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ABSTRACT
Prevailing approaches to govern artificial intelligence (AI) focus
on dictating how AI should behave, such as ensuring it avoids
social biases and the spread of misinformation. While these system-
based frameworks provide reasonable guidance, they risk promot-
ing AI that largely benefits AI operators and dominant social groups,
while further harming already marginalized individuals. In this po-
sition paper, we argue for a shift from AI safety—how AI should
behave—to human safety: individuals should only be impacted by
AI systems they explicitly approve. First, we explore the challenges
inherent in system-based AI governance including the lack of oper-
ationalizable definitions of AI and its desired behavior, the failure to
address the collective impact of AI systems, and the situated harm
of impacted stakeholders. Second, we propose an approach for en-
forcing our new ideal. We recommend that AI operators (1) clearly
specify each system’s purpose and alignment approach, which is
necessary to (2) secure informed approval from stakeholders be-
fore the system’s impact. To address the challenges of the approval
process, we propose a complaint mechanism that allows users and
indirect stakeholders to report systems they did not approve or that
deviate from their approved impact.
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1 INTRODUCTION AND BACKGROUND
AI increasingly interferes in our lives, creating beneficial but also
harmful experiences depending on an individual’s social, geograph-
ical, and historical context [4, 9, 40]. The highest risks stem from
so-called general-purpose AI—systems with broad capabilities de-
signed to be used for everything and to impact everyone. Mitigating
the wide spectrum of reported harm requires effective regulation.
Current approaches, such as the European Union AI Act (EU AI
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Act) [31] and the non-binding National Institute of Standards and
Technology’s “AI Risk Management Framework” (NIST framework)
[30], are system-based policies aiming to regulate AI systems rather
than their use cases [21]. While these frameworks provide reason-
able standards, such as prohibiting the exhibition of social biases,
system-based governance presents significant challenges. First, to
effectively regulate AI, there would need to be a universal and op-
erationalizable definition of an ideal AI system—which does not
currently exist. Second, system-based regulation limits control over
the collective impact of multiple (homogeneous) AI systems, which
are responsible for many forms of harm and performance issues
[18, 24, 25]. Third, system-based regulation struggles to account for
situated harm and located accountability in a complex AI landscape,
as well as the unforeseen behavior and use cases of AI systems.

Unlike humans, AI systems do not hold any rights. AI governance
must solely ensure that AI systems serve both their directly and
indirectly impacted stakeholders1. To model this idea, we propose a
new ideal: individuals should only be impacted by AI systems
they explicitly approve, along with the systems’ specific and
collective pros and cons. The work presented here results from a
research project, where we used a speculative approach to assess
value tensions among diverse (fictionalized) AI creators.

The remainder of this paper is as follows: First, we explore the
problem space of system-based regulatory approaches to motivate
our proposed shift in guiding AI governance. Second, to make this
approach tangible for discussion, we outline a potential enforce-
ment of the proposed ideal based on an informed approval process
and a complaint mechanism. Third, we illustrate our proposed im-
plementation approach with a specific scenario grounded in current
AI applications: AI in classrooms.

Ambiguous definitions. To design effective system-level reg-
ulation, a universal understanding of an ideal system and opera-
tionalizable definitions of both desired and undesired behavior are
required. However, such definitions do not exist, whether for human
values like justice and fairness [13, 42], or for potential guardrails
like misinformation [35, 37] and social biases [19]. This ambiguity
in definitions creates loopholes that AI operators can intentionally
or unintentionally exploit to build systems that serve their interests
rather than those of the impacted individuals [15, 20, 39].

Collective impact. Focusing on systems rather than AI use over-
looks the many issues arising from AI monoculture [18, 25]. Prior
work shows that multiple homogeneous systems can collectively
create outcomes that are not only unfair for specific social groups
but also worse overall across all stakeholder groups [6, 24, 26].
1Stakeholders are “those who are or will be significantly implicated by the technology”
[14, p. 35], whereas indirect stakeholders refer to individuals who are affected indirectly
through others’ use of AI systems [4, 14].
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Futhermore, while a single system may superficially accommodate
diverse perspectives [23, 34], it can only accommodate one of many
competing theories on how such aggregation of perspectives should
be executed [26]. These issues of AI monoculture can be addressed
through system pluralism—an AI landscape consisting of diverse
systems.

Situated harm and nested accountability. Whether a specific
behavior, such as a piece of text or an image, is harmful depends on
one’s social, geographical, and historical situation [22, 40]. However,
a policy design that evaluates systems rather than applications can
hardly account for the context-sensitive nature of harm, nor does it
hold humans involved along the value chain accountable for their
contributions to potential harmful outcomes [2, 41]. Consider this
example: Company A offers a general-purpose generative language
model, which Company B fine-tunes for educational purposes. Sup-
pose a teacher uses this fine-tuned system to evaluate students’
written essays, resulting in unfair grading for some students be-
cause the language model undervalues indigenous knowledge. An
effective policy would steer every individual involved in the AI
process to make decisions that prevent this situated harm. These
challenges are further amplified by technical issues that limit reli-
able control over AI system behavior.

(Regulating) AI systems inherently involve a trade-off between
benefits and harms. The net impact of this trade-off varies from case
to case and individual to individual. Therefore, the overall net loss
across the AI landscape and among stakeholders can be minimized
when stakeholders have the ability to decide on a case-by-case
basis whether the specific benefits outweigh the risks of harm. AI
governance should reflect this idea.

2 APPROVAL-BASED AI GOVERNANCE
In this section, we present a potential implementation of our pro-
posed ideal. The premise of our approach is straightforward: before
impacting humans (through the development or deployment of a
system), AI operators must obtain stakeholders’ informed approval.
To address the challenges of the approval process, we propose a
complaint mechanism (see Figure 1).

Informed and compensated approval. To make AI operators
accountable for their impact, we propose a two-step procedure
comprising an alignment statement and an approval statement (see
Figure 1).

The goal of the alignment statement is to provide sufficient
information for stakeholders to make informed decisions about
whether to approve the given system’s impact. Specifically, the
alignment statement should address questions related to the sys-
tem’s purpose, data, energy consumption, alignment approach, its
underlying normative framework, fine-tuning, human involvement,
the anticipated impacted stakeholders and an assessment of the
risks and benefits for them. It can build on prior work and estab-
lished practices such as data statements [3], datasheets [17], model
cards [28], and impact assessments [33].

The approval statement serves as the formal endorsement,
addressing key considerations such as: the individuals granting
approval, the representation of social groups in the case of large
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Figure 1: Approval-based AI governance. Before impacting
individuals through development and deployment, AI op-
erators must (1) state the purpose of their system along its
alignment approach, and (2) obtain approval from impacted
stakeholders. Stakeholders can file complaints if (1) they are
impacted by an AI system they did not approve, or (2) they
are impacted by an AI system in a manner inconsistent with
their approval.

populations, strategies to prevent tokenizing certain groups [16],
the information shared, compensation for participants that reflects
the effort required to understand the AI system, actions to be taken
if the system’s behavior deviates from the approval statement, and
the validity period of the approval. To address the limited accom-
modation of diverse perspectives within a single system, approval
can be sought also for a combination of diverse systems [26]. The
idea of stakeholder approval builds on prior concepts related to
agreement-based approaches [e.g., 8, 43], while the approval pro-
cess can draw from stakeholder-based alignment approaches [e.g.,
5, 7, 10, 14]. Notably, this approval process differs from user agree-
ments, as it also includes indirect stakeholders who do not have the
same conflicts of interest as direct users [cf. 38]. A derived approval
score—the ratio of stakeholders who approve a system to the total
number impacted by it—could be used to evaluate AI use cases.

Given the varying forms of AI and its impacts, the information
and steps required for informed approval highly depend on the
purpose of the AI system. For example, the effort required for a
system restricted to a small company’s internal use is significantly
smaller than for a general-purpose system like ChatGPT. Because
our approach relies on stakeholder approval of specific AI use cases,
rather than regulating AI in general [21], a regulatory framework
can allow AI operators some flexibility in tailoring their alignment
and approval statements to the specific AI use case.

Complaint mechanism. Over-reliance on self-assessment of-
fers loopholes for AI operators [39], such as tokenizing social groups
[16], underestimating the risks of AI systems [39], or undervaluing
minority perspectives [5]. To address those, we propose a complaint
mechanism. The premise is that individuals who can demonstrate
they are directly or indirectly impacted by an AI system without
having approved this impact should have the ability to file com-
plaints against the operator. For legal implementation, this mech-
anism can build on frameworks like the EU AI Act, which allows
complaints if a system infringes regulations [31, 39]. Broadly, op-
erators face two primary types of complaints: (1) Stakeholders are
impacted by a system they did not approve and (2) Stakeholders
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are impacted by an AI system in a manner inconsistent with their
approval (see Figure 1).

This regulation compels AI operators to design systems that
align with stakeholders’ interests and empowers them to determine
when the benefits of a specific AI use outweigh its potential harms.
At the level of the AI landscape, this approach leads toward system
pluralism, addressing the issues resulting from AI monoculture.

Legal consequences of complaints—such as financial penalties,
halts in development or deployment, or required system adjust-
ments—should be reasonable and aligned with the goal of prevent-
ing harm and ensuring an equitable distribution of benefits. A mere
political or aesthetic disagreement with an AI system may not suf-
fice for a complaint. However, if stakeholders can demonstrate,
for instance, that a language model systematically undervalues or
ignores indigenous knowledge or minoritized dialects, thereby per-
petuating epistemic injustice [12, 22], a complaint from impacted
stakeholders would be well justified.

If stakeholders do not approve of a system or file a complaint, AI
operators can take one of three actionable adjustments: (1) revise
the alignment approach to produce outcomes more aligned with
the interests of the stakeholders who approved the system, (2)
modify the AI value chain or application to affect fewer or different
stakeholders, or (3) seek approval for a combination of diverse
systems that better reflect the diversity of impacted stakeholders.
For instance, the operator of a general-purpose AI could develop
additional systems providing different behaviors [11, 32, 44] or
collaborate with independent organizations to integrate systems
developed with varying perspectives [26]. This approach calls for
new interactive designs that allow users to choose from the different
integrated systems.

We define an AI operator as the legal entity responsible for pro-
viding and/or operating an AI system for a specific application.
An AI system encompasses the entire value chain up to the given
application as reflected in alignment and approval statement. Since
a given AI application can be built on another AI system further
down the value chain, individuals or organizations using a sys-
tem—thereby impacting others—can act as both operators of the AI
system and stakeholders in the system on which their application
is based. To hold responsible actors accountable, the complaint
mechanism could follow a cascade model along the value chain.
Unlike system-based approaches, our proposed model allows for
addressing the complexities of AI applications on a case-by-case
basis. We illustrate such a case in the example of AI in classrooms
in the next section.

3 AI IN CLASSROOMS SCENARIO
A high school teacher wants to use a language model like Chat-
GPT as an assistant, for tasks such as creating quizzes, grading
essays, and helping students look up information during class. In
this scenario, the stakeholders of the AI system include the students
(legally represented by their parents) and the school administra-
tors, who are responsible for upholding educational goals. In the
alignment statement, the teacher describes how the language model
is expected to behave and how it will be used. Additionally, it in-
cludes details on the duration of approval (e.g., one school year)
and specifies the measures to be taken (e.g., the teacher refrains

from using the language model) if any information in the alignment
statement is later found to be false. Based on the provided informa-
tion, stakeholders then decide whether to approve the alignment
statement.

There are numerous ethical concerns associated with the use of
such a system in education, including potential privacy violations,
social biases, and the loss of autonomy for both teachers and stu-
dents in cases of automated assessment [1]. The proposed policy
ensures that these case-specific ethical issues are addressed. For
instance, school administrators might worry that students could
anthropomorphize the language model. They could approve its
use on the condition that the AI does not respond in human-like
language. Similarly, parents might have specific concerns, such as
the system’s environmental impact, potential copyright issues, or
whether it exhibits toxic language. Before granting approval, par-
ents could request this information from the teacher, who would
share the details provided in the alignment statement received from
the language model provider when they approved it as stakehold-
ers. Here, the teacher is both the AI operator of the classroom AI
and a stakeholder of the underlying language model. If parents
approve the use of the classroom AI but later discover that the
information regarding its environmental impact was incorrect, the
teacher, as the operator, would cease using the AI in the classroom.
Additionally, in the role of a stakeholder, the teacher could file a
complaint against the language model provider. This illustrates
how the proposed approach can follow a cascade model to enforce
located accountability [36, 40] in the complex AI landscape. It is
also conceivable that some parents might disapprove of a system
because of its sociopolitical values [27, 29]. Acknowledging that AI
is not inevitable (in classrooms), there are two alternatives for the
teacher and school: either refrain from using the language model
or include a second language model from a different AI provider
that reflect diverse value sets.

4 CONCLUSION
System-based AI governance can offer valuable guidance, but it
may not be enough to ensure the equitable distribution of benefits
among impacted stakeholders. To address this, we propose a new
approval-based framework and outline a potential implementation
strategy based on an alignment statement, an approval statement,
and a complaint mechanism.

The approach proposed here is not a fully developed regulatory
framework but rather a conceptual contribution aimed at rethinking
and discussing how AI can be regulated. The idea that individuals
should only be impacted by AI systems they explicitly approve is
practically infeasible. Much like the notion that one system can fit
everyone. Therefore, we contrast our approachwith the existing one
of defining and regulating systems intended to serve everyone and
everything, which, in reality, results in AI serving particular people,
species, and places, thereby creating social disparities. Overall, we
anticipate that our approach will help mitigate these disparities.
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