
332

S(
t)

time (t)

FF
T(

S)
 (ω

)

frequency (ω)

Figure 113: Signal S(t) and its normalized Fourier transform Ŝ(ω). Note the
large number of frequency components that make up the signal.

13.4 Time-Frequency Analysis: Windowed Fourier Trans-
forms

The Fourier transform is one of the most important and foundational methods
for the analysis of signals. However, it was realized very early on that Fourier
transform based methods had severe limitations. Specifically, when transform-
ing a given time signal, it is clear that all the frequency content of the signal
can be captured with the transform, but the transform fails to capture the
moment in time when various frequencies were actually exhibited. Figure 113
shows a proto-typical signal that may be of interest to study. The signal S(t) is
clearly comprised of various frequency components that are exhibited at differ-
ent times. For instance, at the beginning of the signal, there are high frequency
components. In contrast, the middle of the signal has relatively low frequency
oscillations. If the signal represented music, then the beginning of the signal
would produce high notes while the middle would produce low notes. The
Fourier transform of the signal contains all this information, but there is no
indication of when the high or low notes actually occur in time. Indeed, by
definition the Fourier transform eliminates all time-domain information since
you actually integrated out all time in Eq. (13.1.8).

The obvious question to arise is this: What is the Fourier transform good for
in the context of signal processing? In the previous sections where the Fourier
transform was applied, the signal being investigated was fixed in frequency, i.e.
a sonar or radar detector with a fixed frequency ω0. Thus for a given signal,
the frequency of interest did not shift in time. By using different measurements
in time, a signal tracking algorithm could be constructed. Thus an implicit
assumption was made about the invariance of the signal frequency. Ultimately,
the Fourier transform is superb for one thing: characterizing stationary or peri-
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odic signals. Informally, a stationary signal is such that repeated measurements
of the signal in time yield an average value that does not change in time. Most
signals, however, do not satisfy this criteria. A song, for instance, changes its
average Fourier components in time as the song progresses in time. Thus the
generic signal S(t) that should be considered, and that is plotted as an example
in Fig. 113 is a non-stationary signal whose average signal value does change in
time. It should be noted that in our application of radar detection of a moving
target, use was made of the stationary nature of the spectral content. This
allowed for a clear idea of where to filter the signal Ŝ(ω) in order to reconstruct
the signal S(t).

Having established the fact that the direct application of the Fourier trans-
form provides a nontenable method for extracting signal information, it is natu-
ral to pursue modifications of the method in order to extract time and frequency
information. The most simple minded approach is to consider Fig. 113 and to
decompose the signal over the time domain into separate time frames. Fig-
ure 114 shows the original signal S(t) considered but now decomposed into four
smaller time windows. In this decomposition, for instance, the first time frame
is considered with the remaining three time frames zeroed out. For each time
window, the Fourier transform is applied in order to characterize the frequencies
present during that time frame. The highest frequency components are captured
in Fig. 114(a) which is clearly seen in its Fourier transform. In contrast, the
slow modulation observed in the third time frame (c) is devoid of high-frequency
components as observed in Fig. 114(c). This method thus exhibits the ability
of the Fourier transform, appropriately modified, to extract out both time and
frequency information from the signal.

The limitations of the direct application of the Fourier transform, and its in-
ability to localize a signal in both the time and frequency domains, were realized
very early on in the development of radar and sonar detection. The Hungarian
physicist/mathematician/electrial engineer Gábor Dénes (Physics Nobel Prize
in 1971 for the discovery of holography in 1947) was first to propose a formal
method for localizing both time and frequency. His method involved a simple
modification of the Fourier transform kernel. Thus Gábor introduced the kernel

gt,ω(τ) = eiωτg(τ − t) (13.4.1)

where the new term to the Fourier kernel g(τ − t) was introduced with the aim
of localizing both time and frequency. The Gábor transform, also known as the
short-time Fourier transform (STFT) is then defined as the following:

G[f ](t,ω) = f̃g(t,ω) =

∫ ∞

−∞
f(τ)ḡ(τ − t)e−iωτdτ = (f, ḡt,ω) (13.4.2)

where the bar denotes the complex conjugate of the function. Thus the function
g(τ − t) acts as a time filter for localizing the signal over a specific window of
time. The integration over the parameter τ slides the time-filtering window
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Figure 114: Signal S(t) decomposed into four equal and separate time frames
(a), (b), (c) and (d). The corresponding normalized Fourier transform of each
time frame Ŝ(ω) is illustrated below the signal. Note that this decomposition
gives information about the frequencies present in each smaller time frame.

down the entire signal in order to pick out the frequency information at each
instant of time. Figure 115 gives a nice illustration of how the time filtering
scheme of Gábor works. In this figure, the time filtering window is centered at
τ with a width a. Thus the frequency content of a window of time is extracted
and τ is modified to extract the frequencies of another window. The definition
of the Gábor transform captures the entire time-frequency content of the signal.
Indeed, the Gábor transform is a function of the two variables t and ω.

A few of the key mathematical properties of the Gábor transform are high-
lighted here. To be more precise about these mathematical features, some
assumptions about commonly used gt,ω are considered. Specifically, for con-
venience we will consider g to be real and symmetric with ∥g(t)∥ = 1 and
∥g(τ − t)∥ = 1 where ∥ · ∥ denotes the L2 norm. Thus the definition of the
Gábor transform, or STFT, is modified to

G[f ](t,ω) = f̃g(t,ω) =

∫ ∞

−∞
f(τ)g(τ − t)e−iωτdτ (13.4.3)

with g(τ − t) inducing localization of the Fourier integral around t = τ . With
this definition, the following properties hold
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Figure 115: Graphical depiction of the Gábor transform for extracting the time-
frequency content of a signal S(t). The time filtering window g(τ−t) is centered
at τ with width a.

1. The energy is bounded by the Schwarz inequality so that

|f̃g(t,ω)| ≤ ∥f∥∥g∥ (13.4.4)

2. The energy in the signal plane around the neighborhood of (t,ω) is calcu-
lated from

|f̃g(t,ω)|2 =

∣∣∣∣
∫ ∞

−∞
f(τ)g(τ − t)e−iωτdτ

∣∣∣∣
2

(13.4.5)

3. The time-frequency spread around a Gábor window is computed from the
variance, or second moment, so that

σ2
t =

∫ ∞

−∞
(τ − t)2|gt,ω(τ)|2dτ =

∫ ∞

−∞
τ2|g(τ)|2dτ (13.4.6a)

σ2
ω =

1

2π

∫ ∞

−∞
(ν − ω)2|g̃t,ω(ν)|2dν =

1

2π

∫ ∞

−∞
ν2|g̃(ν)|2dν(13.4.6b)

where σtσω is independent of t and ω and is governed by the Heinsenberg
uncertainty principle.

4. The Gábor transform is linear so that

G[af1 + bf2] = aG[f1] + bG[f2] (13.4.7)

5. The Gábor transform can be inverted with the formula

f(τ) =
1

2π

1

∥g∥2

∫ ∞

−∞

∫ ∞

−∞
f̃g(t,ω)g(τ − t)eiωτdωdt (13.4.8)

where the integration must occur over all frequency and time-shifting com-
ponents. This double integral is in contrast to the Fourier transform which
requires only a single integration since it is a function, f̂(ω), of the fre-
quency alone.
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Figure 116: Graphical depiction of the difference between a time series analysis,
Fourier analysis and Gábor analysis of a signal. In the time series method,
good resolution is achieved of the signal in the time domain, but no frequency
resolution is achieved. In Fourier analysis, the frequency domain is well resolved
at the expense of losing all time resolution. The Gábor method, or short time
Fourier transform, is constructed to give both time and frequency resolution.
The area of each box can be constructed from σ2
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Figure 116 is a cartoon representation of the fundamental ideas behind a
time series analysis, Fourier transform analysis and Gábor transform analysis
of a given signal. In the time series method, good resolution is achieved of the
signal in the time domain, but no frequency resolution is achieved. In Fourier
analysis, the frequency domain is well resolved at the expense of losing all time
resolution. The Gábor method, or short-time Fourier transform, trades away
some measure of accuracy in both the time and frequency domains in order
to give both time and frequency resolution simultaneously. Understanding this
figure is critical to understanding the basic, high-level notions of time-frequency
analysis.

In practice, the Gábor transform is computed by discretizing the time and
frequency domain. Thus a discrete version of the transform (13.4.2) needs to
be considered. Essentially, by discretizing, the transform is done on a lattice of
time and frequency. Thus consider the lattice, or sample points,

ν = mω0 (13.4.9a)

τ = nt0 (13.4.9b)

where m and n are integers and ω0, t0 > 0 are constants. Then the discrete
version of gt,ω becomes

gm,n(t) = ei2πmω0tg(t− nt0) (13.4.10)

and the Gábor transform becomes

f̃(m,n) =

∫ ∞

−∞
f(t)ḡm,n(t)dt = (f, gm,n) . (13.4.11)

Note that if 0 < t0,ω0 < 1, then the signal is over-sampled and time frames
exist which yield excellent localization of the signal in both time and frequency.
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Figure 117: Illustration of the discrete Gábor transform which occurs on the
lattice sample points Eq. (13.4.9). In the top figure, the translation with ω0 = 0
is depicted. The bottom figure depicts both translation in time and frequency.
Note that the Gábor frames (windows) overlap so that good resolution of the
signal can be achieved in both time and frequency since 0 < t0,ω0 < 1.

If ω0, t0 > 1, the signal is under-sampled and the Gábor lattice is incapable of
reproducing the signal. Figure 117 shows the Gábor transform on lattice given
by Eq. (13.4.9). The overlap of the Gábor window frames ensures that good
resolution in time and frequency of a given signal can be achieved.

Drawbacks of the Gábor (STFT) transform

Although the Gábor transform gives a method whereby time and frequency can
be simultaneously characterized, there are obvious limitations to the method.
Specifically, the method is limited by the time filtering itself. Consider the
illustration of the method in Fig. 115. The time window filters out the time
behavior of the signal in a window centered at τ with width a. Thus when
considering the spectral content of this window, any portion of the signal with
a wavelength longer than the window is completely lost. Indeed, since the
Heinsenberg relationship must hold, the shorter the time filtering window, the
less information there is concerning the frequency content. In contrast, longer
windows retain more frequency components, but this comes at the expense
of losing the time resolution of the signal. Figure 118 provides a graphical
description of the failings of the Gábor transform. Specifically the trade offs that
occur between time and frequency resolution, and the fact that high-accuracy
in one of these comes at the expense of resolution in the other parameter. This
is a consequence of a fixed time filtering window.
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Figure 118: Illustration of the resolution trade-offs in the discrete Gábor trans-
form. The left figure shows a time filtering window that produces nearly equal
localization of the time and frequency signal. By increasing the length of the fil-
tering window, increased frequency resolution is gained at the expense of worse
time resolution (middle figure). Decreasing the time window does the opposite:
time resolution is increased at the expense of poor frequency resolution (right
figure).

Other short-time Fourier transform methods

The Gábor transform is not the only windowed Fourier transform that has
been developed. There are several other well-used and highly developed STFT
techniques. Here, a couple of these more highly used methods will be mentioned
for completeness [27].

The Zak transform is closely related to the Gábor transform. It is also called
the Weil-Brezin transform in harmonic analysis. First introduced by Gelfand
in 1950 as a method for characterizing eigenfunction expansions in quantum
mechanical systems with periodic potentials, it has been generalized to be a
key mathematical tool for the analysis of Gábor transform methods. The Zak
transform is defined as

Laf(t,ω) =
√
a

∞∑

n=−∞

f(at+ an)e−i2πnω (13.4.12)

where a > 0 is a constant and n is an integer. Two useful and key properties of
this transform are as follows: Lf(t,ω + 1) = Lf(t,ω) (periodicity) and Lf(t +
1,ω) = exp(i2πω)Lf(t,ω) (quasi-periodicity). These properties are particularly
important for considering physical problems placed on a lattice.

The Wigner-Ville Distribution is a particularly important transform in the
development of radar and sonar technologies. Its various mathematical prop-
erties make it ideal for these applications and provides a method for achieving
great time and frequency localization. The Wigner-Ville transform is defined as

Wf,g(t,ω) =

∫ ∞

−∞
f(t+ τ/2)ḡ(t− τ/2)e−iωτdτ (13.4.13)

where this is a standard Fourier kernel which transforms the function f(t +
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τ/2)ḡ(t − τ/2). This transform is nonlinear since Wf1+f2,g1+g2 = Wf1,g1 +
Wf1,g2 +Wf2,g1 +Wf2,g2 and Wf+g = Wf +Wg + 2ℜ{Wf,g}.

Ultimately, alternative forms of the STFT are developed for one specific rea-
son: to take advantage of some underlying properties of a given system. It is
rare that a method developed for radar would be broadly applicable to other
physical systems unless it were operating under the same physical principles.
Regardless, one can see that specialty techniques exist for time-frequency anal-
ysis of different systems.

13.5 Time-Frequency Analysis and Wavelets

The Gábor transform established two key principles for joint time-frequency
analysis: translation of a short-time window and scaling of the short-time win-
dow to capture finer time resolution. Figure 115 shows the basic concept intro-
duced in the theory of windowed Fourier transforms. Two parameters are intro-
duced to handle the translation and scaling, namely τ and a. The shortcoming
of this method is that it trades off accuracy in time (frequency) for accuracy in
frequency (time). Thus the fixed window size imposes a fundamental limitation
on the level of time-frequency resolution that can be obtained.

A simple modification to the Gábor method is to allow the scaling window
(a) to vary in order to successively extract improvements in the time resolution.
In other words, first the low-frequency (poor time resolution) components are
extracted using a broad scaling window. The scaling window is subsequently
shortened in order to extract out higher-frequencies and better time resolution.
By keeping a catalogue of the extracting process, both excellent time and fre-
quency resolution of a given signal can be obtained. This is the fundamental
principle of wavelet theory. The term wavelet means little wave and originates
from the fact that the scaling window extracts out smaller and smaller pieces
of waves from the larger signal.

Wavelet analysis begins with the consideration of a function known as the
mother wavelet:

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
(13.5.14)

where a ̸= 0 and b are real constants. The parameter a is the scaling parameter
illustrated in Fig. 115 whereas the parameter b now denotes the translation
parameter (previously denoted by τ in Fig. 115). Unlike Fourier analysis, and
very much like Gábor transforms, there are a vast variety of mother wavelets that
can be constructed. In principle, the mother wavelet is designed to have certain
properties that are somehow beneficial for a given problem. Thus depending
upon the application, different mother wavelets may be selected.

Ultimately, the wavelet is simply another expansion basis for representing
a given signal or function. Thus it is not unlike the Fourier transform which
represents the signal as a series of sines and cosines. Historically, the first
wavelet was constructed by Haar in 1910 [28]. Thus the concepts and ideas of
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Figure 119: Representation of the compactly supported Haar wavelet function
ψ(t) and its Fourier transform ψ̂(ω). Although highly localized in time due to
the compact support, it is poorly localized in frequency with a decay of 1/ω.

wavelets are a century old. However, their widespread use and application did
not become prevalent until the mid-1980s. The Haar wavelet is given by the
piecewise constant function

ψ(t) =

⎧
⎨

⎩

1 0 ≤ t < 1/2
−1 1/2 ≤ t < 1
0 otherwise

. (13.5.15)

Figure 119 shows the Haar wavelet step function and its Fourier transform
which is a sinc like function. Note further that

∫∞
−∞ ψ(t)dt = 0 and ∥ψ(t)∥2 =∫∞

−∞ |ψ(t)|2dt = 1. The Haar wavelet is an ideal wavelet for describing localized
signals in time (or space) since it has compact support. Indeed, for highly
localized signals, it is much more efficient to use the Haar wavelet basis than the
standard Fourier expansion. However, the Haar wavelet has poor localization
properties in the frequency domain since it decays like a sinc function in powers
of 1/ω. This is a consequence of the Heinsenberg uncertainty principle.

To represent a signal with the Haar wavelet basis, the translation and scaling
operations associated with the mother wavelet need to be considered. Depicted
in Fig. 119 and given by Eq. (13.5.15) is the wavelet ψ1,0(t). Thus its translation
is zero and its scaling is unity. The concept in reconstructing a signal using
the Haar wavelet basis is to consider decomposing the signal into more generic
ψm,n(t). By appropriate selection of the m and n, finer scales and appropriate
locations of the signal can be extracted. For a < 1, the wavelet is a compressed
version of ψ1,0 whereas for a > 1, the wavelet is a dilated version of ψ1,0. The
scaling parameter a is typically taken to be a power of two so that a = 2j for
some integer j. Figure 120 shows the compressed and dilated Haar wavelet
for a = 0.5 and a = 2, i.e. ψ1/2,0 and ψ2,0. The compressed wavelet allows
for finer scale resolution of a given signal while the dilated wavelet captures
low-frequency components of a signal by having a broad range in time.

The simple Haar wavelet already illustrates all the fundamental principles
of the wavelet concept. Specifically by using scaling and translation, a given
signal or function can be represented by a basis of functions which allows for
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Figure 120: Illustration of the compression and dilation process of the Haar
wavelet and its Fourier transform. In the top row, the compressed wavelet ψ1/2,0

is shown. Improved time resolution is obtained at the expense of a broader
frequency signature. The bottom row, shows the dilated wavelet ψ2,0 which
allows it to capture lower-frequency components of a signal.

higher and higher refinement in the time resolution of a signal. Thus it is
much like the Gábor concept, except that now the time window is variable in
order to capture different levels of resolution. Thus the large scale structures
in time are captured with broad time-domain Haar wavelets. At this scale, the
time resolution of the signal is very poor. However by successive rescaling in
time, a finer and finer time resolution of the signal can be obtained along with
its high-frequency components. The information at the low and high scales is
all preserved so that a complete picture of the time-frequency domain can be
constructed. Ultimately, the only limit in this process is the number of scaling
levels to be considered.

The wavelet basis can be accessed via an integral transform of the form

(Tf)(ω) =

∫

t
K(t,ω)f(t)dt (13.5.16)

where K(t,ω) is the kernel of the transform. This is equivalent in principle
to the Fourier transform whose kernel are the oscillations given by K(t,ω) =
exp(−iωt). The key idea now is to define a transform which incorporates the
mother wavelet as the kernel. Thus we define the continuous wavelet transform
(CWT):

Wψ[f ](a, b) = (f,ψa,b) =

∫ ∞

−∞
f(t)ψ̄a,b(t)dt (13.5.17)

Much like the windowed Fourier transform, the CWT is a function of the di-
lation parameter a and translation parameter b. Parenthetically, a wavelet is
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admissible if the following property holds:

Cψ =

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω < ∞ (13.5.18)

where the Fourier transform of the wavelet is defined by

ψ̂a,b =
1√
|a|

∫ ∞

−∞
e−iωtψ

(
t− b

a

)
dt =

1√
|a|

e−ibωψ̂(aω) . (13.5.19)

Thus provided the admissibility condition (13.5.18) is satisfied, the wavelet
transform can be well defined.

As an example of the admissibility condition, consider the Haar wavelet
(13.5.15). Its Fourier transform can be easily computed in terms of the sinc-like
function:

ψ̂(ω) = ie−iω/2 sin
2(ω/4)

ω/4
. (13.5.20)

Thus the admissibility constant can be computed to be

∫ ∞

−∞

|ψ̂(ω)|2

|ω|
dω = 16

∫ ∞

−∞

1

|ω|3
∣∣∣sin

ω

4

∣∣∣
4
dω < ∞ . (13.5.21)

This then shows that the Haar wavelet is in the admissible class.
Another interesting property of the wavelet transform is the ability to con-

struct new wavelet bases. The following theorem is of particular importance.

Theorem: If ψ is a wavelet and φ is a bounded integrable function, then the
convolution ψ ⋆ φ is a wavelet.

In fact, from the Haar wavelet (13.5.15) we can construct new wavelet functions
by convolving with for instance

φ(t) =

⎧
⎨

⎩

0 t < 0
1 0 ≤ t ≤ 1
0 t ≥ 1

(13.5.22)

or the function
φ(t) = e−t2 . (13.5.23)

The convolutions of these functions φ with the Haar wavelet ψ (13.5.15) are
produced in Fig. 121. These convolutions could also be used as mother wavelets
in constructing a decomposition of a given signal or function.

The wavelet transform principle is quite simple. First, the signal is split up
into a bunch of smaller signals by translating the wavelet with the parameter b
over the entire time domain of the signal. Second, the same signal is processed
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Figure 121: Convolution of the Haar wavelet with the functions (13.5.22) (left
panel) and (13.5.23) (right panel). The convolved functions can be used as the
mother wavelet for a wavelet basis expansion.

at different frequency bands, or resolutions, by scaling the wavelet window with
the parameter a. The combination of translation and scaling allows for process-
ing of the signals at different times and frequencies. Figure 121 is an upgrade of
Fig. 116 that incorporates the wavelet transform concept in the time-frequency
domain. In this figure, the standard time-series, Fourier transform and win-
dowed Fourier transform are represented along with the multi-resolution concept
of the wavelet transform. In particular, the box illustrating the wavelet trans-
form shows the multi-resolution concept in action. Starting with a large Fourier
domain window, the entire frequency content is extracted. The time window
is then scaled in half, leading to finer time resolution at the expense of worse
frequency resolution. This process is continued until a desired time-frequency
resolution is obtained. This simple cartoon is critical for understanding wavelet
application to time-frequency analysis.

Example: The Mexican Hat Wavelet. One of the more common wavelets
is the Mexican hat wavelet. This wavelet is essentially a second moment of
a Gaussian in the frequency domain. The definition of this wavelet and its
transform are as follows:

ψ(t) = (1− t2)e−t2/2 = −d2/dt2
(
e−t2/2

)
= ψ1,0 (13.5.24a)

ψ̂(ω) = ψ̂1,0(ω) =
√
2πω2e−ω

2/2 (13.5.24b)

The Mexican hat wavelet has excellent localization properties in both time and
frequency due to the minimal time-bandwidth product of the Gaussian func-
tion. Figure 123 (top panels) shows the basic Mexican wavelet function ψ1,0 and
its Fourier transform, both of which decay in t (ω) like exp(−t2) (exp(−ω2)).
The Mexican hat wavelet can be dilated and translated easily as is depicted in
Fig. 123 (bottom panel). Here three wavelets are depicted: ψ1,0, ψ3/2,−3 and
ψ1/4,6. This shows both the scaling and translation properties associated with
any wavelet function.

To finish the initial discussion of wavelets, some of the various properties of
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Figure 122: Graphical depiction of the difference between a time series analysis,
Fourier analysis, Gábor analysis and wavelet analysis of a signal. This figure
is identical to Fig. 116 but with the inclusion of the time-frequency resolution
achieved with the wavelet transform. The wavelet transform starts with a large
Fourier domain window so that the entire frequency content is extracted. The
time window is then scaled in half, leading to finer time resolution at the expense
of worse frequency resolution. This process is continued until a desired time-
frequency resolution is obtained.

the wavelets are listed. To begin, consider the time-frequency resolution and
its localization around a given time and frequency. These quantities can be
calculated from the relations:

σ2
t =

∫ ∞

−∞
(t− < t >)2|ψ(t)|2dt (13.5.25a)

σ2
ω =

1

2π

∫ ∞

−∞
(ω− < ω >)2|ψ̂(ω)|2dω (13.5.25b)

where the variances measure the spread of the time and frequency signal around
< t > and < ω > respectively. The Heisenberg uncertainty constrains the
localization of time and frequency by the relation σ2

t σ
2
ω ≥ 1/2. In addition, the

CWT has the following mathematical properties
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Figure 123: Illustration of the Mexican hat wavelet ψ1,0 (top left panel), its

Fourier transform ψ̂1,0 (top right panel), and two additional dilations and trans-
lations of the basic ψ1,0 wavelet. Namely the ψ3/2,−3 and ψ1/4,6 are shown
(bottom panel).

1. Linearity: the transform is linear so that

Wψ(αf + βg)(a, b) = αWψ(f)(a, b) + βWψ(g)(a, b)

2. Translation: the transform has the translation property

Wψ(Tcf)(a, b) = Wψ(f)(a, b− c)

where Tcf(t) = f(t− c).

3. Dilation: the dilation property follows

Wψ(Dcf)(a, b) =
1√
c
Wψ(f)(a/c, b/c)

where c > 0 and Dcf(t) = (1/c)f(t/c).

4. Inversion: the transform can be inverted with the definition

f(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
Wψ(f)(a, b)ψa,b(t)

dbda

a2

where it becomes clear why the admissibility condition Cψ < ∞ is needed.

To conclude this section, consider the idea of discretizing the wavelet trans-
form on a computational grid. Thus the transform is defined on a lattice so
that

ψm,n(x) = a−m/2
0 ψ

(
a−m
0 x− nb0

)
(13.5.26)
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Figure 124: Discretization of the discrete wavelet transform with a0 = 2 and
b0 = 1. This figure is a more formal depiction of the multi-resolution discretiza-
tion as shown in Fig. 122.

where a0, b0 > 0 and m,n are integers. The discrete wavelet transform is then
defined by

Wψ(f)(m,n) = (f,ψm,n)

=

∫ ∞

−∞
f(t)ψ̄m,n(t)dt

= a−m/2
0

∫ ∞

−∞
f(t)ψ̄(a−m

0 t− nb0)dt . (13.5.27)

Futhermore, if ψm,n are complete, then a given signal or function can be ex-
panded in the wavelet basis:

f(t) =
∞∑

m,n=−∞

(f,ψm,n)ψm,n(t) . (13.5.28)

This expansion is in a set of wavelet frames. It still needs to be determined
if the expansion is in terms of a set of basis functions. It should be noted
that the scaling and dilation parameters are typically taken to be a0 = 2 and
b0 = 1, corresponding to dilations of 2−m and translations of n2m. Figure 124
gives a graphical depiction of the time-frequency discretization of the wavelet
transform. This figure is especially relevant for the computational evaluation
of the wavelet transform. Further, it is the basis of fast algorithms for multi-
resolution analysis.

13.6 Multi-Resolution Analysis and the Wavelet Basis

Before proceeding forward with wavelets, it is important to establish some key
mathematical properties. Indeed, the most important issue to resolve is the
ability of the wavelet to actually represent a given signal or function. In Fourier
analysis, it has been established that any generic function can be represented by
a series of cosines and sines. Something similar is needed for wavelets in order
to make them a useful tool for the analysis of time-frequency signals.
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The concept of a wavelet is simple and intuitive: construct a signal using a
single function ψ ∈ L2 which can be written ψm,n and that represents binary
dilations by 2m and translations of n2−m so that

ψm,n = 2m/2ψ (2m(x− n/2m)) = 2m/2ψ(2mx− n) (13.6.29)

where m and n are integers. The use of this wavelet for representing a given
signal or function is simple enough. However, there is a critical issue to be
resolved concerning the orthogonality of the functions ψm,n. Ultimately, this is
the primary issue which must be addressed in order to consider the wavelets as
basis functions in an expansion. Thus we define the orthogonality condition as

(ψm,n,ψk,l) =

∫ ∞

−∞
ψm,n(x)ψk,l(x)dx = δm,kδn,l (13.6.30)

where δij is the Dirac delta defined by

δij =

{
0 i ̸= j
1 i = j

(13.6.31)

where i, j are integers. This statement of orthogonality is generic, and it holds
in most function spaces with a defined inner product.

The importance of orthogonality should not be underestimated. It is very
important in applications where a functional expansion is used to approximate
a given function or solution. In what follows, two examples are given concerning
the key role of orthogonality.

Fourier expansions. Consider representing an even function f(x) over the
domain x ∈ [0, L] with a cosine expansion basis. By Fourier theory, the function
can be represented by

f(x) =
∞∑

n=0

an cos
nπx

L
(13.6.32)

where the coefficients an can be constructed by using inner product rules and or-
thogonality. Specifically, by multiplying both sides of the equation by cos(mπx/L)
and integrating over x ∈ [0, L], i.e. taking the inner product with respect to
cos(mπx/L), the following result is found:

(f, cosmπx/L) =
∞∑

n=0

an(cosnπx/L, cosmπx/L) . (13.6.33)

This is where orthogonality plays a key role, the infinite sum on the right hand
side can be reduced to a single index where n = m since the cosines are orthog-
onal to each other

(cosnπx/L, cosmπx/L) =

{
0 n ̸= m
L n = m

. (13.6.34)
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Thus the coefficients can be computed to be

an =
1

L

∫ L

0
f(x) cos

nπx

L
dx (13.6.35)

and the expansion is accomplished. Moreover, the cosine basis is complete for
even functions and any signal or function f(x) can be represented, i.e. as n → ∞
in the sum, the expansion converges to the given signal f(x).

Eigenfunction expansions: The cosine expansion is a subset of the more
general eigenfunction expansion technique that is often used to solve differen-
tial and partial differential equations problems. Consider the nonhomogeneous
boundary value problem

Lu = f(x) (13.6.36)

where L is a given self-adjoint, linear operator. This problem can be solved with
an eigenfunction expansion technique by considering the associated eigenvalue
problem of the operator L:

Lun = λnun . (13.6.37)

The solution of (13.6.36) can then be expressed as

u(x) =
∞∑

n=0

anun (13.6.38)

provided the coefficients an can be determined. Plugging in this solution to
(13.6.36) yields the following calculations

Lu = f

L(
∑

anun) = f
∑

anLun = f
∑

anλnun = f . (13.6.39)

Taking the inner product of both sides with respect to um yields

(
∑

anλnun, um) = (f, um)
∑

anλn(un, um) = (f, um)

amλm = (f, um) (13.6.40)

where the last line is achieved by orthogonality of the eigenfunctions (un, um) =
δn,m. This then gives am = (f, um)/λm and the eigenfunction expansion solu-
tion is

u(x) =
∞∑

n=0

(f, un)

λn
un . (13.6.41)

Provided the un are a complete set, this expansion is guaranteed to converge to
u(x) as n → ∞.
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Orthonormal wavelets

The preceding examples highlight the importance of orthogonality for represent-
ing a given function. A wavelet ψ is called orthogonal if the family of functions
ψm,n are orthogonal as given by Eq. (13.6.30). In this case, a given signal or
function can be uniquely expressed with the doubly infinite series

f(t) =
∞∑

n,m=−∞

cm,nψm,n(t) (13.6.42)

where the coefficients are given from orthogonality by

cm,n = (f,ψm,n) . (13.6.43)

The series is guaranteed to converge to f(t) in the L2 norm.
The above result based upon orthogonal wavelets establishes the key math-

ematical framework needed for using wavelets in a very broad and general way.
It is this result that allows us to think of wavelets philosophically as the same
as the Fourier transform.

Multi-Resolution Analysis (MRA)

The power of the wavelet basis is its ability to take a function or signal f(t)
and express it as a limit of successive approximations, each of which is a finer
and finer version of the function in time. These successive approximations cor-
respond to different resolution levels.

A multi-resolution analysis, commonly referred to as an MRA, is a method
that gives a formal approach to constructing the signal with different resolution
levels. Mathematically, this involves a sequence

{Vm : m ∈ integers} (13.6.44)

of embedded subspaces of L2 that satisfies the following relations:

1. The subspaces can be embedded in each other so that

Course · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · ·Vm ⊂ Vm+1 · · · Fine

2. The union of all the embedded subspaces spans the entire L2 space so that

∪∞
m=−∞Vm

is dense in L2

3. The intersection of subspaces is the null set so that

∩∞
m=−∞Vm = {0}
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4. Each subspace picks up a given resolution so that f(x) ∈ Vm if and only
if f(2x) ∈ Vm+1 for all integers m.

5. There exists a function φ ∈ V0 such that

{φ0,n = φ(x− n)}

is an orthogonal basis for V0 so that

∥f∥2 =
∫ ∞

−∞
|f(x)|2dx =

∞∑

−∞

|(f,φ0,n)|2

The function φ is called the scaling function or father wavelet.

If {Vm} is a multiresolution of L2 and if V0 is the closed subspace generated by
the integer translates of a single function φ, then we say φ generates the MRA.

One remark of importance: since V0 ⊂ V1 and φ is a scaling function for V0

and also for V1, then

φ(x) =
∞∑

−∞

cnφ1,n(x) =
√
2

∞∑

−∞

cnφ(2x − n) (13.6.45)

where cn = (φ,φ1,n) and
∑∞

−∞ |cn|2 = 1. This equation, which relates the
scaling function as a function of x and 2x is known as the dilation equation, or
two-scale equation, or refinement equation because it reflects φ(x) in the refined
space V1 which as the finer scale of 2−1.

Since Vm ⊂ Vm+1, we can define the orthogonal complement of Vm in Vm+1

as
Vm+1 = Vm ⊕Wm (13.6.46)

where Vm ⊥ Wm. This can be generalized so that

Vm+1 = Vm ⊕Wm

= (Vm−1 ⊕Wm−1)⊕Wm

...

= V0 ⊕W0 ⊕W1 ⊕ · · ·⊕Wm

= V0 ⊕ (⊕m
n=0Wn) . (13.6.47)

As m → ∞, it can be found that

V0 ⊕ (⊕∞
n=0Wn) = L2 . (13.6.48)

In a similar fashion, the resolution can rescale upwards so that

⊕∞
n=−∞Wn = L2 . (13.6.49)
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Moreover, there exists a scaling function ψ ∈ W0 (the mother wavelet) such that

ψ0,n(x) = ψ(x − n) (13.6.50)

constitutes an orthogonal basis for W0 and

ψm,n(x) = 2m/2ψ(2mx− n) (13.6.51)

is an orthogonal basis for Wm. Thus the mother wavelet ψ spans the orthogonal
complement subset Wm while the scaling function φ spans the subsets Vm. The
connection between the father and mother wavelet are shown in the following
theorem.

Theorem: If {Vm} is a MRA with scaling function φ, then there is a mother
wavelet ψ

ψ(x) =
√
2

∞∑

−∞

(−1)n−1c̄−n−1φ(2x− n) (13.6.52)

where

cn = (φ,φ1,n) =
√
2

∫ ∞

−∞
φ(x)φ̄(2x− 1)dx . (13.6.53)

That is, the system ψm,n(x) is an orthogonal basis of L2.

This theorem is critical for what we would like to do. Namely, use the
wavelet basis functions as a complete expansion basis for a given function f(x)
in L2. Further, it explicitly states the connection between the scaling function
φ(x) (father wavelet) and wavelet function ψ(x) (mother wavelet). It is only left
to construct a desirable wavelet basis to use. As for wavelet construction, the
idea is to build them to take advantage of certain properties of the system so
that it gives an efficient and meaningful representation of your time-frequency
data.

13.7 Spectrograms and the Gábor transforms in MAT-
LAB

The aim of this lecture will be to use MATLAB’s fast Fourier transform routines
modified to handle the Gábor transform. The Gábor transform allows for a fast
and easy way to analyze both the time and frequency properties of a given
signal. Indeed, this windowed Fourier transform method is used extensively for
analyzing speech and vocalization patterns. For such applications, it is typical to
produce a spectrogram that represents the signal in both the time and frequency
domain. Figures 125 and 126 are produced from the vocalization patterns in
time-frequency of a human saying “do re mi” and a humpback whale vocalizing
to other whales. The time-frequency analysis can can be used to produce speech
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Figure 125: Spectrogram (time-frequency) analysis of a male human saying “do
re mi.” The spectrogram is created with the software program Praat, which is
an open source code for analyzing phonetics.

recognition algorithms given the characteristic signatures in the time-frequency
domains of sounds. Thus spectrograms are a sort of fingerprint of sound.

To understand the algorithms which produce the spectrogram, it is informa-
tive to return to the characteristic picture shown in Fig. 115. This demonstrates
the action of an applied time filter in extracting time localization information.
To build a specific example, consider the following MATLAB code that builds a
time domain (t), its corresponding Fourier domain (ω), a relatively complicated
signal (S(t)), and its Fourier transform (Ŝ(ω)).

clear all; close all; clc

L=10; n=2048;
t2=linspace(0,L,n+1); t=t2(1:n);
k=(2*pi/L)*[0:n/2-1 -n/2:-1]; ks=fftshift(k);

S=(3*sin(2*t)+0.5*tanh(0.5*(t-3))+ 0.2*exp(-(t-4).^2)...
+1.5*sin(5*t)+4*cos(3*(t-6).^2))/10+(t/20).^3;

St=fft(S);

The signal and its Fourier tranform can be plotted with the commands

figure(1)
subplot(3,1,1) % Time domain
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Figure 126: Spectrogram (time-frequency) analysis of a humpback whale vo-
calization over a short period of time. The spectrogram is created with the
software program Praat, which is an open source code for analyzing phonetics.

plot(t,S,’k’)
set(gca,’Fontsize’,[14]),
xlabel(’Time (t)’), ylabel(’S(t)’)

subplot(3,1,2) % Fourier domain
plot(ks,abs(fftshift(St))/max(abs(St)),’k’);
axis([-50 50 0 1])
set(gca,’Fontsize’,[14])
xlabel(’frequency (\omega)’), ylabel(’FFT(S)’)

Figure 127 shows the signal and its Fourier transform for the above example.
This signal S(t) will be analyzed using the Gábor transform method.

The simplest Gábor window to implement is a Gaussian time-filter centered
at some time τ with width a. As has been demonstrated, the parameter a is
critical for determining the level of time-resolution versus frequency resolution
in a time-frequency plot. Figure 128 shows the signal under consideration with
three filter widths. The narrower the time-filtering, the better resolution in time.
However, this also produces the worst resolution in frequency. Conversely, a
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Figure 127: Time signal and its Fourier transform considered for a time-
frequency analysis in what follows.

wide window in time produces much better frequency resolution at the expense
of reducing the time resolution. A simple extension to the existing code produces
a signal plot along with three different filter widths of Gaussian shape.

figure(2)
width=[10 1 0.2];
for j=1:3
g=exp(-width(j)*(t-4).^2);
subplot(3,1,j)
plot(t,S,’k’), hold on
plot(t,g,’k’,’Linewidth’,[2])
set(gca,’Fontsize’,[14])
ylabel(’S(t), g(t)’)

end
xlabel(’time (t)’)

The key now for the Gábor transform is to multiply the time filter Gábor
function g(t) with the original signal S(t) in order to produce a windowed section
of the signal. The Fourier transform of the windowed section then gives the local
frequency content in time. The following code constructs the windowed Fourier
transform with the Gábor filtering function

g(t) = e−a(t−b)2 . (13.7.54)

The Gaussian filtering has a width parameter a and translation parameter b.
The following code constructs the windowed Fourier transform using the Gaus-
sian with a = 2 and b = 4.
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Figure 128: Time signal S(t) and the Gábor time filter g(t) (bold lines) for three
different Gaussian filters: g(t) = exp(−10(x − 4)2) (top), g(t) = exp(−(x −
4)2) (middle), and g(t) = exp(−0.2(x − 4)2) (bottom). The different filter
widths determine the time-frequency resolution. Better time resolution gives
worse frequency resolution and vice-versa due to the Heinsenberg uncertainty
principle.

figure(3)
g=exp(-2*(t-4).^2);
Sg=g.*S;
Sgt=fft(Sg);

subplot(3,1,1), plot(t,S,’k’), hold on
plot(t,g,’k’,’Linewidth’,[2])
set(gca,’Fontsize’,[14])
ylabel(’S(t), g(t)’), xlabel(’time (t)’)

subplot(3,1,2), plot(t,Sg,’k’)
set(gca,’Fontsize’,[14])
ylabel(’S(t)g(t)’), xlabel(’time (t)’)

subplot(3,1,3), plot(ks,abs(fftshift(Sgt))/max(abs(Sgt)),’k’)
axis([-50 50 0 1])
set(gca,’Fontsize’,[14])
ylabel(’FFT(Sg)’), xlabel(’frequency (\omega)’)
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Figure 129: Time signal S(t) and the Gábor time filter g(t) = exp(−2(x− 4)2)
(bold line) for a Gaussian filter. The product S(t)g(t) is depicted in the middle
panel and its Fourier transform Ŝg(ω) is depicted in the bottom panel. Note
that the windowing of the Fourier transform can severely limit the detection of
low-frequency components.

Figure 129 demonstrates the application of this code and the windowed Fourier
transform in extracting local frequencies of a local time window.

The key to generating a spectrogram is to now vary the position b of the time
filter and produce spectra at each location in time. In theory, the parameter b
is continuously translated to produce the time-frequency picture. In practice,
like everything else, the parameter b is discretized. The level of discretization
is important in establishing a good time-frequency analysis. Specifically, finer
resolution will produce better results. The following code makes a dynamical
movie of this process as the parameter b is translated.

figure(4)
Sgt_spec=[];
tslide=0:0.1:10
for j=1:length(tslide)
g=exp(-2*(t-tslide(j)).^2); % Gabor
Sg=g.*S; Sgt=fft(Sg);
Sgt_spec=[Sgt_spec; abs(fftshift(Sgt))];
subplot(3,1,1), plot(t,S,’k’,t,g,’r’)
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subplot(3,1,2), plot(t,Sg,’k’)
subplot(3,1,3), plot(ks,abs(fftshift(Sgt))/max(abs(Sgt)))
axis([-50 50 0 1])
drawnow
pause(0.1)

end

This movie is particularly illustrative and provides an excellent graphical repre-
sentation of how the Gábor time-filtering extracts both local time information
and local frequency content. It also illustrates, as the parameter a is adjusted,
the ability (or inability) of the windowed Fourier transform to provide accurate
time and frequency information.

The code just developed also produces a matrix Sgt spec which contains
the Fourier transform at each slice in time of the parameter b. It is this matrix
that produces the spectrogram of the time-frequency signal. The spectrogram
can be viewed with the commands

pcolor(tslide,ks,Sgt_spec.’), shading interp
set(gca,’Ylim’,[-50 50],’Fontsize’,[14])
colormap(hot)

Modifying the code slightly, a spectrogram of the signal S(t) can be made
for three different filter widths a = 5, 1, 0.2 in Eq. (13.7.54). The spectrograms
are shown in Fig. 130 where from left to right the filtering window is broadened
from a = 5 to a = 0.2. Note that for the left plot, strong localization of the
signal in time is achieved at the expense of suppressing almost all the low-
frequency components of the signal. In contrast, the right most figure with a
wide temporal filter preserves excellent resolution of the Fourier domain but
fails to localize signals in time. Such are the tradeoffs associated with a fixed
Gábor window transform.

13.8 MATLAB Filter Design and Wavelet Toolboxes

The applications of filtering and time-frequency analysis are so ubiquitous across
the sciences, that MATLAB has developed a suite of toolboxes that specialize in
these applications. Two of these toolboxes will be demonstrated in what follows.
Primarily, screenshots will give hints of the functionality and versatility of the
toolboxes.

The most remarkable part of the toolbox is that it allows for entry into high
level signal processing and wavelet processing almost immediately. Indeed, one
hardly needs to know anything to begin the process of analyzing, synthesizing,
and manipulating data to one’s own ends. For the most part, each of the
toolboxes allows you to begin usage once you upload your signal, image or data.
The only drawback is cost. For the most part, many academic departments
have access to the toolboxes. And if you are part of a university environment,


