adoption of FHE and setting the stage
for innovation in mobile security.
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