Using Symmetry to Generate Molecular Orbital Diagrams

- review a few MO concepts
- generate MO for XH₂, H₂O, SF₆

..... the valence electrons draw the atoms together until the core electrons start to repel one other, and that dominates

Figure 2-5 Shriver & Atkins Inorganic Chemistry, Fourth Edition © 2006 by D.F. Shriver, P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller, and F.A. Armstrong

the total number of molecular orbitals (MO's) generated= total number of atomic orbitals (AO's) combined

in order to overlap.....

(8 MO's)

changes sign upon rotation about internuclear axis

antibonding since changes sign upon rotation about axis perpendicular to internuclear axis

Additional orbital labels, used by your book, describe orbital symmetry with respect to **inversion**

Additional orbital labels, used by your book, describe orbital symmetry with respect to inversion

Additional orbital labels, used by your book, describe orbital symmetry with respect to inversion

the amount of stabilization and destabilization which results from orbital overlap depends on the type of orbital involved

the amount of stabilization and destabilization which results from orbital overlap depends on the type of orbital involved

Sigma overlap is better

 $\Delta_{stab}(sigma) > > \Delta_{stab}(pi)$

One also needs to consider energy match

 $\Delta E_{stab}(\text{better E match}) > \\ > \Delta E_{stab}(\text{poor E match})$

Molecular Orbital Diagrams of more complicated molecules

$$\begin{array}{l} XH_2 \ (D_{\infty h}) \\ H_2O \ (C_{2v}) \\ SF_6 \ (O_h) \end{array}$$

a linear combination of symmetry adapted atomic orbitals (LGO's).....

atomic orbitals
of terminal atoms
$H_1 + H_2$

What are the symmetry properties of this molecule?

.....and an infinite number of mirror planes perpendicular to the C^{∞} axis, which contain the C_2 's.

Taken individually, this hydrogen atom does not possess C₂ symmetry about axes that are perpendicular to the C_{∞} .

Thus, the individual hydrogen atoms do not conform to the molecular $D_{{\scriptscriptstyle \infty} h}$ symmetry.

	KH ₂ 's	point g	roup	symm identi of ato	etry lab fy the p _z m X (cei	el given to orbital ntral atom)	atom X's a <u>t</u> omic or	P _z bitals
$D_{\infty h}$	E	$2C'_{\infty}$	∞C^5	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1		$z^2, x^2 + y^2$
$A_{1u}\left(\Sigma_{u}^{+}\right)$	1	1	-1	-1	1	-1	z	ſ
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	$^{-1}$	1	R_z	
$A_{2u}\;(\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g}\;(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$	↑	$(xy, x^2 - y^2)$
$E_{2u}~(\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$	atom X's	p., and
:	÷	÷	:	÷	:	:	p _y atomic	orbitals
syn ide of a	nmetr ntify t atom 2	y label he p _x a X (cent	<mark>given to</mark> nd p _y orbi ral atom)	tals				atom X's s–orbital

s-orbital symmetry label

• We can perform symmetry operations on orbitals as well as molecules

- We can perform symmetry operations on orbitals as well as molecules
- the rows of numbers that follow each orbitals symmetry label tell us how that orbital behaves when operated upon by each symmetry element

$D_{\infty h}$	E	$2C'_{\infty}$	∞C ₂	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1		$z^2, x^2 + y^2$
$A_{1u}\left(\Sigma_{u}^{+}\right)$	1	1	-1	-1	1	-1	Z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R _z	
$A_{2u}\;(\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g}\;(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u}\left(\Pi_{u}\right)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u}~(\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
		÷	:	÷		:		

- We can perform symmetry operations on orbitals as well as molecules
- the rows of numbers that follow each orbitals symmetry label tell us how that orbital behaves when operated upon by each symmetry element
- a "1" means that the orbital is unchanged by the symmetry operation
- a "-1" means that the orbital changes phase as a result of the symmetry operation
- a "0" means that the orbital changes in some other way as a result of the symmetry operation
- a " $\cos \theta$ " occurs with degenerate sets of orbitals (eg. (p_x, p_x)) that take on partial character of one another upon performance of a symmetry operation

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	0	$z^2, x^2 + y^2$
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	-1	1	-1	Ζ	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R_z	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g} \; (\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} \; (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	: .	÷		÷	:			

thus the "1" character in the row highlighted for the s-orbital, and under the columns headed C_{∞} ,

$D_{\infty h}$	E	$2C'_{\infty}$	∞C_2	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	0	$z^2, x^2 + y^2$
$A_{1u}\left(\Sigma_{u}^{+}\right)$	1	1	-1	-1	1	-1	z	
$A_{2g}~(\Sigma_g^-)$	1	-1	1	1	-1	1	Rz	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g} \; (\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	$^{-2}$	0	$2\cos\phi$	(x, y)	
$E_{2g} \; (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	:	:	:		1	:		

on the other hand, the p_z orbital changes phase upon rotation about any of the C_2 axes

$D_{\infty h}$	E	$2C'_{\infty}$	∞C_2	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	6	$z^2, x^2 + y^2$
$A_{1u}\left(\Sigma_{u}^{+}\right)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	$^{-1}$	1	Rz	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g} \left(\Pi_g \right)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u}\left(\Pi_{u}\right)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} \left(\Delta_g \right)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u}~(\Delta_{u})$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
	:	÷	1	÷		:		

...but a +1 "plus one" under the column headed $C_{\scriptscriptstyle \infty}$

thus the "–1" (negative one) <u>character</u> in the column headed C₂

When the px and py are rotated about the C_{∞} axis,
they move, rather than transform into themselves

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	<i>h</i> =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	0	$z^2, x^2 + y^2$
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R_z	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g}\;(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0 <	$2\cos\phi$	$^{-2}$	0	$2\cos\phi$	(x, y)	
$E_{2g} \; (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
÷	÷	÷	÷	÷	÷	:		

Thus the "0" in the column labeled $2C_{\scriptscriptstyle \infty}$

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	<i>h</i> =	= 00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	0	$z^2, x^2 + y^2$
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	Rz	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g}\left(\Pi_{g}\right)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} (\Pi_u)$	2	0	$2\cos\phi$	-2	• 0	$2\cos\phi$	(x, y)	
$E_{2g} (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u}~(\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	: 1	÷	÷		:			

inversion, on the other hand, causes both the px and py to change phase

Thus the "-2" in the column labeled *i*

The "-2" indicates that <u>both</u> orbitals transform as <u>a set</u>

Rotation about the $C_{2's}$ that do not coincide with the x- or y-axes, causes the p_x -orbital to take on some p_y -orbital character

In fact, rotation about the C_2 axis that bisects the x- and y-axes converts the p_x -orbital into the p_y -orbital. This indicates that these two orbitals must be degenerate (ie have identical energies)

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1		$z^2, x^2 + y^2$
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R_z	
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1		
$E_{1g}\;(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g}\;(\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	1: 1	÷	:	÷	:	:		

Thus the " $\cos \phi$ " term in the column labeled ∞C_2

The number in the "E" column tells you how many orbitals transform together as a set

inversion, on the other hand, causes both the px and py to change phase, but maintain their identities

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^5	i	$\infty \sigma_v$	$2S_{\phi}$	<i>h</i> =	= 00
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1		$z^2, x^2 + y^2$
$A_{1u}\;(\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R_z	
$A_{2u}\left(\Sigma_{u}^{-}\right)$	1	1	1	-1	-1	-1		
$E_{1g} \; (\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2 ┥	0	$2\cos\phi$	-2	• 0	$2\cos\phi$	(x, y)	
$E_{2g} \; (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	÷	÷		÷	÷	÷		

Thus the "-2" in the column labeled *i*

The "-2" indicates that <u>both</u> orbitals transform as <u>a set</u>

Thus, we have determined the symmetry labels, generally referred to as Mulliken symbols, for the s and p_z, p_x, and p_y-orbitals on the central atom X

$XH_2 (D_{\infty h})$

This explains the labels shown for the central atom X on the left

$$\frac{\mathbf{p}_{z}}{\mathbf{a}_{1u}} \frac{\mathbf{p}_{x}}{\mathbf{e}_{1u}} \frac{\mathbf{p}_{y}}{\mathbf{e}_{1u}} (\pi_{u})$$

$$\frac{2s}{\mathbf{a}_{1g}} (\sigma_{g})$$

central atom's (X 's) atomic orbitals We determine the symmetry labels for the LGO's in the same manner, ie., by examining their symmetry with respect to the symmetry operations of the $D_{\infty h}$ point group

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	$h = \infty$		
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1		$z^2, x^2 + y^2$	
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	-1	1	-1	z		
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	. 1	-1	1	R_z		
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1			
$E_{1g} \; (\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)	
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)		
$E_{2g}\;(\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y)$	
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$			
:	1: 1	÷	:	:	-	:			

.....thus it appears that LGO(2) possesses a_{1u} symmetry

 $\ldots \ldots$ symmetry identical to that of the central atom X's p_z orbital

	thus it appears that LGO(1) could possess either a_{1g} , or a_{2u} symmetry								
$\overline{D_{\infty h}}$	E	$2C'_{\infty}$	∞C^{5}	i	∞σγ	$2S_{\phi}$	$h = \infty$		
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	0	$z^2, x^2 + y^2$	
$A_{1u}\left(\Sigma_{u}^{+}\right)$	1	1	-1	$^{-1}$	1	-1	z		
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	$^{-1}$	1	R _z		
$A_{2u} \; (\Sigma_u^-)$	1	1	1	-1	-1	-1			
$E_{1g}\;(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)	
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)		
$E_{2g} \ (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$	
$E_{2u}~(\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$			
:	÷	÷		÷	÷	÷			

Or

 $\label{eq:algorithm} \begin{array}{l} \mbox{.....} a_{1g} \mbox{ would match orbitals} \\ \mbox{on atom } X, \mbox{ whereas } a_{2u} \mbox{ would not.} \end{array}$

$D_{\infty h}$	$E 2C'_{\infty}$		∞C^{5}	i	∞σγ	$2S_{\phi}$	$h = \infty$	
$A_{1g}\;(\Sigma_g^+)$	1	1	1	1	1	1	6	$z^2, x^2 + y^2$
$A_{1u}\;(\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	-1	1	R_z	
$A_{2u}\left(\Sigma_{u}^{-}\right)$	1	1	1	-1	-1	-1		
$E_{1g} \; (\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} \; (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} \; (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} \ (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
	÷	÷	:	÷	÷	÷		

.....if we examine the symmetry of LGO(1) with respect to both inversion, and reflection, we should be able to distinguish between these two options

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	h =	00
$\mathrm{A}_{\mathrm{1g}}\;(\Sigma_{\mathrm{g}}^{+})$	1	1	1	1	1	1		$z^2, x^2 + y^2$
$A_{1u} (\Sigma_u^+)$	1	1	-1	-1	1	-1	z	
$A_{2g} (\Sigma_g^-)$	1	-1	1	1	-1	1.0	R_z	
$A_{2u}(\Sigma_u^-)$	1	1	1	-1	\times	\mathbf{X}		
$E_{1g}(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u} (\Pi_u)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g}(\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
÷	1	÷	:		:	:		

.....thus, we can rule out a_{2u} as the symmetry assignment for LGO(1), based on reflection, and improper rotation

inversion leaves LGO(1)

$D_{\infty h}$	E	$2C'_{\infty}$	∞C^{5}	i	$\infty \sigma_v$	$2S_{\phi}$	$h = \infty$	
$A_{1g}\left(\Sigma_{g}^{+}\right)$	1	1	1	1	1	1	6	$z^2, x^2 + y^2$
$A_{1u} \; (\Sigma_u^+)$	1	1	-1	X	1	-1	z	
$A_{2g}\;(\Sigma_g^-)$	1	-1	1	1	$^{-1}$	1	R_z	
$A_{2u}\left(\Sigma_{u}^{-}\right)$	1	1	1	\times	-1	-1		
$E_{1g}(\Pi_g)$	2	0	$2\cos\phi$	2	0	$-2\cos\phi$	(R_x, R_y)	(zx, yz)
$E_{1u}\left(\Pi_{u}\right)$	2	0	$2\cos\phi$	-2	0	$2\cos\phi$	(x, y)	
$E_{2g} (\Delta_g)$	2	0	$2\cos 2\phi$	2	0	$2\cos 2\phi$		$(xy, x^2 - y^2)$
$E_{2u} (\Delta_u)$	2	0	$2\cos 2\phi$	-2	0	$-2\cos 2\phi$		
:	: .	÷	:	÷	:	:		

.....thus, we can rule out a_{1u} , and a_{2u} as the symmetry assignment for LGO(1)

.....leaving a_{1g} as the symmetry assignment for LGO(1)

