
October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

A GRAMMATICAL APPROACH TO COOPERATIVE

CONTROL

JOHN-MICHAEL MCNEW ERIC KLAVINS

Electrical Engineering
University of Washington
Seattle,WA 98195, USA

{jmmcnew, klavins}@ee.washington

In many cooperative control methods, the geometric state of the system is ab-
stracted to the underlying graph or network topology. In this paper we present a
grammatical approach to modeling and controlling the network topology of cooper-
ative systems based on graph rewriting. By restricting rewrites to small subgraphs,
graph grammars provide a useful method for programming the concurrent behav-
ior of large decentralized systems of robots. We illustrate the modeling process
through an ongoing example and demonstrate mathematical tools for reasoning
about the system’s behavior. Finally, we briefly describe methods to design con-
tinuous controllers that augment the grammar so that geometric requirements may
also be satisfied.

1. Introduction

Inexpensive peer-to-peer networking technologies have spurred the investi-

gation of control methods for large-scale networks of complex concurrent

systems such as automated highway systems, air-traffic control systems and

cooperative systems of robots. Traditional control objectives for individual

plants such as stabilization are insufficient to capture the complex behaviors

desired from these systems. Furthermore, the scale and complexity of these

systems requires that local control of each robot, node, or subsystem must

be used exclusively to produce the desired global behavior. In the natural

world, members of decentralized systems often self-organize in response to

environmental stimuli and to each other to produce complex global behav-

iors. One of the central questions for engineered self-organization is: Given

a specification of a global behavior, can we synthesize a set of local con-

trollers that produce that global behavior and are robust to uncertainties

about the environmental conditions.

In many cooperative control methods, the geometric state of the system

1

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

2

is abstracted to the underlying graph or network topology. In this paper we

focus our efforts on specifying and controlling the evolution of the network

topology. In particular, we are interested in controlling the network topol-

ogy using only local interactions. Some of the control problems that interest

us include coordinating multiple vehicles, sequencing tasks in a concurrent

environment, and reconfiguring the network topology. Most research in this

area assumes a connected network. However, in this paper we are concerned

with tasks that often require a partially disconnected network. Our point

of departure is the use of graph grammars to model how the network topol-

ogy changes due to local interactions among agents. The graph grammar

model is amenable to many standard tools from concurrency theory, which

can be used to show that systems meet their specifications.

In this paper, we examine systems that combine exploration and for-

mation forming in response to environmental stimuli. In particular, we

consider an example we refer to as “Wandering Scouts.” In Section 3 we

model this system as a graph grammar. In Section 4 we introduce notation

to specify behaviors of graph transition systems. In Section 5 we use equiv-

alence classes to partition the set of reachable graphs into macrostates. In

Section 6.1 we adapt standard concurrency methods to the current setting

and prove that for a class of initial systems, eventually it is always the case

that the terminal graph of the system meets a desired criterion. In Sec-

tion 6.2 we show that for a larger class of initial conditions, the grammar

proposed has at least one trajectory where deadlock occurs. We augment

the system and prove it meets the criterion for the larger class of graphs.

Finally, in Section 7 we briefly explain how to design continuous controllers

that use the topologies generated by the grammar to guarantee proper for-

mation forming.

2. Related Work

One of the earliest compelling models of self-organization in a continuous

state space is the local interaction model proposed by Reynolds to simu-

late bird flocking behavior. Reynolds motivates motion by three steering

behaviors: separation, alignment and cohesion. More recently, Leonard

and Fiorelli9 analyze flocking behavior using potential function theory and

Lyapunov methods. Fax and Murray3 use graph theoretic methods to an-

alyze the stability of such formations, while Tabuada et al12 show which

formation graphs have feasible non-trivial trajectories. In these efforts, the

connection topology is fixed and the underlying graph is connected. Jad-

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

3

babaie, Lin and Morse4 use ergodic matrix theory to demonstrate that un-

der certain restrictions a discrete time simplification of the Reynolds model

is stable for essentially arbitrary switching sequences.

With the occasional exception of a leader robot, these results utilize

essentially homogeneous controllers on all the robots. We are interested in

the concurrent execution of multiple tasks, thus we examine programmed

switching between heterogenous controllers. Olfati-Saber11 describes con-

trolled switching of graph topology using a hybrid automaton for the pur-

pose of squeezing through tight spaces. However, similar to most of the

previous results, a fully connected graph is assumed. Since we are inter-

ested in scenarios where smaller teams of robots complete tasks concur-

rently, we model systems wherein the overall topology is not necessarily

always connected.

Klavins5 describes self-organization of robot formations as a graph

process where the discrete states of robots are represented by symbols.

Klavins, Ghrist, and Lipsky7 introduce graph grammars to assemble pre-

specified graphs from an initially disconnected graph. By restricting

rewrites to small subgraphs, graph grammars provide a useful method to

program the concurrent behavior of large decentralized systems of robots.

Klavins et al.5,6,7 demonstrate the use of graph grammars to define local in-

teraction rules for assembly, replication and other tasks. An application of

graph grammars to robotic systems is demonstrated wherein free-floating

robots use graph grammars to assemble into larger structures in a pre-

dictable and robust manner1.

3. Systems and Graphs

3.1. A Motivating Example

We informally present an example cooperative control scenario we refer to

as “Wandering Scouts.” Throughout the paper we use this example to

illustrate the process of converting a system to a formal graph grammar

model and the process of reasoning about that model.

Suppose a group of robotic scouts with only local communication and

sensing capabilities patrols an area to protect against enemy incursions. If

three robotic scouts surround an enemy agent, they can capture it, and

transport it to a detention center. One possible strategy is to send out the

scouts in teams of three. However, we do not know a priori the location or

strength of the enemies. We choose rather to send out the scouts to patrol

individually, thus covering a greater area. If a scout is in patrol mode and

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

4

Robotic Scouts Enemies

w: a patrol or wandering scout e: an undisrupted enemy

h: a pursuer or hunter dk: a disrupted enemy with degree k

l: a leader c: a captured enemy

f : a follower p: a detained enemy or prisoner

Figure 1. Operational modes and the associated labels for the robotic scouts and ene-
mies.

senses an enemy, the scout chases it, thereby disrupting its activities. Once

a scout is pursuing an enemy, it may recruit other nearby patrolling scouts

to help encircle, capture, and transport the enemy to a detention center.

There are four essential subtasks in our problem.

(1) Random patrol coverage,

(2) Disruption of the enemies’ activities,

(3) Capture and transport of enemies, and

(4) Detention of enemies.

Informally, since we can neither specify the controllers and objectives

of the enemy nor their initial density and spatial distribution, we often

consider the enemies to be an ”environmental stimuli”. The graph topology

for this system arises from local interactions between the robotic system and

the environmental stimuli. Although there is no formal connection between

the network topology and the spatial distribution, certain initial spatial

distributions give rise to characteristic orderings of the local interactions.

3.2. Graph Grammars

A simple labeled graph over an alphabet Σ is a triple G = (V, E, l) where V is

a set of vertices, E is a set of edges, and l : V → Σ is a labeling function. In

this paper, a graph is a model of the network topology of an interconnected

collection of robots, vehicles or particles. A vertex x corresponds to the

index of a robot. The presence of an edge xy corresponds to a physical

and/or communication link between robots x and y. We use the label

l(x) of robot x to keep track of local information and also to indicate the

operational mode of the robot.

Example 3.1. The labels in Figure 1 indicate the operational modes of

the robotic scouts and the enemy agents. Additionally we denote by j a

detention center or jail.

N

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

5

w

w

w

w

ww

d2

d2

h

hhh

h

hhhh

h

hh

d3

d3

l

l

e ⇒

⇒

⇒

⇒

⇒

ff

ff

d1

d1

jj

p

c

c

Figure 2. A grammar Φ for the wandering scouts example.

A graph grammar consists of a set Φ of rules. Each rule r = (L, R)

is a pair of labeled graphs over some small vertex set VL = VR. Let G

be a larger graph representing a possible state of a system and let h be

an injective, label and edge preserving map from VL into G. We call h

a witness. The pair (r, h) describes an action on G that produces a new

graph G′ = (V, E′, l′) defined by

E′ = (E − {h(x)h(y)|xy ∈ EL}) ∪ {h(x)h(y) | xy ∈ ER}

l′(x) =

{
l(x) if x 6∈ h(VL)

lR ◦ h−1(x) otherwise.

That is, we replace h(L) (which is a copy of L) with h(R) in the graph G.

We write G
r,h
−−→ G′ or equivalently G′ = f(r,h)(G) to denote that we obtain

G′ from G by applying action (r, h).

Example 3.2. In Figure 2 we pose the rule set Φ as a way to model the

wandering scouts system.

By convention we refer to the rules in the order they are displayed.

So we refer to the rule at the top of Figure 2 as rule one or r1, the next

rule down as rule two or r2 and so on. In our system, an edge between

two vertices indicates one or both of the agents try to maintain a specified

interagent distance. Thus, execution of the first rule, r1, in Φ indicates

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

6

when a local interaction occurs between a patrolling scout w and an enemy

e, the scout gives chase creating an edge and changing its mode to h. This

disrupts the enemy’s activities, thus its label changes to d1. (The subscript

“1” indicates that one robot is connected to the enemy). The second and

third rules recruit additional robots to chase the enemy.

The fourth rule adds edges between the scouts. In the full system (i.e.

including spatial aspects), the edges and labels in the right hand side of

rule r4 will be used by the scouts’ continuous controllers to“encircle” the

enemy and capture it. Since the system will ultimately use leader-follower

formation control, rule r4 also changes one robot’s label to l and the other’s

to f . Note that we informally refer to the right hand side of r4 as an

encirclement component. Finally the fifth rule transfers the captured enemy

to the detention center and returns the robotic scouts to patrol mode w.

N

3.3. Systems and Trajectories

A system (G0, Φ) consists of an initial graph G0 and a set of rules Φ. A

trajectory is a (finite or infinite) sequence

G0
r1,h1
−−−−→ G1

r2,h2
−−−−→ G2

r3,h3
−−−−→ ...

where ri ∈ Φ. If the sequence is finite, then we require that there is no rule

in Φ applicable to the terminal graph.

A system (G0, Φ) defines a non-deterministic dynamical system whose

states are the labeled graph over VG0
. The system is non-deterministic

since, at any step, many rules in Φ may be simultaneously applicable, each

possibly via several witnesses. This results in a family of trajectories we

denote by T (G0, Φ).

Example 3.3. Suppose N, M, and K are positive integers such that N is

the number of vertices initially labeled by w, M is the number of vertices

initially labeled by e and K is the number of vertices labeled by j. For the

wandering scouts example, consider initial graphs of the form

G0(N, M, K) = {{1, ..., N + M + K}, ∅, l0} (1)

where initially there are no edges (so that E0 = ∅), and the initial labeling

l0 is defined by

l0(i) =

w i ≤ N

e N < i ≤ N + M

j N + M < i ≤ N + M + K.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

7

w w

w

w

w

w

w

w

w

w

w w

w

w w

w

w w

d2d2 d2

d2d2
r1
−→

r1
−→

h

h

h

h

h

h h

h

h h

h

h

h

h h

h

h

h

h

d3 d3

r2
−→

l

e ee e

↓r3

f

f

d1 d1

d1
r4
←−

j

jj j

j

j

jj

p c
r2
←−

r5
←−

Figure 3. A trajectory of (G0,Φ) demonstrating concurrent capturing of two enemies.

We can define the class of graphs of interest for the wandering scouts sce-

nario by

G0 = {G0(N, M, K) | N, M, K ∈ N
+ ∧ N ≥ 3}.

To illustrate we choose G0 ∈ G0 with N = 5, M = 2, and K = 1.

Figure 3 shows a partial trajectory of the system (G0, Φ). Initially there are

two enemies that the scouts must capture and transport. In this trajectory

all of the scouts concurrently attempt to chase and capture the two enemies.

This trajectory models the situation where the enemies and scouts are

spatially interspersed.

Figure 4 shows a second possible trajectory of the system. In this tra-

jectory neither of the scouts on the bottom attempts to chase or capture

the enemy. This trajectory might correspond to a situation where a group

of scouts captures and transports an enemy, then returns to patrolling. The

next incursion of an enemy occurs in the area they are patrolling. Since

we do not know beforehand the spatial distribution of the enemies it is

important for our grammar to work for both of these types of trajectories.

N

The set of all graphs reachable from G0 via some trajectory is called

the reachable set R(G0, Φ). The set of all connected components of graphs

in R(G0, Φ) up to isomorphism is denoted C(G0, Φ). We suppose that each

reachable component type has a single representative in C(G0, Φ). Let G

be the set of all labeled graphs. The components of a grammar C(Φ) are

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

8

w ww w

w

w

w w

w

w ww w

w

w w

w

w

w w

w

w w

w

w w

w
w w

d2

d2
r1
−→

hh h

h

h h

h

hh

d3

l

e

eeee e
r3
−→

f f
d1

d1

↓r4

jjj

jjjj

j
pp p

r2
−→

c
r1
←−

r2
←−

r5
←−

Figure 4. A partial trajectory of (G0,Φ) illustrating the sequential capture of two en-
emies.

given by

C(Φ) =
⋃

G0∈G

C(G0, Φ).

If no rules in Φ can alter a reachable component, the component is said to

be stable. The set of stable components of a grammar is denoted S(Φ).

Example 3.4. Suppose G0 = G0(5, 2, 1) is the initial graph defined in

Example 3.3. The components of the system (G0, Φ) are those pictured in

Figure 5. The system only produces these components because there are

only two enemies in the initial graph.

We will refer to the components of the grammar as C1, C2, ... in the

order they appear in Figure 5. The ellipsis indicates that while the set of

components of the system C(G0, Φ) is finite, the set of components of the

grammar, C(Φ) is infinite. Specifically, it indicates a sequence of graphs

Ck beginning at C7 where Ck is a star-graph with a vertex labeled j at its

center and all other vertices labeled p. Then Ck+1 is a star graph with one

more vertex labeled p.

N

4. Propositions about Graphs

Let G be the set of all labeled, finite graphs. By a proposition, we simply

mean a subset P ⊆ G of graphs. By defining propositions in this manner,

we avoid having to define a syntax and semantics for logical statements

about graphs. Informally, we will describe propositions by logical formula

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

9

 w

w d2C1: h

hh

hh

h

d3

C2:

l

e C3:

ff

d1 C4:

jjj

pp

C5:

c

C6: C7: C8: C9: Ck: . . .

Figure 5. Components of the grammar Φ, C(Φ).

and use double brackets to denote the set of graphs that satisfy the formula.

For example,

[[l(1) = b ∧ ∃x∃y.xy ∈ E]]

denotes the set of graphs G = (V, E, l) such that 1 ∈ V , l(1) = b and

E 6= ∅. In general, any closed formula about labels and edges using finite

quantification over V or E and using constant symbols for elements in V

is permitted. If P is a proposition, the we define

(P, Φ) = {(G0Φ) | G0 |= P}

to be a class of systems.

Example 4.1. Define the proposition P0 to be

P0 = [[G ∈ G0 | N > 2M]].

Then (P0, Φ) denotes a restricted class of systems to which the system

(G0, Φ) defined in Example 3.3 belongs. N

Definition 4.1. Let ∼⊆ G × G be an equivalence relation on G. A propo-

sition P is preserved by ∼ if, for all G, G′ ∈ G, if G ∼ G′ then

G ∈ P ⇔ G′ ∈ P.

If AP is a set of propositions, then AP∼ is the subset of propositions in

AP that are preserved.

We often wish to know what propositions are preserved by a given equiv-

alence relation. For example, suppose ∼ is the relation labeled graph isomor-

phism, denoted ≃. Any proposition that can be represented by a formula

not using constant symbols to represent vertices in V is preserved by ≃.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

10

This paper makes limited use of Linear Time Logic (LTL) to specify

properties. In particular we use temporal logic formulas of the form

f = A FG P.

Here A is the path quantifier that denotes “Along all trajectories.” The

symbol F denotes “eventually” and G denotes “always.” Thus for graph

grammar systems the above formula reads “Along all trajectories it is even-

tually always the case that the next graph is in P .” We write (G0, Φ) |= f

if the trajectories of the system are consistent with the formula f . Addi-

tionally if P0 is a proposition we write

(P0, Φ) |= f

when for all G0 ∈ P0, (G0, Φ) |= f .

5. Macrostates

While graph grammars provide a method of programming individual robots,

it is often easier to reason about grammars in the abbreviated notation of

macrostates. Given a temporal logic formula over a set of propositions,

{P1, P2...Pk} it may be possible to find an equivalence relation in which

all propositions in the set are preserved. McNew and Klavins10 use equiv-

alence relations to reduce the size of a graph grammar model to make it

amenable to model checking. Here our goal is to find equivalence relations

that preserve the underlying transition system, thus allowing us to reason

about issues of progress and safety without reference to the details of rule

application and the underlying graph.

The most obvious equivalence relation on graphs is graph isomorphism.

This is quite natural given that the grammars we consider regard all ver-

tices as essentially identical. In the context of self-organization, it is often

useful to represent an equivalence class generated by the isomorphism rela-

tion by listing the number of each component type present in graphs in the

class. Thus, suppose that C(G0, Φ) = {C1, C2, ...}. Then v : C(G0, Φ) → N

represents all graphs G ∈ R(G0, Φ) with v(1) components isomorphic to

C1, v(2) components isomorphic to C2 and so on. We write these represen-

tatives in vector notation. For the system presented in Example 3.3 where

C1 is a component of type w, C2 = e and C3 = d1−h, and so on, the vector

v = (4, 0, 1, 0, 0, 0, 0, 1, 0)T

denotes that v(1) = 4, v(3) = 1, v(8) = 1, and all other entries are zero.

If v represents the equivalence class [G]≃ of a graph G, we write G |= v

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

11

to denote that G is consistent with v and we may write vG instead of just

v. This highlights the fact that v is a proposition. Note that if H |= vG,

then H ≃ G. In keeping with the self-assembly paradigm which is typically

addressed in the context of statistical mechanics, we call v an isomorphism

macrostate.

Suppose G and G′ are reachable graphs where vG and vG′ denote the

associated isomorphism macrostates. Let (r, h) be the action such that

fr,h(G) = G′. Let a = vG′ − vG. For example, a may have the form

a = (−1, −1, 1, 0, 0, 0, 0)

indicating that components of type C1 and type C2 are combined into a

component of type C3. If a(i) = m < 0, then m components of type

Ci are destroyed by applying the action (r, h). If a(i) = m > 0, then m

components of type Ci are created. We call the vector a a macro-action.

Definition 5.1. Fix a rule set Φ. Let (G0, Φ) be a system. A macro-action

a is in the action set of a system, A(G0, Φ), if there exists graphs G, G′ ∈

R(G0, Φ), and an action (r, h) such that fr,h(G) = G′ and a = vG′ − vG.

The action set a grammar, A(Φ), is given by

A(Φ) = {a | a ∈ A(G0, Φ) for some initial graph G0 ∈ G}.

Additionally we call the matrix whose columns are the actions in A(Φ) (or

A(G0, Φ)) the action matrix denoted by A(Φ) (or A(G0, Φ)). We write A

to denote the action matrix when its dependence on Φ and possibly G0 is

clear.

Proposition 5.1. Let v be an isomorphism macrostate and a be an action

in A(Φ). Then a is applicable to v if and only if for every i such that

a(i) < 0, v(i) + a(i) ≥ 0. Furthermore, the new macrostate is given by

v′ = v + a.

Example 5.1. For the system (G0, Φ) in Example 3.3, the action matrix

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

12

A(G0, Φ) is given by

A(G0, Φ) =

−1 −1 −1 0 3 3

−1 0 0 0 0 0

1 −1 0 0 0 0

0 1 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 −1

0 0 0 0 −1 0

0 0 0 0 1 −1

0 0 0 0 0 1

. (2)

N

If the number of components in C(Φ) is finite, then the macro-actions

in A(Φ) have finite dimension. Under this condition, it is often easier to

reason about the macrostates. If this is not the case we often identify

another equivalence relation that does result in macro-action vectors of

finite length.

In Example 3.4 the set of component types of our grammar C(Φ) is

shown to be infinite. In particular, there exists an infinite sequence of star-

shaped graphs with a vertex labeled j at the center and all other vertices

labeled by p. In the final state we want all enemies to be labeled p with an

edge to some vertex labeled j. The degree of the vertices labeled j is not

important. By exploiting the fact that with respect to the desired behavior

the star-graphs are essentially the same, we introduce a new equivalence re-

lation, ∼ that creates macrostates and macro-action vectors of finite length.

Definition 5.2. Let v be any isomorphism macrostate. Suppose that

C(G0, Φ) = {C1, C2, ...} ordered as in Figure 5. We denote a new trun-

cated macrostate by ṽ where ṽ(i) = v if i < 7 and ṽ(7) =
∑∞

j=7 v(j).

Thus for any initial graph G0, any reachable graph in the system

(G0, Φ) may be expressed as a vector of length 7. For G0 given in Ex-

ample 3.3 the reachable isomorphism macrostate

v = (4, 0, 1, 0, 0, 0, 1, 0)T

becomes the truncated macrostate

ṽ = (4, 0, 1, 0, 0, 1)T

Note that no rule changes a vertex labeled j to any other label, and

when j appears in the left hand side of a rule it is disconnected from the

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

13

rest of the vertices in the rule. This implies that Proposition 5.1 is also true

for macrostates and macro-actions derived from the ∼ equivalence relation.

6. Reasoning About Graph Grammars

For the class of systems (P0, Φ) in Example 4.1 we wish to prove that

(1) at any given time a scout robot is either patrolling (labeled by w),

disrupting (labeled by h and connected to an enemy) or capturing

and transporting an enemy (labeled by l or f and connected to a c)

and

(2) eventually all enemies are detained and remain so.

We may determine whether the rule set Φ in Figure 2 satisfies the first

specification by simply examining all possible transition types. Rules r1, r2,

and r3 are the only rules whose left hand sides have w and each rule changes

the vertex label to h with a connection to a disrupted enemy. Rule r4

changes h to l or f while rule r5 relabels vertices with l and f to w and

disconnects them from the entire graph. Thus the first specification is met.

Similarly, we may show that the only labels possible for an enemy are

{e, d1, d2, d3, c, p}. And we may show that a vertex labeled p always remains

connected to a vertex labeled j since there is no rule that deletes an edge

between them. This result implies that the second specification may be

written as a temporal logic statement in truncated macrostate notation:

That is for any system whose initial graph has N scouts and K detention

centers, the second specification can be written as

f = A FG z̃

where

z̃ = (N, 0, 0, 0, 0, 0, K)T . (3)

The formula f states that eventually it is always the case that the system

is in a macrostate z̃ with N copies of w, and K graphs, some of which have

edges to vertices labeled p.

6.1. Lyapunov Functions on Trajectories

In proving that our system meets the second specification, we adapt some

standard methods of reasoning about concurrent systems8 to graph systems

represented in macrostate notation.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

14

Definition 6.1. A discrete Lyapunov function is a function on isomorphism

macrostates V : N
n → N such that

(1) V is a positive decreasing function over all trajectories,

(2) V(x) = 0 implies for all future states v, V(v) = 0, and

(3) V > 0 implies that at least one action (r, h) is applicable.

Note that our definition of a discrete Lyapunov function is related to, but

not exactly equivalent to the standard definition found in discrete systems

literature.

Proposition 6.1. Let P be a proposition and V be a discrete Lyapunov

function for a system (G0, Φ) such that V (G) = 0 for some G ∈ P . Then

(G0, Φ) |= A FG P . In other words, along all trajectories it is eventually

always the case that the current and next graphs are in P .

Finding a function V that meets the requirements of Definition 6.1 is

highly dependent on the system and the proposition P . We have the fol-

lowing results for the case when the desired proposition is an isomorphism

macrostate or a combination of isomorphism macrostates. The results also

apply to any type of macrostate for which Proposition 5.1 holds. Although

we develop the following results in terms of isomorphism macrostates, they

also apply to the truncated macrostates in Definition 5.2.

Proposition 6.2. Let A(Φ) be the set of possible macrostate actions for a

system (G0, Φ) . If there exists a vector w ∈ N
n such that for all a ∈ A(Φ),

wT a < 0

then x 7→ wT x is a positive decreasing function on all trajectories in

(G0, Φ).

Example 6.1. For the class of systems (P0, Φ), we propose the discrete

Lyapunov function V(x̃) = wT x̃ where w is given by

w = (0 5 4 3 2 1 0)T . (4)

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

15

The action matrix of Φ in truncated macrostate notation is given by

A(Φ) =

−1 −1 −1 0 3

−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 0

. (5)

We will often refer to the actions individually, so we note that A(Φ) =

(a1 a2 a3 a4 a5) Then

wT A = −(1, 1, 1, 1, 1).

Thus Proposition 6.2 holds for our grammar, which implies that x̃ 7→ wT x̃

satisfies the first condition of the Lyapunov function definition. N

Proposition 6.3. Let w be a vector as described in Proposition 6.2. If for

all a ∈ A(Φ) there exists an element i such that a(i) < 0 and w(i) > 0,

then

wT x = 0 =⇒ G wTx = 0.

Example 6.2. Let z̃ in Equation 3 be the desired final macrostate. Then

for w = (0 5 4 3 2 1 0)T , wT z̃ = 0. A review of the action set for our

system (i.e. the columns of the action matrix in Equation 5) demonstrates

that for every action a there exists an element i such that a(i) < 0 and

w(i) > 0. Thus the function x̃ 7→ wT x̃ satisfies the second condition of

Definition 6.1. N

Example 6.3. We wish to show that whenever wT x̃ > 0, then at least one

action is applicable. Suppose there exists a vector x̃ where wT x̃ > 0 but

no action is applicable. Action ã4 is applicable for any macrostate x̃ such

that x̃(5) > 0. Action a5 is applicable if x̃(6) > 0. Thus, we must show

that for all x̃ with

(1) x̃(5) = x̃(6) = 0 and

(2) wT x̃ > 0,

actions a1,a2, or a3 are not applicable. Under these conditions, either

x̃(2), x̃(3), or x̃(4) must be non-zero. Action a1 is applicable if x̃(2) > 0

and x̃(1) > 0. Action a2 is applicable if x̃(3) > 0 and x̃(1) > 0. Action

a3 is applicable if x̃(4) > 0 and x̃(1) > 0. Thus it must be the case that

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

16

x̃(1) = 0. Since there are M vertices initially marked e and since there

is exactly one of these vertices in each component of type C2, C3, and C4,

we have the additional constraint that x̃(2) + x̃(3) + x̃(4) ≤ M . Note that

there is one robotic scout in component C1, zero scouts in C2, one scout

in C3, etc. Thus the number of robotic scouts in each component type is

given by the vector

b = (1 0 1 2 3 3 0).

Because the number of robotic scouts remains constant, for our class of

initial graphs P0 and for any macrostate x̃, we require that bT x̃ = N > 2M .

However,

bT x̃ > 2M

subject to the constraints

x̃(2) + x̃(3) + x̃(4) ≤ M

x̃(5) = 0

x̃(6) = 0

can only be satisfied if x̃(1) > 0, which is a contradiction of our supposition

that x̃(1) = 0. Thus for all x̃, whenever wT x̃ > 0, then at least one action

is applicable.

For all systems (G0, Φ) where G0 ∈ P0, the function x̃ 7→ wT x̃ meets

all three conditions in Definition 6.1. We conclude that

(P0, Φ) |= A FG(N, 0, 0, , 0, 0, 0, K)T .

N

6.2. Designing Grammars to Avoid Deadlock

For many initial graphs, simple grammars like the one we describe in the

previous section generate deadlock conditions on some of the system’s tra-

jectories. Often more complicated grammars are required to guarantee no

deadlock occurs. Lyapunov functions are difficult to find for these gram-

mars and we often use weak Lyapunov functions to prove such systems

satisfy a specification on terminal behavior.

Example 6.4. In Section 6.1, we prove that

(P0, Φ) |= f.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

17

where f = A FG z̃ and z̃ = (N, 0, 0, , 0, 0, 0, K)T . Since the size of the

enemy force is unknown we would like to expand the class of initial graphs

for which the grammar models f . Specifically, we would like to show that

(G0, Φ) |= f.

However, we may show by counter example that this is not the case. Con-

sider the initial graph G0(N, M, K) where N = 3, M = 2, and K = 1.

Then the trajectory

ṽ0
a1
−−→ ṽ1

a2
−−→ ṽ2

a3
−−→ ṽ3

a4
−−→ ṽ4

a5
−−→ ṽ5

a1
−−→ ṽ6

a2
−−→ ṽ7

a3
−−→ ṽ8

a4
−−→ ṽ9

a5
−−→ ṽ10

where ṽ10 = (3, 0, 0, , 0, 0, 0, 1)T satisfies f . Consider however the

trajectory

ṽ0
a1
−−→ ṽ1

a2
−−→ ṽ2

a1
−−→ ũ3

where ũ3 = (0, 0, 1, 1, 0, 0, 1)T . No progress can be made from ũ3 since

no macrostate action applies to ũ3. Thus the trajectory does not satisfy f .

N

Example 6.5. We wish to define a new grammar Υ such that

(G0, Υ) |= f.

We create Υ by adding the following rules to Φ.

Φ′ =

h

d1d1

 ⇒
h

d2e
JJ

h

d2d1

 ⇒
h

d3e
JJ

h

d2d2

 ⇒
h

d3d1

JJ
.

The new grammar is Υ = Φ∪Φ′. The components of our new grammar are

the same as the components of Φ so that C(Υ) = C(Φ). Because the new

rules do not involve labels p or j, we may still use the truncated macrostate

notation developed in Definition 5.2. The action matrix of the new grammar

is

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

18

A(Υ) =

A(Φ)

0 0 0

1 1 0

−2 −1 1

1 −1 −2

0 1 1

0 0 0

0 0 0

. (6)

N

Systems with the grammar Υ require slightly different proof machinery

leading to the following definitions and results.

Definition 6.2. Let v be a vector in N
m. We call v an application vector

since v(i) indicates that action ai ∈ A(Φ) is applied v(i) times. If we denote

A(Φ) as A, then the vector Av ∈ N
n is the net change in components after

applying the actions indicated by the application vector v.

Proposition 6.4. There exists a G0 such that there is a cycle in the tran-

sition system of (G0, Φ) if and only if the nullspace of the action matrix

A, Null(A), contains a vector n where the entries in the vector are all

non-negative.

Definition 6.3. Let z be a desired final isomorphism macrostate. Let w be

a vector in N
n such that wT z = 0 and for all actions ai ∈ A(Φ), wT ai ≤ 0.

We call the function x 7→ wTx a weak Lyapunov function.

Proposition 6.5. Fix a grammar Φ, and let x 7→ wT x be a weak Lyapunov

function for desired macrostate z. If

(1) The set of actions of the grammar A(Φ) cannot generate a cycle,

(2) For all a ∈ A(Φ) there exists an element i such that a(i) < 0 and

w(i) > 0, and

(3) Whenever wTx > 0, then at least one macrostate action is applica-

ble,

then

(G0, Φ) |= A FG z.

Example 6.6. Let w = (0 5 4 3 2 1 0)T as before. Let A = A(Υ) given

in Example 6. Then wT A = −(1, 1, 1, 1, 1, 0, 0, 0). Thus x̃ 7→ wT x̃ is

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

19

a weak Lyapunov function. A basis for the nullspace of A is given by the

vectors

1

−1

0

0

0

1

0

0

,

1

0

−1

0

0

0

1

0

,

0

1

−1

0

0

0

0

1

.

Clearly there are no elements of the nullspace with all non-negative entries.

Thus no cycle can be generated from the actions in A(Υ). In Example 6.2

the second condition of Proposition 6.5 is shown to be true for the actions

{a1, ...,a5}. For every new action in Equation 6,there exists an element i

such that a(i) < 0 and w(i) > 0. Thus the second condition is met for the

function x̃ 7→ wT x̃.

Finally, we must show that whenever wT x̃ > 0, then at least one macro-

action is applicable. Assume no macro-action is applicable to x̃. From the

previous analysis in Example 6.3 we know if no macro-action applies to x̃

then x̃(1) = 0, x̃(5) = 0 and x̃(6) = 0. The three new actions imply that

if no action is applicable either x̃(3) = 1 and x̃(4) = 0 or x̃(4) = 1 and

x̃(3) = 0. Since component C2 contains zero robotic scouts, C3 contains one

robotic scout, and C4 contains two robotic scouts, if the number of robotic

scouts N in the initial graph is greater than two, then clearly there is a

contradiction. Thus wT x̃ > 0 must imply at least one macrostate action is

applicable.

The grammar Υ, the class of graphs G0 and the proposed weak Lyapunov

function x̃ 7→ wT x̃, satisfy all three conditions in Proposition 6.5. Thus we

may conclude that

(G0, Υ) |= f.

That is, for any initial condition with at least three robotic scouts, eventu-

ally all the enemy will be detained. N

7. Simulation Results

In the wandering scouts example, the graph grammar describes the possible

evolution of the network topology of a group of robots. A graph grammar

does not, however, describe geometry. To incorporate geometry, we must

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

20

also design continuous controllers, a process we refer to as embedding the

graph grammar. In the embedding a continuous state x ∈ R
2 is associated

with each vertex. In this section we use “robots” to discuss spatial infor-

mation and simply vertices if discussing purely topological concepts. For

the system in the wandering scouts example, we suppose the presence of an

edge between two robots i and j indicates i and j have a communication

link and can detect one another’s labels. Without an edge, a robot can-

not know the operational modes of its neighbors except during the isolated

moments in which rules are being locally checked.

We are interested in scenarios where the robots have limited commu-

nication and sensing ranges. The primary issues that must be addressed

when designing the continuous controllers are:

(1) Designing controllers that use the network topology to enforce geo-

metric conditions such as the encirclement condition necessary to

capture an enemy.

(2) Designing controllers that guarantee that if progress is possible from

a graph G in the graph grammar, it is eventually possible from any

spatial state with the same underlying graph G.

We briefly describe a simulation of the wandering scouts example and

the continuous controllers used to embed the grammar Υ. In future papers

we will present a more formal description of the embedding process in terms

of hybrid systems. But these issues are beyond the scope of the current

paper.

Suppose rij denotes the Euclidean distance between two robots i and

j. Denote by rc the communication and sensing radius of the robots. Let

U be an attractive-repulsive potential function.

U : V × Σ × Σ × E × R
2n → R.

Here n is the total number of vertices. Suppose i is the vertex of a robot

and j is any other vertex. If the pair of vertices ij is not in the edge set

E or if rij > rc, then U(i, l(i), l(j), ij, rij) = 0. Otherwise, U has the form

pictured in Figure 6(a).

In the figure, r∗ denotes a desired interagent distance between i and j.

The maximum separation distance is denoted by r+. The discontinuity at

r+ is intended to enforce the condition that once an edge is formed it is never

broken by moving outside the communication range. The discontinuity at

r− is intended to enforce collision avoidance. For any edge, the parameters

r∗, r+, and r− may be different for different label pairs.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

21

r∗ r+

U

r− rij

(a)

r− rij

Y

(b)

Figure 6. (a) Attractive-repulsive potential function U for the Wandering Scouts Sce-
nario, (b) Repulsive potential function Y .

We also define a purely repulsive potential function

Y : V × Σ × E × R
2n → R.

If ij ∈ E, then Y = 0, otherwise it has the form shown in Figure 6(b). Here

r− is only a function of a robot’s own label.

The dynamics of the ith robot are given by

ẋi = −
∑

{j|ij∈E}

∇U(i, l(i), l(j), ij, rij) −
∑

{j|ij /∈E}

∇Y(i, l(i), ij, rij) + W.

W is continuous random vector process of bounded size that helps guarantee

the motion of any two components is only correlated for short periods of

time. If this is true and assuming a bounded spatial domain, then with

high probability, every macrostate action that is possible in the grammar

is also possible in the embedded system.

The function U has a local minimum at r∗. However the region of

attraction is limited to r− < rij < r+. In fact outside of this region, −∇U

may drive rij away from r∗. Since U is only non-zero when there is an edge,

and edges are created or destroyed via the application of rules, we require

that a rule can only be applied when r− < rij < r+. We accomplish this

by placing guards on the rules that are boolean functions of the geometry.

Additionally, note that we assume for progress to be guaranteed the

motion of the components may only be correlated for small periods of time.

Because the potential fields are both attractive and repulsive, if certain

geometric conditions are not met, it is possible for components to become

permanently interlinked. In particular for any edges ij and kl, we must

prevent the embedding of those edges from crossing.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

22

(a) (b)

ww

hh

ee

d1d1

Figure 7. (a)Virtual forces on robots before the application of rule r1 (b) Undesirable
stable equilibrium after the application of rule r1.

Figure 7 demonstrates the simplest case involving an edge existing be-

tween two vertices marked h and d1. The other vertices marked w and e can

apply rule r1 of the rule set Υ. In panel (a) of Figure 7 the double arrow-

heads along the edges indicate the direction of the virtual forces generated

by −∇U . The solid arrowheads show the repulsive virtual forces generated

by −∇Y. The half-filled arrows indicate the net virtual forces applied to

each robot. As these arrows show, the net repulsive force on the robots

labeled w and e will eventually drive those robots out of communication

and sensing range, thus this configuration is not stable. Note that there are

not half-filled arrows associated with the vertices marked h and d1 because

in this configuration the sum of the attractive and repulsive forces is zero.

Panel (b) shows how the forces change if rule r1 is applied. For each of

the four robots, the virtual forces sum to zero. Thus this configuration

represents an undesirable stable equilibrium in which the motion of the

two components will remain correlated. Suppose h is the label preserving

injective mapping of Lr1
into G. To ensure an application of the first rule

in Υ creates the proper geometry and that progress is guaranteed, we place

the following guard, gd1, on rule r1.

gd1 ⇐⇒ r− < rh(1)h(2) < r+
∧

k,m∈sense(h(L))

¬cross(h(1), h(2), k, m).

A robot with vertex k is in the set sense(h(L)) if k is not in h(L) and

the distance between i and k, rik is less than the sensing distance, rc. The

boolean function cross determines if possible embedded edges between two

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

23

0 100 200
0

20

40

60

80

N
um

be
r

of
 P

ris
on

er
s

Time

Figure 8. The number of captured enemy over time.

pairs of robots cross.

By carefully defining the guards on the rule set Υ and by carefully

designing the potential functions U and Y we can guarantee that: The only

way of changing the network topology is through the application of rules,

the network topology and controllers result in the desired geometries, and

with high probability progress always occurs.

We created a MATLAB simulation of the wandering scouts scenario

utilizing the potential function controllers U and Y and the grammar Υ

enhanced by guards. We ran simulations of systems with initial graphs

in G0 ranging in size from 20 to 500 vertices and various distributions of

scouts, enemies and jails. Figure 8 shows the number of captured enemies

over time for a representative run of a system with 200 robotic scouts, 80

enemies and 5 detention centers. We chose purely random motion in the

wandering scouts mode w as the patrol strategy. The decreasing rate of

prisoner detention occurs because the likelihood of randomly encountering

an enemy decreases as the number of enemy not detained decreases. A

more structured patrol strategy2 might result in faster convergence to the

point where all enemy are captured. However, all scenarios regardless of

distribution demonstrated converging behavior. Therefore we conclude that

the simulation of the embedding of the grammar is consistent with the

behavior of the grammar.

8. Discussion

In Section 6.1 we created a one-of-a-kind proof for the simple wandering

scouts scenario using Lyapunov methods. These methods are often useful

for the design of small subsystems, but as the specifications and systems

become more complex, one-of-a-kind methods are more difficult to apply

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

24

and we expect to eventually use formal verification methods such as Model

Checking. One of the challenges in model checking graph grammars is the

enormous state space generated by graph isomorphism. We demonstrated

methods to drastically reduce the size of the model for a limited class of

grammars10. Model size is a major hindrance in model checking large-scale

concurrent networked systems and in future work, we plan to broaden the

class of grammars for which we may efficiently compute reduced models.

In section 7 we created continuous controllers and guards on the rule

set so that these controllers worked in tandem with the graph grammar to

achieve the desired geometries and topologies. This essentially created a

locally defined hybrid system we refer to as an embedded graph grammar.

In future work, we plan to present a formal model of the embedded graph

grammar.

We believe the wandering scouts example belongs to a class of prob-

lems for which we may be able to automatically synthesize the grammar,

controllers, and guards of a solution embedded graph grammar. As the

size and complexity of networked systems grows, we expect automatic con-

troller synthesis to become necessary. A key requirement to defining and

programming solutions to this class of problems appears to be a method

of specification that directly relates the continuous and discrete aspects of

the problem and includes a formal notion of “locality.”

References

1. J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen. Self-organizing programmable parts. In International Conference
on Intelligent Robots and Systems. IEEE/RSJ Robotics and Automation So-
ciety, 2005.

2. J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage control for
mobile sensing networks. IEEE Transactions on Robotics and Automation,
20(2):243–255, 2004.

3. J. Alexander Fax and Richard Murray. Graph laplacians and stabilization of
vehicle formations. In 15th IFAC Congress, 2002.

4. A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Auto-
matic Control, 48(6), 2003.

5. E. Klavins. Automatic synthesis of controllers for distributed assembly and
formation forming. In Proceedings of the IEEE Conference on Robotics and
Automation, Washington DC, May 2002.

6. Eric Klavins. Universal self-replication using graph grammars. In The 2004
International Conference on MEMs, NANO and Smart Systems, Banff,
Canada, 2004.

October 15, 2005 13:4 Proceedings Trim Size: 9in x 6in CCOGraphGrammars

25

7. Eric Klavins, Robert Ghrist, and David Lipsky. A grammatical approach to
self-organizing robotic systems. IEEE Transactions on Automatic Control,
2005. To Appear.

8. L. Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

9. N.E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and co-
ordinated control of groups. Proceedings of the 40th IEEE Conference on
Decision and Control (Cat. No.01CH37228), vol.3:2968 – 73, 2001.

10. John-Michael McNew and Eric Klavins. Model-checking and control of self-
assembly. In American Control Conference, 2006. Submitted.

11. Reza Olfati-Saber and Richard M. Murray. Distributed structural stabiliza-
tion and tracking formations of dynamic multi-agents. In IEEE Conference
on Decision and Control, 2002.

12. Pedro Lima Paulo Tabuada, George J. Pappas. Motion feasibility of multi-
agent formations. IEEE Transactions on Robotics, Vol. 21 (3):387–392, 2005.

