Journal Club
Kutz Home
Kutz Biography
Publications
Classes
Open Source Code
Methods
Sparsity+Dynamics
Dynamic Mode Decomposition
Machine Learning
Reduced-Order Models
Science
Computational Neurology
Neuroscience
Optics
Computer Vision
Sensors
Fluid Dynamics
Group
Postdocs
Graduate Students
Undergraduates
Group Alumni
Education
Video Abstracts
Journal Club
Open-Source Lectures
ROME Workshop
Integrating Data Methods and Dynamical Systems
SPRING QUARTER 2016 — NONLINEAR MODEL REDUCTION (Featuring Dr. Kevin Carlberg, Sandia)
 
 
[View]
 
Part I
 
[View]
 
Part II
 
[View]
 
Part III
 
[View]
 
Part IV
 
[View]
 
Part V
 
 
 
WINTER QUARTER 2016 — DATA-DRIVEN DISCOVERY OF DYNAMICAL SYSTEMS
 
 
[View]
 
Lecture 1 (Bethany Lusch)
 
M. Schmidt and H. Lipson,
Distilling Free-Form Natural Laws from Experimental Data
, Science 324 (2009) 81-85.
A response to this paper from C. Hillar and F. Sommer,
Comment on Distilling Free-Form Natural Laws from Experimental Data
, arxiv1210.7273.
A response from Schmidt/Lipson to Hillar/Sommer,
Rebuttal of rebuttal
, arxiv1210.7273.
 
[View]
 
Lecture 2 (Sam Rudy)
 
W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis and C. Grebori,
Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing
, Phys. Rev. Lett. 106 (2011) 154101.
 
[View]
 
Lecture 3 (Niall Mangan)
 
I. Arnaldo, U.-M. O’Reilly and K. Veeramachaneni
Building Predictive Models via Feature Synthesis
, GECCO 2015.