
539

21 Data Assimilation Methods

Most of the data-driven techniques presented in this book were applied to sys-
tems where the underlying governing equations were prescribed. However, in
the DMD method (or in the equation-free method), no governing equations were
required to extract meaningful information about the dynamics of the complex
system under consideration. The method of data assimilation is a hybrid method
that uses both data measurements collected in time about the system in con-
junction with a prescribed set of governing equations. The fact is, both the
measurements and simulations are in practice heavily influenced by uncertainty
and/or noise fluctuations. Thus neither the experiment or theoretical model can
be fully trusted. However, combining the two so that the experimental measure-
ments helps inform the model and vice-versa can greatly improve the predictive
powers of the model, or analysis of the state of the system [83, 84, 85, 86]. Thus
data is assimilated into the model predictions and hence the name. Data as-
similation is potentially one of the most useful data-driven modeling techniques
as we are rarely without some underlying governing equations or without ex-
perimental measurements. And to make optimal use of both, data assimilation
techniques are ideal.

21.1 Theory of Data Assimilation

To begin thinking about data assimilation, we will first consider a given com-
plex system and its underlying dynamical evolution. Specifically, let us begin
by assuming that the system under consideration has the following evolution
equation

dy

dt
= f(t,y) (21.1.1)

with the initial state of the system given by

y(0) = y0 . (21.1.2)

Of course, techniques for solving such a system have been considered extensively
throughout this book. Indeed, provided that f(t,y) is well behaved, i.e. contin-
uous and differentiable, for instance, then a solution to the prescribed problem
can be solved for uniquely. In fact, for an N -dimensional vector y, N initial
conditions are prescribed by y0 so that the number of unknowns and constraints
match.

Up to this point, we have ignored and/or denied a simple and obvious truth
regarding the evolution equation (21.1.1) and its initial conditions (21.1.2).
Specifically, we are assuming that we can perfectly prescribe both! In practice,
this is surely an impossible task. And for strongly nonlinear systems (21.1.1),
even small changes in the initial conditions and/or slight noise perturbations to
the system can lead to large changes in the dynamical behavior, stability and

540

predictability of (21.1.1). To be more precise then about our formulation of the
true system, (21.1.1) and (21.1.2) should be modified to

dy

dt
= f(t,y) + q1(t) (21.1.3)

with the initial conditions
y(0) = y0 + q2 . (21.1.4)

where q1 represents unknown model errors due to either noise fluctuations in
the system or perhaps truncation of higher-order effects in the system that are
thought to be negligible. Similarly, the vector q2 represents the error in the
prescribed initial conditions either because we cannot accurately measure them
in practice or prescribe them in a realistic physical system.

Even in the presence of the perturbations q1 and q2, the system of equations
(21.1.3) and (21.1.4) remains well-posed with a unique solution specifying the
dynamics in time. However, for a strongly nonlinear system, the presence of q1

and q2 make it virtually impossible to use the governing equations (21.1.3) and
the initial conditions (21.1.4) for an accurate prediction of the future state of
the system. This is largely due to the concept of sensitivity to initial conditions
that is displayed in many complex systems. Of course, this then gives rise to the
following fundamental question: Is modeling a worthwhile exercise if it cannot
predict the future state of a realistic system? In practice, great engineering is
often about eliminating large unknowns in a system by essentially suppressing,
as much as possible, the vectors q1 and q2. But for highly complex systems,
such as climate modeling and weather prediction, the system simply cannot be
engineered and one must find effective strategies for dealing with the inherent
effect of q1 and q2.

Data assimilation is a technique that attempts to mitigate the problems
associated with having q1 and q2 present in a given system. As the name
suggests, the idea is to assimilate experimental measurements directly into the
theoretical model in order to inform the dynamics. Thus a set of measurements
are taken so that

g(t,y) + q3 = 0 (21.1.5)

where g(t,y) is a certain set of measurements, let’s say M of them, on some
quantities related to the state vector y, and the vector q3 is the error measure-
ment associated with the data collection process.

In principle, it is a great idea to incorporate real experimental measurements
into the modeling process. In practice, the addition of (21.1.5) now makes for
an overdetermined system (N unknowns and N + M constraints) for y for
which no solution exists in general. Thus the tradeoff of using the experimental
data is that we went from a well-posed system with a unique solution to an
overdetermined system with no general solution.

541

To deal with the overdetermined system, the following quadratic form is
introduced:

J(y) =

∫ T

0

∫ T

0
qT
1 (t1)W1q1(t2)dt1dt2 + qT

2 W2q2 + qT
3 W3q3 (21.1.6)

where the error vectors qj are all directly included in the quadratic form. The
matrices Wj are the inverse of the error covariance for the model, initial condi-
tions and measurements respectively. The introduction of such a quadratic form
is motivated by one primary purpose: optimization. In particular, one potential
solution to the overdetermined system is to find the solution that minimizes
the weighted error, weighted with respect to the model, initial condition and
measurement error, as given by the quadratic form J(y). Since it is a quadratic
form, standard convex optimization methods can be directly applied to find a
solution. The least-square error model defined by J(y) is only one potential
choice. However, this choice is particularly attractive when considering Gaus-
sian statistics for the error vectors. In this case, minimizing J(y) is equivalent
to maximizing the probability density function P (y) = C exp[−J(y)]. Thus the
minimum of (21.1.6) is also the maximum-likelihood estimate.

Thus to summarize the data assimilation method, we consider a theoretical
model under the influence of some error (21.1.3) subject to initial conditions
which are also subject to error (21.1.4). A number of experimental measure-
ments (21.1.5), also subject to error, are then made to inform the model. The
combined errors of the resulting overdetermined system is cast as a quadratic
form for which convex optimization techniques can be used to find the best
fit solution (in the L2 sense). As a result, the experimental measurements are
assimilated with the model predictions to generate better predictions of the dy-
namical behavior in time. The development of these key ideas will be carried
forward in the next two sections.

Data Assimilation for a Single Random Variable

To illustrate the ideas of data assimilation, the simplest toy example will be
considered (See, for example, the nice arguments by Holton and Hakim [82]
in the context of atmospheric sciences). Specifically, consider a model that
generates some prediction about the state of the system, thus effectively q1 and
q2 would be combined in this model prediction process. Also, consider some
experimental measurements on the systems that are also subject to error. Thus
for the variable x, there are two predictions about its true value: one from the
model and one from experiment. The idea is to combine these two measurements
to arrive at a better prediction of the true value of x.

To begin this calculations, consider the following conditional probability
statement from Bayes formula (See Sec. 12.2):

p(x|y) = p(y|x)p(x)
p(y)

(21.1.7)

542

where p(x) represents the probability density for predicting the variable x. Here,
y will represent the observation (experimental assimilation) that will be made.
Thus p(x|y) is the probability of finding x conditioned on having measured y. At
this point, we will not concern ourselves with p(y) since it will simply represent a
scaling factor for (21.1.7). The probability density function p(y|x) is a likelihood
function since it is a function of the variable x.

As is the case with almost all problems in probability theory, great simplifica-
tions can be made by assuming Gaussian distributed random variables. In fact,
our treatment of the data assimilation problem for higher dimensional problems
relies explicitly on this assumption in order to derive something tractable. It
also helps simplify the current one variable problem if this assumption is made.
Thus consider the following probability density distributions

p(y|x) = c1 exp

[
−1

2

(
y − x

σy

)2
]

(21.1.8)

p(x) = c2 exp

[
−
1

2

(
x− x0

σ0

)2
]

(21.1.9)

where σy is the error variance for the observation, and x0, σ0 are the predicted
model mean and its associated error variance. The constants c1 and c2 are
normalization constants ensuring that probability density functions integrate to
unity. Thus the errors, both in measurement (σy) and theory (σ0), are charac-
terized by the variance parameters. Note that without any data assimilation,
the model would predict the value x0. Data assimilation attempts to give a
correction to this value using the measurement data.

Using the conditional probability statement, which integrates in information
about the observation y, along with the assumed Gaussian probability distribu-
tions (21.1.9) yields the following prediction (what is x given observation y) for
the state of the system

p(x|y) = c3 exp

[
−1

2

(
y − x

σy

)2
]
exp

[
−1

2

(
x− x0

σ0

)2
]

(21.1.10)

where c3 is another constant used for convenience.
Our goal now is to construct a quadratic form like (21.1.6) for this problem

in order to determine how to modify x from its default prediction value of x0 in
light of our observation y. A very simple quadratic form to construct from the
Gaussian distributions is as follows

J(x) = − log[p(x|y)] + log(c3) =
1

2

(
y − x

σy

)2

+
1

2

(
x− x0

σ0

)2

. (21.1.11)

But this quadratic form can be easily minimized as it is simply a parabola in
one dimension, i.e. optimization can be performed in closed form unlike the

543

−3 −2 −1 0 1 2 3
0

1

2

3

p(x) p(y|x)

p(y|x)p(x)

Figure 238: Distributions of the model (left Gaussian, p(x)), the observa-
tion (right Gaussian, p(y|x)), and the data assimilated distribution p(x̄) =
p(y|x)p(x). Note that the error variance of the assimilated distribution is much
narrower than either the model or observational data as shown in (21.1.13).

general formulation (21.1.6). To find its minimum, dJ(x̄)/dx = 0 is computed.
This yields the following value for x̄ at the minimum

x̄ =

(
σ2
y

σ2
y + σ2

0

)
x0 +

(
σ2
0

σ2
y + σ2

0

)
y . (21.1.12)

Thus x̄, which is a weighted linear superposition of the model prediction x0

and the observation y, is the new and improved prediction for the outcome of
x given the observation y. Such is change of value when using the conditional
probability argument.

Equation (21.1.12) has some very intuitive features. First and foremost: if
there is no error in the experimental observation, then σy = 0 and x̄ = y. This
is a statement of self-consistency essentially. It would be very bad if the data
assimilation method failed to choose the observational data value if it was error
free. The error variance for x̄ can also be computed to be

σ̄2 =
σ2
0

1 + (σ2
0/σ

2
y)

=
σ2
y

1 + (σ2
y/σ

2
0)

< σ2
0 ,σ

2
y . (21.1.13)

This is also a self-consistency check. Namely, the error in the data assimilation
prediction is always better than the error of either the model alone or observation
alone. Again, the fact that you are using the combination of model and data
should always improve your predictions and error.

Figure 238 shows the three probability densities of interest. In particular,
what is shown is the probability density given by the model, p(x), the obser-
vation, p(y|x) and the data assimilation, p(x̄) = p(y|x)p(x). For this figure the

544

following were assumed x0 = −0.5, σ0 = 0.5, y = 0.2 and σy = 0.3. This allows
us to compute the distribution of the assimilated prediction through (21.1.12)
and (21.1.13). Note that the variance of the assimilated distribution is quite nar-
row and shifted strongly towards the observational distribution. This is largely
because the observation has a much smaller variance than the model data.

Another way to express these results if by noting that

x̄ = x0 +K(y − x0) (21.1.14)

with σ̄2 = (1−K)σ2
0 and where

K =
σ2
0

σ2
0 + σ2

y
≤ 1 . (21.1.15)

The second term in the right hand side of (21.1.14), K(y − x0), is the so-called
innovation since it brings in new information (an observation) to the prediction
of x. The predicted value of x is a linear combination of its model prediction
x0 and the innovation. If there is no innovation, i.e. no new information, then
the prediction remains x0. The parameter 0 < K < 1 is the gain weighting
factor and is essentially the so-called Kalman filter or Kalman gain. This will
be considered in more detail in the next section.

21.2 Data Assimilation, Sampling and Kalman Filtering

The preceding section outlined the high level view of the data assimilation
method and showed how to implement it on the simplest example possible.
What is desired now is to develop the theory further for implementation in re-
alistic systems. Of particular note will be the role of the Kalman Filter, or as
already hinted at in the last section, the method of incorporating innovation to
the model predictions.

Relating Observations to the State Vector

Before proceeding to derive the Kalman filter for a general vector system, we
address the issue of how observations (21.1.5) project onto the state variable
y of the governing equation (21.1.1). For instance, the governing equation
(21.1.1) may be the simulation of some underlying PDE system that is solved
on a rectangular grid of a prescribed domain. Observations, however, may be
made anywhere in the domain and will, in general, not be aligned with the grid
used for (21.1.1). In weather prediction, the data is collected at observations
points which may be on the coast, on top of mountains and/or metropolitan
areas. Certainly the observation points are not aligned on a regular grid. The
simulation of a geographic region, however, is most likely accomplished using a
given discretization, perhaps in tens of meters to kilometers. The question is how
to overlay the irregularly spaced observations onto the regularly spaced state

545

variables. The simplest thing to do is to use a linear interpolation algorithm to
generate values of the state variables at each grid point of the model.

The mapping of the experimental observations can be accomplished mathe-
matically in the following way

y(t) = Hx(t) + q3 (21.2.1)

where y(t) are the observations at a given time t of the state vector x, H is a
matrix that maps the state vector to the observations and q3 is the observational
error. This is a linear version of the more general form (21.1.5). This step is
always necessary once a data collection has been applied at a time t.

The One-Dimensional Kalman Filter

The derivation of the projection operator H in (21.2.1) is necessary for deriving
the Kalman Filter. To start the derivation process, we once again return to
one-dimensional considerations and a highly idealized version of the dynamics in
discrete form. In particular, following Miller [84], we can consider the mapping
from a time tk to a time tk+1. The full dynamics, without approximation, is
assumed to be given by

xk+1 = f(xk) + qk+1 (21.2.2)

where xk+1 and xk are the state of the one dimensional system at time tk+1

and tk respectively, and qk+1 is a Gaussian white noise sequence. The model
approximation to this system is given by

x0k+1 = f (x0k) (21.2.3)

where x0k is the best estimate of the state of the system at time tk, sometimes
called the analysis, and x0k+1 is the forecast of the dynamics using this estimate
at time tk+1.

The error between the truth and the forecast at time tk+1 is then given by

xk+1 − x0k+1 = f(xk)− f (x0k) + qk+1 (21.2.4)

By Taylor expanding f(xk) around x0k , the above expression can be written as
follows

xk+1 − x0k+1 = (xk − x0k)f
′(x0k) +

1

2
(xk − x0k)

2f ′′(x0k)

+
1

6
(xk − x0k)

3f ′′′(x0k) + · · ·+ qk+1 (21.2.5)

To find the error variance between the correct solution xk+1 and our prediction
x0k+1 , the expectation value of the quantity (xk+1 − x0k+1)

2 is computed. De-
noting this as E[(xk+1 −x0k+1)

2], we find by squaring the above expression and
taking the expectation

E[(xk+1 − x0k+1)
2] = E[(xk − x0k)

2](f ′(x0k))
2 + h.o.t + E[q2k+1] (21.2.6)

546

where h.o.t. denotes all higher-order moment terms, i.e. the skewness and
kurtosis, for instance, of the error. Keeping these terms represents a closure
problem for the error. However, as a first approximation, it is often the case that
the higher-order moments are neglected. Thus we can discard them from the
calculation at this point. However, it should be noted that there is a great deal
of work that investigates the effect of preserving the higher-order moments in
the calculation. One might imagine that the more information that is retained,
the better the approximation should work.

To simplify the notation, we define the following two quantities

Pk+1 = E[(xk+1 − x0k+1)
2] (21.2.7a)

Pk = E[(xk − x0k)
2] (21.2.7b)

which are measures of the error variance between the true solution and the
prediction at tk+1, and the true solution and our best estimate of it at tk re-
spectively. This notation gives

Pk+1 = Pk(f
′(x0k))

2 + E[q2k+1] (21.2.8)

Note that Pk+1 accounts for the dynamics (and errors associated with it) while
Pk accounts for errors in estimating the initial state.

To make a data assimilated prediction, x̄k+1, of the state of the system at
time tk+1 using an observation yk+1, we then apply the following formula

x̄k+1 = x0k+1 +Kk+1(yk+1 − x0k+1) (21.2.9)

where the innovation is again given by the quantity yk+1−x0k+1 and the Kalman
gain Kk+1 is given by

Kk+1 =
Pk+1

Pk+1 +R
(21.2.10)

where R is the observation error variance. If there is no observational error,
then R = 0 which forces Kk+1 = 1. This in turn gives the assimilated pre-
diction to be x̄k+1 = yk+1, i.e. the assimilated prediction is exactly the error
free experimental observation. The variance associated with the error of our
prediction x̄k+1 is given by

P̄k+1 = (1−Kk+1)Pk+1 (21.2.11)

Taken together, the data assimilation results, which now directly tie in the
dynamics of the system through (21.2.2), define what is called the extended
Kalman filter (EKF).

The Vector EKF

The vector version of the above one-dimensional argument follows in a straight-
forward manner [84, 87]. The dynamics given by (21.2.2) and (21.2.3) are now

547

written
xk+1 = f(xk) + qk+1 (21.2.12)

and
x0k+1 = f(x0k) (21.2.13)

respectively. Once again Taylor expanding now yields the covariance evolution

Pk+1 = J(f)PkJ(f)
T +Q (21.2.14)

where J(f) is the Jacobian generated form the multi-dimensional Taylor expan-
sion and higher-order moments have been neglected. This formula is equivalent
to (21.2.8).

Given a data observation yk+1 at time tk+1, the vector case requires an
appropriate mapping of the observation space to the state space. But this was
already discussed and is mathematically transcribed in (21.2.1). Finally, the
data assimilated prediction of the correct state is given by

x̄k+1 = x0k+1 +Kk+1(yk+1 −Hx0k+1) (21.2.15)

where Kk+1 is the Kalman gain matrix given by

Kk+1 = Pk+1H
T (HPk+1H

T +R)−1 (21.2.16)

and R is the noise covariance matrix. The error covariance of the updated state
vector is given by

P̄k+1 = (I−Kk+1H)Pk+1 (21.2.17)

where I is the identity matrix. In vector form, the innovation is given by
yk+1 − Hx0k+1 . Thus the matrix H serves an important role in overlaying
the data measurement locations with the underlying grid used for computation-
ally evolving forward the model dynamics. This is the EKF for generic complex
systems.

With the EKF now established, its strengths and weaknesses are briefly
considered. Its strengths are obvious, the EKF provides a systematic way to in-
tegrate observational data into the modeling process, thus improving the model
predictions. Its most obvious drawbacks are computational. Specifically, for
complex systems where the state vector is defined by potentially millions or
billions of variables on a large computational grid, computing the innovation
becomes unwieldy, especially as these large matrices need to be inverted and Ja-
cobians found. Such enormous computational expense can render the method
useless from a practical point of view. One potential way to deal with such
computational complexity is to minimize (21.1.6) directly using, for instance,
gradient descent algorithms. This is ultimately faster than computing Jaco-
bians and inverses of the large matrices under consideration. Another potential
way to solve the problem is to use Ensemble Kalman Filtering (EnKF) tech-
niques which render the problem tractable by processing observations one at a

548

time or by breaking the domain into smaller subdomains where the matrices
are tractable. Such computational considerations are necessary to consider in
the types of systems (weather prediction and climate modeling [82]) where data
assimilation has becomes a standard method of analysis.

21.3 Data Assimilation for the Lorenz Equation

To demonstrate the data assimilation algorithm in practice, consideration will
be given to the Lorenz equations

x′ = σ(y − x) (21.3.1a)

y′ = rx − y − xz (21.3.1b)

z′ = xy − bz (21.3.1c)

Thus the vector x = [x y z]T is the three-degree of freedom state vector whose
nonlinear evolution f(x) is specified by the right hand side (Lorenz model) in
(21.3.1) . The Lorenz equations are a highly simplified model of convective-
driven atmospheric motion (See Sec. 24.3 for a derivation of the system).

To begin, a perfect simulation will be performed of the Lorenz system, i.e.
a simulation that includes specified initial conditions without noise and an evo-
lution which is free of stochastic forcing. This simulation will be the truth that
the data assimilation will try to reproduce. The parameters to be simulated
here, and in what follows, are standard in many examples: σ = 10, b = 8/3
and r = 28. The large value of r puts the system in a dynamical state that
is highly sensitive to initial conditions. The perfect initial conditions will be
x0 = [5 5 5]T . The following MATLAB code solves this problem for the time
domain t ∈ [0, 20] and plots it in a parametric way in 3D.

t=0:0.01:20;
sigma=10; b=8/3; r=28;

x0=[5 5 5];
[t,xsol]=ode45(’lor_rhs’,t,x0,[],sigma,b,r)

x_true=xsol(:,1); y_true=xsol(:,2); z_true=xsol(:,3);
figure(1), plot3(x_true,y_true,z_true)

The right-hand side of the differential equation includes the dynamics through
f(x). In this case, the function lor rhs is given by

function rhs=lor_rhs(t,x,dummy,sigma,b,r)
rhs=[sigma*(-x(1)+x(2))

-x(1)*x(3)+r*x(1)-x(2)
x(1)*x(2)-b*x(3)];

549

−20 −10 0 10 20−30

0

30
0

10

20

30

40

50

x
y

z

Figure 239: Evolution of the variables x(t), y(t) and z(t) over the time period
t ∈ [0, 20] for σ = 10, b = 8/3 and r = 28. The evolution is shown parametrically
as a function of time.

The results of simulating the Lorenz equation are shown in Figs. 239 and 240.
The first of these figures demonstrates the standard butterfly pattern of evolution
of the strange attractor in three dimensions. In this graph, time is a parametric
quantity. The second of these figures illustrates the evolution of the variables
x(t), y(t) and z(t) over the time period t ∈ [0, 20]. In what follows, instead of
tracking and comparing all the variables, we will focus on x(t) for illustrative
purposes only.

Sensitivity to initial conditions

The first thing that will be investigated is sensitivity of the evolution to small
changes in the initial conditions. The mathematical statement of this problem is
given in (21.1.2). Thus the effect of q2 on the dynamics will be considered. And
in particular, it is the perturbation of the initial conditions that compromises
the predictive power of the theoretical model. To simplify this, we will assume
that the error has a Gaussian distribution so that

x(0) = x0 + σ2q(0, 1) (21.3.2)

where x0 is the perfect initial conditions and q(0, 1) is a Gaussian distributed
random variable with mean zero and unit variance. Thus σ2 is chosen to make

550

0 5 10 15 20
−20

0

20

x

0 5 10 15 20
−30

0

30

y

0 5 10 15 20
0

50

t

z

Figure 240: Time evolution of the variables x(t), y(t) and z(t) over the time
period t ∈ [0, 20] for σ = 10, b = 8/3, r = 28 and x0 = [5 5 5]T . In this
parameter regime, specifically for this large a value of r, the dynamics of the
Lorenz equations are highly sensitive to initial conditions.

the error variance either larger or smaller.
With this error, the evolution of (21.3.1) can once again be explored. In

Fig. 241, eight realizations of the evolution are given using the initial conditions
(21.3.2). The exact evolution which we are trying to model (with σ2 = 0) is
the thinner solid line while the initial conditions with error (with σ2 = 1) is the
bolded line. The following MATLAB code generates the eight realizations:

sigma2=1; % error variance
for j=1:8
xic=x0+sigma2*randn(1,3); % perturb initial conditions
[t,xsol]=ode45(’lor_rhs’,t,xic,[],sigma,b,r);
x=xsol(:,1); % projected x values
subplot(4,2,j), plot(t,x_true,’k’), hold on
plot(t,x,’k’,’Linewidth’,[2])

end

For all these realizations, the projected state fails to model the true dynamics
after t ≈ 5. Indeed, after this time, there is almost no correlation of closeness

551

0 5 10 15 20
−20

0

20

x

0 5 10 15 20
−20

0

20

0 5 10 15 20
−20

0

20

x

0 5 10 15 20
−20

0

20

0 5 10 15 20
−20

0

20

x

0 5 10 15 20
−20

0

20

0 5 10 15 20
−20

0

20

x

t
0 5 10 15 20

−20

0

20

t

Figure 241: Time evolution of the variables x(t), y(t) and z(t) over the time
period t ∈ [0, 20] for σ = 10, b = 8/3, r = 28 and x0 = [5 5 5]T . Here, eight
realizations are shown for the perturbed initial conditions given by (21.3.2) with
σ2 = 1. Note that for all simulations, after t ≈ 5 the true dynamics (light line)
differ from the dynamics with perturbed initial conditions (bold line). Thus
prediction of the dynamics beyond this time is virtually impossible given such
perturbations (errors) in the initial data.

between the truth and our projection based upon noisy initial data. This illus-
trates the need for data assimilation. Specifically, it is hoped that occasional
measurements of the data would allow for an accurate prediction of the true
future state far beyond t ≈ 5.

Data assimilation for the Lorenz equations

The goal in this example will be to simply illustrate the EKF algorithm. Thus
a simple case will be taken which can be completely coded in MATLAB in a
fairly straightforward manner. In this simple example, no stochastic forcing of
the differential equations will be considered so that the dynamics are exactly as
specified in (21.3.1). Said another way, the error vector q1 in (21.1.6) is zero.
However, there will be both error in the measurements (q3) and the initial
conditions (q2). Knowing full well about the sensitivity to initial conditions
in the Lorenz equations, the initial noise will greatly compromise the ability

552

0 5 10 15 20
−20

−10

0

10

20

x

t

Figure 242: True time dynamics of the variable x(t) over the time period t ∈
[0, 20] for σ = 10, b = 8/3, r = 28 and x0 = [5 5 5]T . The circles represent
experimental measurements at every half-unit of time of the true dynamics with
error given by (21.3.3) with σ3 = 4. The dynamics of the variables y(t) and z(t)
are similar. Data assimilation makes use of the experimental measurements to
keep the model predictions closer to the true dynamics.

of the model to predict the future state of the system. The hope is that data
assimilation will mitigate this problem to some extent and allow for much more
accurate, and longer time, predictions for the future state of the system.

In our example, the data collection points will be at simulation time points
already specified by our differential equation solver. Moreover, data will be
taken from all variables. Thus the mapping matrix H = I. To illustrate the
data collection process, consider then modification of (21.2.1) to

y(tn) = x(tn) + σ3q(0, 1) (21.3.3)

where tn is a measurement time point and q(0, 1) is a Gaussian distributed
random variable with mean zero and unit variance. Thus σ3 is chosen to make
the error variance either larger or smaller in the data measurements. Figure 242
shows the true dynamics (line) and data collected every half-unit of time with
σ3 = 4 (circles). As is clearly seen, the data is collected under error and does
not match up perfectly with the true dynamics. However, it does follow the
true dynamics fairly closely over the time period of integration. To compute
these data points in MATLAB, the following code is used in conjunction with
the code that generates the true dynamics:

% noisy obserations every t=0.5
tdata=t(1:50:end);
n=length(tdata)
xn=randn(n,1); yn=randn(n,1); zn=randn(n,1);
sigma3=4; % error variance in data
xdata=x(1:50:end)+sigma3*xn;
ydata=y(1:50:end)+sigma3*yn;

553

zdata=z(1:50:end)+sigma3*zn;

The idea is to use these experimental points along with the noisy initial condi-
tions shown in Fig. 241 in order to enhance our prediction for the future state.

Given that H = I in this example, this reduces the EKF algorithm to com-
puting

x̄k+1 = x0k+1 +Kk+1(yk+1 − x0k+1) (21.3.4)

where Kk+1 is the Kalman gain matrix given by

Kk+1 = Pk+1(Pk+1 +R)−1 (21.3.5)

and R is the noise covariance matrix. The error covariance of the updated state
vector is given by

P̄k+1 = (I−Kk+1)Pk+1 . (21.3.6)

Note that the matrices involved are 3×3 matrices and the innovation is simply
given by yk+1 − x0k+1 . From (21.2.14), and using the fact that the dynamics
propagates in an error free fashion (q1 = 0), then

Pk+1 = J(f)PkJ(f)
T . (21.3.7)

where the Jacobian for the Lorenz equation can be easily computed to give

J(f) =

⎡

⎣
−σ σ 0
r − z −1 −x
y x −b

⎤

⎦ (21.3.8)

and the matrix Pk measures the error in estimating the initial state of the
system at time tk. This error is determined by (21.3.2) and the parameter σ2.

Everything is in place then to implement the data assimilation procedure.
The following is an algorithmic outline of what needs to occurs:

(i) Determine the sources of error and how to incorporate them. The error in
the data measurement determines the matrix R while the error in the initial
condition determines the matrix Pk (Note that we are ignoring errors generated
in the dynamics themselves).

(ii) Compute the Jacobian at time tk using the best estimate for the state vec-
tor x0(tk) and combine it with the computation of Pk in order to compute Pk+1.

(iii) With Pk+1 and R, compute the Kalman gain matrix Kk+1.

(iv) Compute the new state of the system using the innovation vector and the
Kalman gain matrix.

554

0 10 20
−20

0

20
x(t) dynamics

0 10 20
0

20

40
Error dynamics

0 10 20
−20

0

20

0 10 20
0

20

40

Figure 243: Comparison of the model dynamics using a direct numerical sim-
ulation of the noisy initial conditions (top panels) with the data assimilated
solution with noisy initial conditions and noisy data measurements (bottom
panels). The direct simulation (bold line) fails to predict the true dynamics
(line) beyond t ≈ 5 (top panel). Indeed, the error in this case grows quite large
at this time (top right panel). When making use of the data assimilation tech-
nique (bottom panels) and the data measurements (circles), the solution stays
close to the true solution for a much longer time with much smaller error (bot-
tom right panel). Thus data assimilation can greatly extend the time window
under which the model can be useful.

(v) Use the new state of the system to again project to another time into the
future where observational data is once again available.

The Lorenz equation is a fairly trivial example to consider. Moreover, our
treatment of the data assimilation will be for the simplest case possible. In this
example, the error variance for both the initial conditions and data measure-
ments will both be unity so that σ2 = σ3 = 1 respectively. The Kalman gain
matrix will then be given as in the one-dimensional case: K = σ2/(σ2 + σ3). A
code for simulating this system and making adjustments based upon the data
measurements is as follows:

x_da=[]; % data assimilation solution
for j=1:length(tdata)-1 % step through every t=0.5
tspan=0:0.01:0.5; % time between data collection
[tspan,xsol]=ode45(’lor_rhs’,tspan,xic,[],sigma,b,r);

xic0=[xsol(end,1); xsol(end,2); xsol(end,3)] % model estimate

555

xdat=[xdata(j+1); ydata(j+1); zdata(j+1)] % data estimate
K=sigma2/(sigma2+sigma3); % Kalman gain
xic=xic0+(K*[xdat-xic0]) % adjusted state vector

x_da=[x_da; xsol(1:end-1,:)]; % store the data
end
x_da=[x_da; xsol(end,:)]; % store last data time

In this simulation, the vector data-xic0 is the innovation vector that is weighted
according to the Kalman gain matrix. Figure 243 shows the results of this sim-
ulation for one representative realization of the error vectors. In the top panels,
the non-data assimilated computation is shown showing that the simulation so-
lution diverges from the true solution around t ≈ 5 (See also Fig. 241). The
error between the true solution and the model solution is shown in the right
panel. Note that the error is quite large around t ≈ 5, thus making any predic-
tion beyond this time fairly useless. In the bottom panel, the data assimilated
solution is demonstrated (bold line) and compared to the true dynamics (line).
The data assimilated solution is nearly indistinguishable from the true dynam-
ics. The experimental observations are shown by circles at every half-unit of
time. The error between the data assimilated solution and true dynamics is
shown in the right panel. Note that the error remains quite small in comparison
to the direct simulation from noisy initial data. Regardless, there is a build up
of error that will eventually grow large as the data assimilated solution also di-
verges from the true dynamics. Ultimately, the data assimilated solution allows
for significant extension of the time window where the model prediction is valid.

Data assimilation, in general, is much more sophisticated than what has
been applied here to a simple 3 × 3 system. Indeed, for highly complex sys-
tems, the model error in the dynamics plays a fundamental role characterizing
the behavior in addition to measurement and initial condition error. How one
chooses to not only treat this error, but how to sample from the dynamics in
time, gives rise to a great variety of mathematical techniques for enhancing the
data assimilation method [83, 84, 85, 86]. Such data assimilation methods are at
the heart of cutting-edge technology, for instance, in weather prediction and/or
climate modeling. The hope here was simply to illustrate the basic ideas of this
tremendously powerful methodology.

22 Equation Free Modeling

Multiscale phenomena, and their associated complex systems, are an increas-
ingly important class of problems that need to be addressed from a mathemat-
ical point of view. As illustrated previously in the lecture on wavelets, some
mathematical progress has been made in separating differing length scales by
more sophisticated (wavelet) transforms. Alternatively, one can think about

