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CHAPTER 1

Introduction

The goal of this thesis is to begin to make formal an idea which is already used
intuitively and with great success in the laboratory. The idea is to leverage the knowl-
edge of how to control a machine to perform a set of basic tasks toward the design of
a controller that makes the machine do more complex tasks. We say that the more
complex task is composed of the basic tasks. For example, a machine that can be
controlled to hop on one leg should be adaptable to one that hops by alternating be-
tween two legs — without the need to redesign the entire system from first principles.
A general theory of controller composition would apply to many situations in engi-
neering, greatly increasing in size the set of tools available for design synthesis and
system verification — just as packaged microchips and modular computer code have
greatly eased the task of designing electronic devices and software. It may also apply
to systems outside of engineering such as biomechanics (as alluded to at the end of
Chapter 4), which attempts to explain how animals control their movements. Con-
troller composition is thus a fundamental problem, requiring tools from dynamical
systems, control theory, robotics and computer science. It is also a difficult problem
in general, because of the intricate ways in which controlled dynamical systems may
couple when operating in combination. Therefore, in this thesis, we focus on a spe-
cific kind of subsystem and type of composition — the parallel composition of cyclic
systems — and stay mostly within the realm of robotics, with only a few remarks on
applications in other fields.

Many tasks in robotics require that cyclic actions be coordinated. A walking or



running robot must coordinate its legs, which repeatedly convert motor torque into
forward thrust, according to some desired gait — a schedule for the delivery of leg
thrusts. Thus, the legs must deliver their thrusts according to some rhythm, whether
simultaneously, in alternating groups of three, or some other pattern. If each leg is
supposed to have some degree of independence — for example, to deal with terrain
variations local to it — then, in the absence of some coordination mechanism, the
phase relationships between the legs will surely destabilize. In this thesis we address
the problem of modifying the controller of an individual cyclic subsystem (e.g., a
leg, or motor subunits corresponding to some modular constituent of an ensemble) so
that it uses information obtained from other subsystems (e.g. the other legs) in such
a manner that the entire system (e.g., the robot) stabilizes around a desired phase
relationship (e.g., a gait).

In more formal terms, the thesis addresses the problem of composing, “in paral-
lel,” limit cycles. Namely, we assume we are presented with a number of independent
controlled systems that each, separately, exhibit a limit cycle — an attracting pe-
riodic orbit. We seek a procedure for coupling together their controllers in such a
fashion that the resulting coupled closed loop system exhibits a single limit cycle
corresponding to a specified relationship among the original decoupled systems. The
procedure should ideally be formal — relying simply on the presence of the individual
attractors, independent of the details of the mechanisms that stabilize the individual
subsystems. It should also be correct — accompanied by an automatic formal proof
that the coupled system does indeed exhibit the specified periodic attractor.

The goal of this thesis is to introduce tools that rely on feedback, introduce a
minimum number of communications links among components and require no central
control signal. The hypothesis is that these tools are best thought of compositionally
[42, 39, 40] — that is, that components or groups of components that behave correctly
in isolation may be composed by altering their control algorithms in a formulaic fash-
ion to achieve coordination. The resulting modularity should give rise to scalability,

enabling the design of large, complex nonlinear and robust controlled systems.



1.1 Motivation

Formal techniques for building decentralized control architectures with provable
properties will become increasingly important as robots and, more generally, physi-
cally embedded computing systems, become more and more complex [78]. A simple,
three degree of freedom juggling robot [73], for example, may contain several proces-
sors which acquire sensory data, compute estimates and deliver control commands.
A complex automated factory may require the coordination of hundreds of robots
each performing processing, sensing and actuating locally [71, 63]. If, as seems in-
creasingly likely, MEMS devices for distributed manipulation [27] can be used for
assembly then possibly thousands or millions of microscopic actuators will require
coordination. Ideally, to design controllers for such systems, we desire a provably
correct method for controlling each component, using local information as well as
information from neighboring components, so that some global task is performed by
the entire collection of components. Similar goals have been realized, to some extent,
in distributed computing [56]. However, in physically embedded computing systems,
any control methodology, distributed or otherwise, must account for real-world me-
chanical forces, inaccurate sensing and a partially actuated environment. Addressing
these latter complications is the main challenge to decentralized, modular control.

We are convinced that compositional methods for physical systems are possible.
Work by Koditschek and collaborators has led to several functioning (laboratory)
robots that possess relatively sophisticated dexterous behaviors formed by coupling
previously working simpler constituents in an analogous manner. For example, robot
“batters” have been constructed in compositions involving a one degree of freedom
“vertical” limit cycle controller inspired by Raibert’s hoppers [46]. A planar version
of the batter is composed of the Raibert vertical cycle!with a one degree of freedom
[13] “horizontal” fixed point controller that might be loosely construed as a nonlinear
PD (that is, a variant on the traditional proportional-derivative design [44]). A
subsequent spatial version is composed of the same Raibert vertical cycle with a
two degree of freedom horizontal generalized PD [73]. These behaviors inspire this

work and their design is reviewed in Chapter 2, which also contains a more general



discussion of composition.

Several desirable consequences quickly follow when a composition technique for
embedded controllers is defined in a manner that is both formal and correct. As dis-
cussed in Chapter 2, the “sequential composition” of point attractors enjoys a formal
and completely general control theoretic semantics via graphs that locate attrac-
tors relative to their neighbor’s basins (as delimited, for example, by their Lyapunov
functions) [15]. Although this notion is conceptually simple, it is nevertheless quite
useful: A well established tradition of sequential composition in Al — pre-image
backchaining [54] — can be rendered formally and correctly in this manner. Formal
composition methods can also assure scalability. For example, the author of this thesis
has developed methods for composing hybrid factory robot programs into concurrent,
multi-robot systems [42], which are reviewed at the end of Chapter 2. Based on this
method, a provably correct compiler [40] has been built f or (a simplified, simulated
version of) a modular factory [71].

In contrast to the compositions just cited, the parallel composition of cycles, the
focus of this thesis, remains a less developed area. We have some experience with
successful empirical efforts of this kind. The batters, above, have been joined to
produce “jugglers” — again, both planar [14] and spatial [73] versions — by properly
“interleaving” the two constituent vertical cycles. However, no correctness proof has
heretofore existed, much less a clear report of any formal coupling principles suitable
for applications in other domains. It is toward such a formal coupling principle that

this thesis is addressed.

1.2 Specific Contributions

Parallel compositions of the sort described above, involving point attractors or
points and one cyclic attractor, satisfy the following steady state behavior: the at-
tractor of the coupled system is the cross product of the component attractors. In

contrast, the obvious first complication arising from parallel constructions of several

'In the case of the batter, the vertical limit cycle corresponds to an attracting orbit in the
position/velocity plane of the ball. As discussed in Chapter 4, this cycle is regulated in a manner
similar to the hopping cycle in Raibert’s work.



cyclic attractors is that their cross product is not directly related to any of the compo-
nents, defining, instead, an n-torus, which does not in itself correspond to any natural
robotic task that we have encountered. A composition of limit cycles resulting in a
limit cycle, therefore, must also specify the limiting phase relationships desired of the
components. The central contribution of Chapter 3 is to propose a simple but general
formalism for specifying these phase relationships along with a general method for
realizing the specification with a reference dynamical system. A number of example
problems are then given to suggest how these reference dynamics might eventually
be the basis of a formal composition technique for a large class of physically relevant
cyclic systems.

We observe in Chapter 3 that any cyclic component system can be described in
terms of phase coordinates consisting of phase and phase velocity, thus giving each
system the same “interface” and introducing the model space of the composition
— the n-torus. We then propose a simple means of specifying the desired phase
relationships with a connection graph, whose nodes denote the component cyclic sys-
tems and whose edges, labeled “in phase” or “out of phase,” denote their desired
phase differences at steady state. Next, we present a general procedure for building a
gradient-like vector field on the phase space whose coupling functions are governed by
the connection graph. Finally, we identify algebraically the entire forward limit set
of the closed loop coupled system, affording, thereby, a check that the desired limit
cycle is essentially globally asymptotically stable.

We use the reference dynamics to compose several one degree of freedom cyclic
components in four progressively more complicated examples evocative of the physi-
cally functioning juggling and running robots introduced above. These examples are
chosen to suggest the range of control affordance that a more general composition
procedure must encompass. It is well established in control theory that differences
in actuation structure present radically different opportunities for point stabiliza-
tion, ranging from arbitrarily achievable dynamics (e.g., in the case of fully actuated
first order systems) to systems that are smoothly unstabilizable (e.g., in the case of
the nonholonomically constrained mechanisms [9]). The corresponding stabilizability

classification for limit cycles is far less established, hence we select examples that



correspond to physical settings of interest. The examples illustrate how the same
abstract connection graph can serve as the basis for compositions of cyclic systems of
various types, each type corresponding to an intuitively different affordance over the
subsystems’ phases.

The first example is in fact essentially the same as the reference dynamical systems
defined in Chapter 3. We consider highly abstracted components, each taking the form
of a first order fully actuated subsystem — in phase coordinates, 0, = fi(bs,v;),1 €
{1, ...,n}, where f; is invertible with respect to the control, v;, for each phase, 6; €

S'. Since appropriate “inverse dynamics” style state feedback, v; = f; *(6;,u;), can

arbitrarily reshape the vector field, 0, = u;, it is clear that the phase 6 of each
component of the system is directly controllable. Such models are not uncommon
in the coupled oscillator literature, and, for purposes of this paper, offer a simple
setting in which to illustrate the application of the proposed composition technique.
Specifically, in Section 3.4 we construct coupling controllers arising from two different
connection graphs (Figure 3.1) for a set of six first order cyclic components. We use
the algebraic characterization of the forward limit set on the cross product space,
T =5"x5"x..x5"

VT
6 times

to discover that the first connection graph is effective while the second is not.

In general, physical systems will not offer such direct affordance over phase ve-
locity. For example, in action-angle coordinates [4], (E;, #;) — the classical represen-
tation of phase for the one degree of freedom mechanical systems of present interest
— a lossless closed loop component exhibits the dynamics 6; = w;(E;) and E; = 0.
Physically realizable control inputs act on the acceleration variable of such a system

and typically enter both the action and the angle dynamics in a complicated manner,
0 = wi(Eiu)
E; = fi(oz'a Ez,uz)

However, many cyclic component systems of interest in robotics — in particular, all

of those mentioned in the motivation section above — are regulated by means of pe-

riodically applied changes in “stiffness” or some similar physical variable that adjusts
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the action on a cycle-by-cycle basis because they can be actuated only intermittently.
The term intermittent means that during certain periods, there is no affordance at all,
that is, f; = 0, and Ow;/0u; = 0 except when 6; is contained in some contact set A.
When such a subsystem operates in isolation, it is sufficient to verify that the “stiff-
ening schedule” stabilizes a specified periodic orbit with respect to any convenient
coordinate system. However when conceived as a component, the subsystem’s stiff-
ening schedule on the contact set must be altered with the dual purpose of regulating
its own limit cycle as well as its phase relative to its specified neighbors.

In Chapter 4 we introduce two different examples of this situation, evocative, re-
spectively, of the batting [14] and hopping robots [46] discussed above. In both cases
we begin by introducing variants of the component subsystem controllers that were
deployed on the physical machines: They yield asymptotically stable limit cycles for
the component one degree of freedom systems with user-specified steady state total
energy. We next address the parallel composition of two such cyclic components,
defining the identical reference dynamics (on the two dimensional torus) as a model
for juggling in the first example, and for bipedal hopping in the second. For both
examples, we show how to compute the phase coordinate transformations required to
implement the composition. The reference dynamics then serves to guide modifica-
tions in the subsystem controllers that confer sensitivity to relative phase in addition
to the prior affordance over individual energy (now interpreted as phase velocity,
through the action variable, in the new coordinate systems). We finally show, in
both cases, that the resulting coupled systems do indeed achieve the desired closed
loop behaviors.

Similar though they are, these two settings introduce a further distinction in sub-
system actuation structure: the recourse to deadbeat as opposed to asymptotically
stabilizing control. For the juggling example, because the contact set is a lower di-
mensional surface visited instantaneously each cycle, it is easy to build a subsystem
controller that works in a “deadbeat” manner, achieving the desired ball height for an
isolated single ball after one hit. In contrast, for the hopping example, the component
controllers for the two isolated subsystems achieve asymptotic stability with conver-

gence in infinite time. Despite this difference in input structure, the composition



procedures are quite similar. A comparison of Equations 4.19 and 4.21, which define
the return maps of these systems near equilibrium, shows that the second system
incorporates a delay term, g, which marks the difference (and complicates the anal-
ysis). That our method applies equally well to each example is a hint of its possible
generality.

A second key difference between these two examples underscores an additional
feature of the composition method whose proper consideration lies beyond the scope
of the present thesis. The gradient-like reference dynamics on the two dimensional
torus entails two invariant cycles — the desired (essentially global) 180°-out-of phase
attractor and an in-phase repeller. The latter structure can be considered a dynamical
“obstacle” to be avoided by the coupled system. In synchronized hopping, there is
a dedicated actuator for each cyclic system (i.e., each hopper can control itself),
while in juggling, a single actuator must switch its attention from each ball in the
system, necessitating a sort of interleaving control. Separating the phase of the balls
thus becomes an important part of the composition and is naturally encoded by the
presence of the repeller.?

A final example of how reference dynamics can be used to couple cyclic systems
of various sorts is presented in Chapter 5, where we build a decentralized controller
for a hexapod robot called RHex. In this example, an internal, “ideal” six-oscillator
network of the kind described in Chapter 3 is coupled with the six leg controllers of the
robot. Each leg controller attempts to achieve the phase velocity of a corresponding
internal oscillator while also feeding its own phase back to the internal oscillator.
The resulting overall control scheme can be tuned with respect to the amount (or
strength) of coupling between the environment and the internal oscillator network.

A formal treatment of a final point of similarity in all of these examples also
lies beyond the scope of this thesis. The systems we design using the connection
graph (Section 3.1) are decentralized, or modular, in form. The connection graph,
in addition to specifying the desired phase relationships between systems, effectively

specifies the desired communications structure to be used as well. Although we have

2We accomplish the change of attention of the paddle among the balls using an attention function
(see Equation 4.15), the details of which are contained in Appendix A.



not developed a mature notion of decentralization (one that accounts for information
flow or communication costs, for example), the present work provides basic tools for
conceptualizing and synthesizing cyclic systems with various decentralized structures.
These tools are illustrated by the application of the criterion supplied by Corollary
3.3.1 to Examples 3.4.1 and 3.4.2.

In summary, this thesis addresses a small step toward the general goal set forth
above. We introduce a general formalism for specifying the steady state cyclic be-
havior of a collection of cyclic components. Treating the component subsystems as
oscillators suggests a way to compose them using feedback terms based on the phases
of neighboring oscillators to achieve the specified coupled behavior. If the compo-
nents of the system are continuously actuated (i.e., they have direct control over
their phase), the method is straightforward. If, on the other hand, the components
have intermittent control over their phases (as with a paddle bouncing a ball or a leg
delivering thrust to a robot), it is less obvious that our method applies. Nevertheless,
we demonstrate that out method is applicable to this important class of problems.
The similarity of method in the different examples strongly suggests that a general

formalism of the kind we desire should be possible to define and practice.

1.3 Related Work

In this section we review related work on decentralized control and coupled oscil-
lators. A more detailed review of the compositional approach is presented in Chapter

2.

Decentralized Control: As we have suggested, by decentralized control of a sys-
tem X = f(x,u) we mean first that x can be broken into a number of subsystems
X = Xj;...; X, Where the semicolon means vector concatenation. Second, we require

that controllers can be found so that for each subsystem ¢ we have that

).(i = f,-(le,...,xjk,ui(le,...,Xjk)), (11)

where the set {ji,..., jx} of neighbors of i is a proper subset of {1,...,n} (i.e., the

control law for the ith system depends only on the neighbors of 7). A basic example
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of such a system is the robot flocking behavior [68] in which multiple robots in a
shared environment are each given the task of, for example, moving to a goal location
while avoiding other robots. In many algorithms, a robot pays attention only to
its closest neighbors, which may change; thus, this situation fits loosely into our
framework. Issues of deadlock in these systems are the most difficult to resolve.
To date, such methods are used without formal proofs of correctness, although in
extremely simplified settings we have been able to show that certain strategies are
correct [42, 39].

More obviously relevant to the present study are various decentralized control
schemes for legged locomotion [6, 16] that are inspired by biological models of the
stick insect [25] and other animals [26]. In such schemes, each leg of a six-legged
robot is considered to be animated by a separate processor and actuator, deciding
what to do based on the state of certain neighboring legs. Of course, the state of
the robot’s mechanical body depends upon the positions and velocities of its center
of mass frame as well as the states of all the legs; thus, the system is decentralized
only in the sense that the control of actuated components is decentralized. In [43] we
presented a simulation study suggesting that the methods in this thesis can exhibit
behaviors similar to those observed in a simple model [16] of this kind of coordination.
We believe, but have not yet explicitly demonstrated, that the framework introduced
here promotes a parsimonious view of the stick insect models, and one for which
correctness of coordination proofs will be tractable. In this thesis it is proved that
similar coordination strategies are robust and stable, albeit in a vastly simpler setting.
We believe such a parsimonious and sound foundation is a necessary precursor to the
widespread adoption of any walking or coordination strategies in robot design.

Our general approach to building decentralized systems, inspired by the traditions
of computer science [1, 20], is compositional [15, 42, 39]. That is, we seek methods for
composing previously isolated subsystems into more complex systems via adjustments
of their individual controllers as we have already illustrated in our earlier remarks
about “sequential” [15], “parallel” [13] and “interleaved” [73] control. There are
many other informal uses of composition in robotics as well, such as the bottom up

generation of flocking behaviors [68], for which formal compositional treatments could

10



be quite useful as well. Chapter 2 is devoted to the exploration and review of the
compositional approach in more detail.

Our simple characterization of a “decentralized” system suffers from the same
sort of ambiguity that afflicts some computer science characterizations of distributed
systems. That is, in their simplest forms the available formalisms (differential equa-
tions and computational complexity) are blind to the issues of information flow and
communication costs just as are simple models of distributed computation (of course,
many of these problems in computer science have been addressed [56]). We do not
address these problems here, although we believe they are of tremendous importance
as systems become more complex. In [43] we begin to address the tradeoff between
centralized control structures, such as that used in our hexapod robot [74] and de-

centralized control.

Coupled Oscillators: The study of the nervous system has inspired a significant
volume of work on coupled oscillators. The goal of such work has been to devise
analytically tractable models of the neuron and of collections of neurons for the pur-
pose of explaining observed neurophysiological phenomena. The typical approach is
to treat neurons as oscillators of some kind and introduce various coupling terms [31].
Researchers have examined various regular topologies of such couplings as well (as
for example in [47, 28]).

Oscillators appear in robotics whenever coordinated cyclic movements are re-
quired. As robotics researchers increasingly turn to biology for inspiration, cou-
pled oscillators are used synthetically, to engineer control algorithms, rather than as
modeling tools. Generally one finds two apparently complementary approaches: feed-
forward shape generators and feedback-driven networks of coupled oscillators. The
first approach is inspired by the discovery of biological central pattern generators —
oscillating groups of neurons that have been shown to produce rhythmic movements
originating in the central nervous system [64, 22, 21| that seem associated with a
feedforward style of control. In robotics, pattern generators are generally used to
control repetitive movements. In the RHex hexapod robot discussed in Chapter 5,

a simple first order linear oscillator is used as a “clock” to generate an alternating
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tripod gait. Similar mechanisms are used to control the shape of snake-like robots
[61, 8] and in an underactuated two degree of freedom suspended leg [52] to produce
feedforward locomotion. In contrast, feedback methods, such as those inspired by the
previously mentioned study of the slow-moving stick insect [25], which have begun
to be analyzed [16], couple internal oscillators with mechanical oscillators such as
legs. The internal oscillators are then synchronized via some coupling function, yet
are constantly disturbed by signals from the legs. In [36] a nonlinear oscillator model
with feedback is used to coordinate leg motions in a biped.

In this thesis, synthesis of coordination control algorithms (rather than, say, the
modeling and analysis of complex biological systems) remains the primary goal, hence
we take the view that oscillators should be abstracted to phase and phase velocity co-
ordinates. Thus, instead of using a complex, nonlinear oscillator to generate motions,
we explicitly use simple gradient-like reference fields and concentrate on the means
by which variously composed controllers may be introduced into variously configured
control systems to produce coordinated movement in mechanical systems. A similarly
synthetic view is used in [65] to synchronize clocks in a mesh-connected network of

processors, but is otherwise rare.

1.4 Overview

In Chapter 2 we review the compositional approach to robotics and computer sci-
ence. A loose distinction between general and careful composition is used to categorize
various approaches with respect to the breadth of the class of objects to which they
are applicable, and the point is made that careful compositions on only those sys-
tems satisfying some limiting property are usually more tractable. We also review in
more detail the work on juggling and hopping by Koditschek and his former students
[15, 14, 12, 73, 46], which was the main impetus for the present work. At the end of
Chapter 2 we review in some detail active research on manufacturing and distributed
assembly by the author of this thesis — research that is highly compositional and
related in inspiration, if not in any as yet recognizable formal detail, to the present

work on phase regulation.
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In Chapter 3 we introduce a means of designing the reference fields first discussed
in Section 1.2. We define a simple two dimensional reference field and then define a
certain class of n dimensional reference fields based on connection graphs. The chapter
ends with several examples of such reference fields and analyses of their behaviors.

In Chapter 4 we apply reference fields to the intermittent control tasks of ball
batting and hopping. We first explain how to deal with one ball batted by a piston
and one hopper. Then we combine two balls and then two hoppers. Finally we analyze
the stability of the composed systems and examine some numerical simulations.

In Chapter 5 we describe a decentralized, phase regulation controller for the six
legged, cockroach-like robot RHex and give the results of experiments in which we
explore the controller’s efficiency.

At the end of each of Chapters 3, 4 and 5 is a discussion of each chapter’s content
with an emphasis on things left undone. The final chapter, Chapter 6, is a higher
level reflection on what was attempted and what was in fact accomplished with this
thesis, as well as a review of some outstanding questions raised.

The appendices contain details not included in the main body of Chapter 4 on
intermittent contract systems: the important construction of attention functions for
the juggler, the tedious but routine derivation of the return map and period for our
model of a hopping robot and the details of the proof of stability of the synchronized
hopping system.
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CHAPTER 2

The Compositional Approach: A Review

The idea behind the compositional approach is simple. A designer should not
have to start from scratch when building complicated systems. Instead she should
leverage the knowledge of how to make a machine do A and also how to make it
do B in order to make a machine do A and B in some combination. For example,
a program that controls a robot to drill a hole in a piece of sheet metal should be
easily modified into a program that controls a robot to drill two holes in sequence or a
program that controls two robots to drills holes simultaneously. A hopping controller
for a one legged robot should be extensible to a hopping controller for a two legged
robot that alternates between the legs. The difficulty with composition arises when
the components to be composed interact in complex ways. This interaction is simple
in the example of sequential drilling: the second instance of the drilling program
must wait for the first instance to finish. On the other hand, a single legged hopping
controller may destabilize in the context of two legged hopping due to the presence
of the other leg — unless the controller is modified in some manner. In general,
a component must be able to conform to a compositional rule that specifies how it
should compensate for the behavior of any other component with which it may be
composed.

The compositional approach to robotics, and embedded systems more generally, is
inspired by the success of composition in computer science, particularly with respect
to sequential programming, models of concurrency and the specification of systems.

A sequential programming language, given by a grammar, is by nature composi-
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tional. For example, the statement, “if P then S; else S,” is composed of the
statements S; and S, and the predicate P using the “if-then” composition. Roughly,
the components in a programming language are statements, and the compositional
operators are the standard sequential, branching and looping constructs. In allowing
the programmer to build very complex programs from simple parts lies the power of
programming languages. Composition is used in concurrent systems as well where the
basic components are processes. Systems for modeling concurrent systems are based
on building simple processes and then combining them in various ways [5, 35, 57, 69].
In these approaches, a simple process A is given by a sequence of states (or actions)
and processes are combined, among other ways, in sequence A; B or in parallel A;||A,
(“in parallel,” of course, can mean many things and so must be precisely defined). A
more general approach to composition is to compose specifications of systems [1, 19],
where the more general idea of a “system” refers to a possibly electromechanical arti-
fact as well as the program that controls it. A specification is essentially a description
of how a system should behave, possibly as a function of its environment. When two
systems are composed, however, each becomes a part of the other’s environment.
The challenge then becomes how to program components in isolation while reasoning
about their behavior in concert.

Apparently, then, the compositional approach to designing systems consists of two
parts. First is the design of a set of basic system components and specifications of
their behaviors. Second is a theory of how the basic components may be combined,
in various useful ways, which includes specifications of how the possible combinations
behave. The kind of statements one would like to prove are of the following form:
Anytime property P; holds for system S; and property P, holds for system S then
some property P holds for the composed system S; ® S;. The types of properties
generally desired are safety and liveness (the absence of deadlock), although many
other useful properties can be imagined. Since we are interested in robotics, for
example, we also consider stability or robustness against disturbances (see Section
2.1.2).

Two extremes of the approach can be distinguished, having to do with how strict

the requirements on components are. At one extreme, which one might call the gen-
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eral approach, one: (1) defines a composition of two components to be a certain
transformation on their combined states and actions and (2) proves, given two partic-
ular components, that their composition has certain properties. Thus, the burden is
on the designer to prove that the systems she has composed behave correctly. At the
other extreme, which one might call the careful approach, one can: (1) design a class
of components all of which satisfy some property P, and (2) design compositions that
only apply to components with property P and always guarantee composed systems
with some desired property (). Thus, each compositional operator requires only an
initial proof which may be applied again and again. For example, consider the basic
definition of parallel composition used in process algebras [5, 35, 57] wherein two
processes A and B with common transition labels are combined into A||B, which is
a kind of cross product process with common transitions identified. What A||B does
depends on what A and B do in isolation and so it may or may not be safe, live and
so on. Thus, this composition is a general one where extra formal work awaits the de-
signer. In composing specifications, this is often facilitated by only considering fairly
weak properties [1]. An example of the careful approach is the parallel composition
of cyclic processes along a single shared transition guaranteed to eventually fire. By
considering only cyclic processes with a single shared transition, one can guarantee
that the resulting composition is also cyclic without proving anything extra. In Sec-
tion 2.2, which summarizes [42, 39, 41], we elaborate on this notion and show how
to build, in a compositional manner, a large class of useful cyclic processes — an
example of how the method can scale. Another example of the careful approach that
is proving practical is the annotational technique where the programmer is required
to annotate portions of her code with specifications of, for example, the resources
it will require [77] or a proof of what it does [17]. A compiler then reasons about
what the entire program will (or should) do. These methods are a response to the
scalability problems faced by more general approaches to program semantics such as
partial correctness proofs [34], which can be intractable.

The proofs that composed systems have certain properties vary depending on
the degree to which known properties of the components can be leveraged. This

usually depends on the degree to which the component systems do not interact. The
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system obtained from a general composition of the form A||B is essentially a machine
describing the interaction between A and B; thus, properties of the two components
in isolation are not likely to be of much use [49], although if compositions are suitably
careful some properties of the components can be used [24]. This is not to say that a
composition that does not have a compositional proof is not useful. The point behind
composition is to begin with the intuition that a complicated system can be thought
of as a combination of simpler systems — and not, in the general approach, to treat
composition merely as an aid to verification. Certainly in the careful approach, a
composition for a given type of component need be verified only once.

In Section 2.1 of this chapter we review several compositional methods found in the
robotics literature. Because the idea is relatively new (in robotics) — and particularly
challenging to apply in real world, continuous, uncertain systems — many of these
methods are informal. In Section 2.1.2, we turn to the compositions of controlled
dynamical systems developed by Koditschek and his group [15, 13, 59, 75, 73, 14,
73] out of which grew the present dissertation. Most of these are general parallel
compositions and, as far as we know, a new proof is required for each application.
Sequential composition [15] is careful, however, and applies to dynamical systems
with known attractor structures and known domains of attraction. In Section 2.2
we review in some depth a method for composing hybrid factory robot programs
that is careful and has compositional proofs [42, 39]. It is an extension of sequential
composition to concurrent systems.

The main results of this dissertation, presented in Chapters 3 and 4, concern
the composition of cyclic dynamical systems. In Chapter 3 we show that any set of
cyclic dynamical systems of the form gb = u can be composed into a phase regulated
set of systems. This composition is, therefore, careful. In Chapter 4, we define
a composition of cyclic intermittent contact systems (those that admit a control
authority only in certain states) that has as its basis the composition in Chapter 3.
This latter composition is general in the sense that we have not yet characterized
the class of all intermittent contact systems to which it may be successfully applied.
Instead we show that it produces locally stable systems when applied to ball batting

and hopping robot systems. We also demonstrate, in simulation, that it seems to be
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applicable to other intermittent contact systems as well.

2.1 Composition in Robotics

Inspired by the modularity and scalability of compositional methods in computer
science, robotics researchers have begun to find ways to use compositional ideas to de-
sign increasingly complicated robot behaviors. Unfortunately, compositional robotics
is difficult for all the same reasons that robotics in general is difficult: Useful dynamic
mechanisms are nonlinear and admit no general control methodology, much less a
compositional one; composed components interact not only logically, but physically
too, via difficult to model mechanical and sensory pathways; often the environment
is unstructured and uncertain so that the semantics of components is poorly defined;
and so on. Due to these problems, compositional methods in robotics are either infor-
mal — used as programmer’s aids and verified through experiment or simulation —
or they are applied only in very structured and constrained environments. This sec-
tion is a review of some of the approaches taken with an emphasis, in Section 2.1.2,
on the composition of robot controllers in fairly structured, mechanically dynamic

environments.

2.1.1 Review of Approaches

Many intuitive approaches to the composition of robot behaviors are inspired by
Brooks’ subsumption architecture [10], which is essentially as design methodology. In
this layered approach, a lowest layer consists of basic behaviors (e.g., the application of
a voltage to a motor). Subsequent layers inhibit or activate the lower layers according
to their own rules. With creativity and luck, a useful behavior “emerges” from the
system when it is combined with its environment. Thought of compositionally, each
behavior defines a component, and the interfaces between components (patterns of
inhibition and activation) define compositions. The resulting architecture provides
some modularity and insight to the designer, although no formal results or verification
against specifications are likely to emerge from this method [11].

A similar but higher level approach is taken by Arkin [3] to create reactive behavior
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programs for mobile robots in unstructured environments. A number of low level
behaviors, called schema, provide the basic components. Schema such as “Move
Ahead” or “Dodge” are represented by vector fields on the configuration space of a
robot. A schema manager then, according to rules set by the designer, superimposes
a selection of schema to make more complex behaviors. One commonly used kind of
schema essentially moves the robot in random directions. The schema manager uses
a schema in this class when it senses that no progress is being made. The frequent
use of such random behaviors may be an indication of the trial and error nature of
the whole approach, although it may also be the only way to deal with unstructured
environments. Extending this idea, other researchers [50, 76] have begun to develop
the means to express more subtle combinations of so called “dynamical systems”
controllers.

There is some biological basis for superimposing vector field controllers, although
the evidence is subject to interpretation. Stimulating different points on the spinal
chord of a frog, researchers [7, 58] observe that the muscles produce different force
fields at the ankle of the animal. When multiple points are stimulated, the corre-
sponding force fields are apparently superimposed. It is unclear how this fact can
be used to deduce how the frog executes locomotor behaviors. It has nevertheless
served as partial inspiration for a formal treatment of combining vector fields (in
this and other ways) called contraction map analysis [53]. Contraction maps form a
class of nonlinear dynamical systems that is preserved under superposition and par-
allelization. Contraction maps admit a certain level of analysis and have applications
in control. They in principle allow the designer to compose new contraction maps
from old ones. However, the property that a composed system is contracting if and
only if its components are contracting may not imply any useful behaviors beyond an
amenity to analysis.

An approach to composition that begins to look more like traditional computer
science composition is based on discrete event system composition [48]. Here basic,
low level behaviors are represented by potential field controllers [70, 38| contained in
simple discrete event supervisors [18]. The supervisors are then composed in various

ways with semantics similar to composition in process algebra [5]. The syntax for
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these programs is tantalizingly similar, on the surface, to the syntax one imagines
a robot programming language would have. However, although the feedback from
the environment is given by events, a model of the source of these events is missing,
possibly requiring the use of a theory of partial knowledge to give it a valid semantics
beyond the relatively simple semantics of the finite state machines that describe the
supervisory controllers.

All of the approaches mentioned above are attempts to devise a means of compos-
ing complex behaviors from simpler ones. They are more or less successful not only to
the extent that they allow the designer to express desired behaviors, but also insofar
as they provide a formalism for reasoning about behaviors. Clearly the former area
has seen more success than has the latter. In the next section we review approaches

to composing control algorithms that begin to provide such a formalism.

2.1.2 Composition of Juggling Behaviors

While the approaches to composition in Section 2.1.1 may be appropriate for
highly kinematic environments (where the natural dynamics of the machines studied
are often highly damped), they are not usable in situations where an exchange of
energy between robot and environment is required (e.g., in the dynamical manipula-
tion of objects [72], or in running and hopping [66, 46, 32]). These situations seem
to demand the language of dynamical systems for their encoding. In this section we
review the approach of Koditschek and his collaborators toward composing dynam-
ical controllers for locomotion and nonprehensile manipulation (ball batting) tasks.
Much of this work is inspired by the pioneering and spectacular work of Raibert [67]
in robot hopping. For example, controllers for stabilizing the body pitch, hopping
height and forward velocity of a planar hopping robot, all conceived of in isolation, are
run simultaneously as though they were decoupled [66]. Possibly because each con-
troller itself is a robust, feedback controller and because (luckily) the three tasks are
nearly decoupled, the result is a robot that performs all three tasks simultaneously.
This tactic begins to fail when enough controllers are combined. However, excellent

empirical results warrant further investigation and refinement of these techniques to
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Figure 2.1: Successively more complex compositions of limit cycles (vertical orbits
of the ball) with point attractors (horizontal positions of the ball). (a) The vertical
juggle of one ball on a piston. (b) The planar juggle of one ball on a paddle. (c) The
3D juggle of one ball in space.

enable applications in other domains.

For example, batting a ball on a paddle (Figure 2.1), which has come to be referred
to as juggling in the robotics literature, is quite similar to hopping. The fundamental
control problem in this task is to achieve a stable apex position of the ball and serves
as the basic behavior of the compositional methods discussed in this section and in
part of Chapter 4. Such a task is similar to hopping [67], where a spring legged robot
is controlled to stabilize a certain hopping height by appropriately delivering thrust to
the leg at certain times. In [46] a simplified, one degree of freedom hopper is studied,
and a simple control mechanism (delivering thrust for a constant period of time at
the point of maximal compression of the leg) is shown to stabilize a limit cyclic in
the position/velocity plane.!

In juggling, as we have said, the central task is also to stabilize to a limit cycle in
the vertical position/vertical velocity of the ball plane. Several increasingly complex
versions of this problem are examined in [13] and [73], as illustrated in Figure 2.1. In
the most simple version, the ball is constrained to move only vertically and is batted

by a piston, Figure 2.1(a). The controller for the piston tracks a reference trajectory

LA similar model, in which the stiffness of the leg-spring can be changed at the point of maximal
compression, is discussed in Chapter 4.
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obtained by “mirroring” the ball’s position
r = —u(b, b)b (2.1)

where r is the position of the robot, b is the position of the ball and p is a positive
function of the state of the ball (defined in terms of its energy so that it is essentially
constant between collisions with the paddle). A suitable definition of u results in a
marror law that stabilizes the ball at a particular height. The next most complex
version of the task is to bat the ball in the plane, requiring the stabilization of not
only the vertical apex of the ball, but also the horizontal position of the ball (Figure
2.1(b)). To achieve this, this basic mirror law controller is composed with a PD style
controller for the horizontal stabilization task [44]. The resulting reference trajectory
for the robot is then

0 = — (b, b)Bpaus + h(b, b) (22)

where 6 is the angle of the robot paddle, 6, is the “angle” of the ball with respect
to the center of rotation of the paddle, and A is the PD style controller for horizontal
stabilization. Both 1 and A contain constant gains which must be tuned to stabilize
the controller so that (2.2) is essentially the weighted sum of two controllers. Both
(2.1) and (2.2) can be shown to be locally stable [13, 12]. The task of juggling in
three dimensions with a three jointed robot paddle (Figure 2.1(c)) is addressed in [73]
where the vertical height of the ball and the now two dimensional horizontal state of
the ball are stabilized via the composition of a mirror law controller and a two degree
of freedom PD style controller. The analysis of this controller is addressed in [72].
The composition of mirror law controllers with PD style controllers (by summing
them) is generalin the sense coined in the beginning of this chapter. That is, since the
class of basic tasks to which the composition can be successfully applied has not been
determined, each new composition of controllers must be shown to be correct (stable)
in each new situation. Furthermore, essentially no information about the stability
of the controllers in isolation is used in the proofs — although this information does
guide the intuition of the system designer. Rather a certain invariant manifold in
the configuration space of the ball is shown to be locally stable using a distinctly

noncompositional analysis. Nevertheless, this approach to the parallel composition
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of cycles with point attractors can claim some degree of generality. For example,
the controller for a functioning two degree of freedom brachiating robot [59] may be
interpreted as the parallel composition of a repetitively swung simple pendulum with
a nonlinear PD. Work in progress suggests that similar parallel compositions of a
repetitively swung pogo stick with a nonlinear PD may yield effective controllers for
multi-jointed [75] and even multi-legged [2] running. These last examples, moreover,
begin to hint at a hypothetical explanation of how running animals exhibit ground
reaction forces characteristic of pogo sticks [29]. But for none of these examples has
a general and formal coupling procedure been articulated: a compositional “recipe”
common to the batters, the brachiator and the runners is not yet evident.

Compositions of the sort described above, involving point attractors or points and
one cyclic attractor, satisfy the following steady state behavior: The attractor of the
coupled system is the cross product of the component attractors. The obvious next
step is to consider the composition of multiple limit cycles, that is, to juggle several
balls at once. This idea was introduced by Biihler and Koditschek for a planar robot
[14] and extended to a spatial juggler by Rizzi and Koditschek [72]. In each case,
a continuous switch was used to alternate between mirror laws for each ball. The
construction of such a switch is disscussed in Appendix A. A formal treatment of
these ideas is given in this thesis in Chapter 4.

A simpler composition of controllers, used in juggling and elsewhere, is also prob-
ably the most obvious kind of composition. It is the sequential composition of con-
trollers. Given two controllers, the goal of the first being in the domain of the second,
we simply run one after the other. Sequential composition, also known as preimage
backchaining, was introduced into the motion planning literature in [55] as a method
of sequentially composing motion strategies. In [15] this method was extended to
dynamically dexterous robot manipulators. The idea is to start with a palette of
controllers @4, ..., ®,, for the motion of a robot with configuration space X. Suppose
®;, has domain Dy and goal Gi. Order the palette by setting ®; 3 ®; (read ®; pre-
pares ®;) whenever §; C D,. If the palette is suitably designed, then a switching
strategy may be obtained that drives the robot to a goal from any initial condition in

the union of the domains in the palette, thereby constructing a possibly quite large
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domain from the possibly small domains of otherwise robust controllers. The com-
bination of all the ®,’s forms a new controller. Sequential composition is the basis
of the concurrent composition reviewed in Section 2.2 where the idea is expanded to

include concurrent, decentralized motion control.

2.2 An Example of Scalability: Threaded Petri
Nets

In this section we review an approach to composition that extends sequential
composition to concurrent systems, described in [42] and [39] and developed by the
author of this thesis. The approach is based on a kind of Petri Net [69] called a
Threaded Petri Net (TPN). We only outline the definitions and results to give a
flavor of the power of the careful approach to composition. The inspiration for the
approach is the idea of a bucket brigade: a line of people passing buckets or sand-bags.
A robotic bucket brigade is a perfect example of a decentralized robotic system. Each
robot has the same program: “Wait for previous robot; receive bucket; wait for next
robot; pass bucket; repeat.” A three robot brigade is modeled by a TPN as shown
in Figure 2.2. Each of the three cycles represents a copy of the robot program just
described. The three cycles are composed together to form the brigade. In particular,
each robot only interacts with its neighbors so that the system scales up to arbitrary
length brigades. The main application of TPNs to date is the control of decentralized
assembly systems in manufacturing and is particularly influenced by the modular
approach to factory design exemplified by the minifactory [71].

Specifically, a TPN is a simple Petri Net or marked graph [23] augmented with a
means of assigning and reassigning the (controllable) degrees of freedom of a robotic
system to a palette of continuous controllers. Thus, to each place in a TPN corre-
sponds a function describing a controlled dynamical system. We therefore call places
controllers. To each transition in a TPN there is a redistribution function that reas-
signs the degrees of freedom in its preset to the controllers in its postset. A marking

of a TPN is an assignment of each degree of freedom to a particular role in one of
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Figure 2.2: Schematic of a TPN Model of a three robot brigade. Gray lines illustrate

the redistribution of degrees of freedom among controllers.

the controllers. A transition fires when all of the controllers in its preset are in goal
states. The mathematical details of TPNs are beyond the scope of this dissertation
but can be found in [42, 39] and the proofs of various TPN properties in [41]. For
example, in the TPN in Figure 2.2, a marking may assign robot R; and a particular
bucket B to the controller hold; and robot Ry to the controller wait,. When both
of these controllers reach goal states — R; is firmly holding B and R, is waiting to
receive a bucket — then transition ¢; fires, reassigning the robots and the bucket to
appropriate roles in the controller trans; o, which results in the change of possession
of B from R, to R,.

TPNs, therefore, extend sequential composition to concurrent composition. In-
stead of sequencing a set of controllers — each of which operates on all controllable
degrees of freedom — where one controller may follow another if its domain of attrac-
tion contains the goal set of the other (Section 2.1.2), TPNs use the redistribution
function. Roughly, the cross product of the goals in the preset of a transition must
be contained in the cross product of the domains of the postset of the transition.
This allows many controllers to operate and transition to other controllers simultane-
ously, taking advantage of the fact that in many manufacturing systems, most pairs
of subsystems are decoupled.

Petri Nets themselves can also be composed, by taking unions of nets with common
places and transitions [37]. A careful such compositional method, called gear net

composition [41], is the basis for a “factory compiler” [39]. The point is to compose
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Figure 2.3: The iterative process of constructing a gear net from simple gears.

single-cycle Petri Nets with gear nets in such a way that liveness and reversibility
are preserved. Figure 2.3 illustrates gear net composition. Starting with a single
cycle (or gear), a new cycle is attached. The resulting two-cycle net is live and
reversible (under the assumption that each cycle is marked exactly once). Note that
the attachment site is of the form transition-place-transition. Next, another cycle is
attached to the net and so on, always using the same attachment scheme. One of the
main theorems concerning TPNs [41] is that nets so composed are always live and
reversible. Thus, gear net composition, which only applies to gear nets and cycles, is
a careful composition.

Based on gear net composition, a “factory compiler” has been built and imple-
mented in a simplified, simulated setting [39]. The compiler takes as input a product
assembly graph, which describes how a product is obtained from an operation on its
subassemblies, how those subassembilies are obtained and so on. The compiler pro-
duces as output a description of a factory that produces the product. The factory
description includes a topological layout of robot workspaces and programs for each
robot to run. The collection of programs can be shown to implement a gear net and is
thus live and reversible. Furthermore, for a certain class of product assembly graphs,
this is always the case. Experiments with a simulation of these factories suggest that

the distributed nature of the programming allows the method to scale well. For ex-
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Figure 2.4: Two different factories with 8 and 17 operations respectively show different

startup times (vertical offsets) but similar production rates (slopes).

ample, the rate at which products come off the assembly line is independent of the
number of operations in the factory. In the simulation, after an initial start up time,
during which no products are completed as the initial parts propagate through to the
output buffer, products show up at fairly regular intervals: about 0.6 products per
simulated minute in all factories tested.

There is a strong cyclic nature to gear net models. This is not surprising, since
they are based on gear nets which are cyclic systems. More interesting is that the
factories seem to settle into a certain cyclic velocity — the rate at which they produce
products — although an analysis of how wait modes propagate backwards from the
factory output buffer to the parts feeders has not been done as shown in Figure 2.4.
The simple gear may, in the context of a gear-net-shaped TPN, be functioning more
like a true oscillator than the basic Petri Net semantics describe. Thus, in the next
chapter we will begin to develop an alternative to Petri Nets called phase regulation.
The examples we can presently provide for phase regulation in Chapters 4 and 5 are
much different on the surface from the periodic processes in manufacturing. However,

we believe a link may someday be found that allows the use of the much more dynamic
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and seemingly better suited phase regulation techniques described in Chapter 3 to be

used in manufacturing.
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CHAPTER 3

Coupling First Order Cyclic Systems

In this chapter we consider the composition of n cyclic robotic systems, each of
which has control over its phase velocity (so that 0, = u;) and may use its own
state and the state of its neighbors in computing its update rule. We suppose that
a task is represented as a limit cycle — an isolated invariant periodic attractor —
on a torus of some dimension. For now we suppose that a suitable computationally
effective measure of phase such as action angel coordinates [4] — an abstraction to this
model space from the state space of the robot system in question — can be found.
In Chapter 4, in which we consider intermittent contact systems, we show how to
construct phase coordinates for certain types of systems. We also assume that all
degrees of freedom are actuated. Later, also in Chapter 4, we relax this assumption.
We call the vector fields corresponding to the model dynamical systems we construct
reference fields, roughly comparable to the target dynamics [59] or templates [29]
introduced in allied papers. In Chapter 4 we use these fields to construct feedback
controllers that attempt to make systems with less direct control over their phase
velocities behave like the model systems we construct by having them refer to the
value of the field at each point in their configuration space.

Given a configuration space X with dynamics x = F(x,u), we define a task
for this system to be a submanifold M C X with a dynamical system of the form
y = G(y) € Ty, M defined over it. A control law u = g(x) performs the task (M, G)
if

1. M is an attractor (i.e., an asymptotically stable invariant set) and
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2. the restriction dynamics on M is given by G.

In this chapter, we wish to control n one dimensional oscillators each of whose
phase ¢;(t) can be thought of as a point in the circle S'. We take as a representation
of the circle the interval [0, 27] with its end points identified. Thus, all values of ¢;
are considered modulo 27. We frequently consider smooth 27-periodic functions of
R and smooth functions on S! equivalently. Each oscillator also has a phase velocity
(b(t) € R which, as discussed in Section 1, we consider to be the control input for the
oscillator. Thus, ¢; = u;.

The configuration space of n such oscillators is the n-dimensional torus,

™=5"x..xS8".
n times

The tasks over the torus that we consider in this chapter are constant flows on subtori.
They thus have the form (T™, G) where 0 < m < n and for § € T™, G(f) = a, a € R™.
Since we are presently only interested in limit cycles, we take m = 1 so that T™ = S'.
In Section 3.2 we show how to construct reference fields over T?, and in Section 3.3
we extend the idea to a particular task in n dimensions: the problem of coordinating
the oscillators so that they exhibit particular phase relationships in a decentralized

manner.

3.1 Specifying Phase Relationships

As mentioned in Section 2.1.2, composing some number of cyclic tasks requires a
specification of the desired phase relationships between them. We also would like to
specify the communication structure to be used by the system by stipulating which
oscillators are neighbors of any particular oscillator. To proceed, we define a con-
nection graph as follows. Define C' to be an n X n symmetric matrix over the set
{0,1,—1} where C;; = 0 for all . We interpret C as follows. If C;; = 1, then it is
desired that oscillators ¢ and j be in phase: ¢; — ¢; = 0 (mod 27). If C; ; = —1, then
it is desired that ¢ and j be out of phase: ¢; — ¢; = m (mod 27). If C;; = 0 then
no phase difference is specified — although one may be implied transitively via other

connections.
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O——— 4

(a) (b)
Figure 3.1: Two different connection graphs. The system (3.10) obtained from (a)

results in an “alternating tripod” behavior, whereas the system (3.11) obtained from

(b) does not.

We describe two examples. The first is a specification suitable as the basis for the
control of a six legged robot. It consists of six oscillators, one for each leg, connected
so that there are two disjoint, fully connected in-phase tripods and one out-of-phase
connection between a representative from each tripod. The second is a specification
that produces an unintended behavior — that is, one where the connection matrix
does not give a system that performs the task associated with it over the entire domain
of the system. In Section 3.4 we demonstrate how to check these systems using the
results in Section 3.3.

Let ¢1, ..., ¢¢ represent the phases of each of six oscillators and suppose that os-
cillators one through three correspond to the first tripod and four through six, the
second. And suppose one and six are connected out of phase. The connection matrix

that realizes this scheme, illustrated in Figure 3.1(a), is

( 1)

Calt == (31)

o O = o= O

0
0
0
0
1
1

o O o = O =
o O O O = =
_ o = O o O
o = o= o O

\ -1 /

Another seemingly natural way to specify an alternating tripod is to suppose that

the six legs are arranged in a ring, with each out of phase with its neighbors, as
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illustrated in Figure 3.1(b). It turns out that this specification cannot be realized

with our method, as is shown in Section 3.4.

[0 -1 0 0 0 -1}

Chad = . (3.2)

3.2 Two Dimensions

To illustrate our idea, we consider the task of regulating two oscillators with phases
¢1 and ¢, so that (1) the rate of change of each phase is some desired value and (2)

the phases are maximally separated. This is specified by the connection matrix

Cy = . (3.3)
-1 0

To define a reference system for this task, we proceed in two steps. First, we define
a potential energy function V on T? which has a unique minimum at ¢, = ¢ +
7 (mod 27). Then we take the negative gradient —VV and add a drift term (1,1)7
which suspends the gradient system in the two dimensional torus. We define the
potential energy function V over T? by V (o1, ¢2) = cos(¢ps — é1)

This function, shown in Figure 3.2(a), has the set {(¢1, ¢2) | $1—¢2 = 7 (mod 27)}

as its minimum. We define the reference field to be
- 1
R(p1, 02)" = K1 . — ko VV (1, 02) . (3.4)

Here k9 is an adjustable gain that controls the rate of convergence to the limit cycle.
The circles ¢o = ¢1 and ¢ = ¢ + 7 are equilibrium orbits. The first is unstable, the
second is stable. See Figure 3.2(b). Thus, this field performs the task specified by Cs.
Speaking compositionally, we say that the two separate tasks ¢'51 = k1 and (;32 = K1

have been composed by adding to the system the coupling term —kyVV (1, ¢o).
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2xt”

¢1

Figure 3.2: The two dimensional reference field. (a) The artificial energy function V'
on the phase difference ¢; — ¢o. (b) The reference field (3.4) obtained by suspending

the negative gradient of V' in the torus.

3.3 Multiple Oscillators and Arbitrary Connections

In this section we consider multiple oscillators and the further constraint that the
reference fields we construct be in a certain sense decentralized. In particular, we
build systems x = R(x) such that R; depends only on a subset of the phases in the
system — a set of “neighbors” that has been designated by the designer. We examine
only systems whose task dynamics have QSZ = a € R for all 7 and concentrate on the

decentralized aspect of the problem. In particular, we propose the following method.

1. Identify the connections desired in the reference field. That is, specify with

which neighbors the controller of a given oscillator must communicate.
2. Label the connections as either “in phase” or “out of phase.”
3. Construct an energy function that respects these constraints.

4. Suspend (a generalized version of) the gradient of this function to complete the

reference field and check that it meets the specifications given by the labeling.

The last step arises because the third step may not be able to realize the phase

relationships specified in the second step while respecting the connections enforced
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in the first step. However, we supply a criterion to check this property.

Definition 3.3.1 The task specified by a given connection matriz C is given by

the set
. T
Mo ={(¢1,.,8n) | Vi,§ Cij #0 — ¢ — ¢ = 5(1 - Cij)}
with the dynamics

(0.51, ) ¢n) = I€1(1, . 1) .

We will give a reference field R based on C' that performs this task in some instances,
depending on the structure of C'. As we have stated, however, we supply a criterion
to check that a given reference field actually performs the specified task.
From C we define a reference field R (o1, ..., ¢,) by setting
bi = Ky — Ky ZC"J sin(¢; — ¢;) (3.5)
j=1

where k; and ko are constant gains. We will show that R arises from the suspen-
sion of a gradient-like system on the subtorus defined on the differences between the
oscillators. In particular, let V;; = —C; ;cos(¢; — ¢;) and set V to be the energy

function

V=> V. (3.6)
i<j
To simplify our analysis, we will transform (3.5) to a more convenient, form. To this
end we introduce the following notation and definitions.
Let x = (¢, ..., ¢)". We will first define the system y = L,x obtained from the

phases of the oscillators to be all possible differences between phases, corresponding

to the connections in the graph.

Definition 3.3.2 For each n > 1 we define the @ x n dimensional difference

matrix L, recursively as follows. First, set Ly = (1,—1). Then, for each n > 2 set

where I, is the n X n identity matriz, the upper left hand part of the matrix is an

(n—1)(n—2)
2

(n—1) x 1 vector of ones and the lower left hand part of the matriz is an x 1

vector of zeros.
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For example, with four oscillators, the difference matrix is

(1 -1 0 o0
1 0 -1 0
1 0 0 -1
L4:
01 -1 0
01 0 -1
\o0 0 1 -1)

_ _ T
and y = Lyx = (1'1 —X2,X1 — X3, X1 — X4,T2 — T3,T2 — T4,T3 — $4) .

We now express the reference field (3.5) in this notation.

Definition 3.3.3 Suppose the n X n dimensional connection matriz C' is given. Let

C be the n(";l) X ”(”271) dimensional diagonal matriz
[ Ci \

Cl,n
Ca3

I

O]
I

CQ,n

\ | Co 1 )

Also, let 1 = (1,...,1)T be a vector of n ones. The matrix C essentially lists the edges

of C down its diagonal. Then the reference field associated with C is
Re(x) = k11 — ko LEC's(Lyx) (3.7)
where x = (B, -, ¢u)7 and s(y) = (sin(y), ., sin(ym))”.

The reference field R¢ induces a vector field which we denote by G on the connections
y = L,x given by

y = G(y) 2 L,%x =k L,1 — koL, LTCs(y)

" (3.8)
= —ko L, LYCs(y)
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since L,1 = 0.

To understand the dynamics of (3.8), and therefore of Rg, we show that they
are gradient-like. That is, its equilibrium states are the minima of some energy like-
function. A function U : X — R is a LaSalle Function (a generalized Lyapunov
function) for the vector field & = F(z) if its image is compact and if U(z) £ DU -
F(z) <0. We have

Lemma 3.3.1 The energy function V : R 5 R defined by (3.6) is a LaSalle
function for G.

Proof: Since V(y) = =), ; Ci;cos(y;;), taking derivatives gives DV = s(y)*'C.
Then
DV - G(y) = —k2s(y)" CLo Ly Cs(y) = —al [ L5 Cs(y)]| < 0

__n(n—1) n(n-1)

since C' is symmetric. Finally, the image of V' is contained in [— 55—, =], proving

the lemma. O

n(n—1)

Let w(Y) be the forward limit set of the set ¥ = R~ 2 ~ under the dynamical

system y = G(y). Our first result is a characterization of w(Y). We have

Theorem 3.3.1 The forward limit set w(Y) of G is equal to {y | G(y) = 0}, the

zeros of G.

This is the criterion for checking that the specifications given by C' are met by Rg —
we will discuss this after we prove the theorem. First we note a simple fact:
Fact: If L,w = 0 then wy = wy = ... = w,. This follows from the form of L, in

Definition 3.3.2. If L,w = 0 then

n—1
w1 Wn

Wa

from which the result is obvious.
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We also recall LaSalle’s Invariance Principle [51], which is used in the proof of

Theorem 3.3.1.

Theorem 3.3.2 (LaSalle’s Invariance Principle) If V : Y — R is a LaSalle function
for G, then w(Y) C {y | V(y) = 0}.

Proof (of Theorem 3.3.1): We will first show that L, LIy = 0 if and only if LTy = 0.
The result then follows from set equalities. So suppose that L,Lly = 0. Let w = Ly.
Then L,w = 0 implies that wy = wo, w1 = ws, ..., w,_1 = w, by the above fact.
Thus, w = LTy = a1 for some o € R. Also, taking the transpose of L,1 = 0 gives
17LT = 0 from which we can conclude that 17 LTy = 0. This means that 17a1 =0
which implies that o = 0. Thus, LTy = 0. We conclude that LLTy =0 < LTy = 0.

Now we have

w(V) € {y|V(y)=0}
= {y|s(y)"CL.LCs(y) = 0}
= {y|L"Cs(y) = 0}
= {y|LL"Cs(y) = 0}
= {y|Gly)=0}.

The first inclusion is by 3.3.1 and LaSalle’s Invariance Principle. The second to last
equality is because L,LTy = 0 < L'y = 0. Finally, by definition, {y | G(y) = 0} C
w(Y) and thus, {y | G(y) =0} =w(Y). O

Note that the y system has dimension n(n — 1)/2, yet the differences between
n oscillators in a connected network can be characterized by n — 1 appropriately
chosen differences. In other words, the y system has insufficient rank. Thus, we work
with the smaller system obtained by taking the first n — 1 elements of y, to analyze
particular systems. From these differences, all other differences may be defined as
long as the graph associated with the matrix C' is connected. To this end, we define
a projection

Po= (I |0)
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where the right part is an w x (n—1) dimensional matrix. Then set z = P,y =

(b1 — P2, p1 — b3, ..., ¢1 — ¢,,)T. We will also need a pseudoinverse of P,, namely

PTI _ I’n—l
Ln—l
Then the z system is
z = H(z) 2 PG(y) = ko P, L, LT Cs(Plz). (3.9)

Note that V£V o Pl is a LaSalle function for this system.
From the dynamical system defined on the connections between the oscillators,

we can deduce the behavior of the total system x = R (x). We have

Corollary 3.3.1 The limit set w(T™) of the system x = R¢(x) is equal to the set
{x | H(P,L,x) = 0}. The dynamical system restricted to this set is simply &; = Ky for
each i. Furthermore, if z* is a stable fized point of H, then the set {x | P,L,x = z*}
s a stable orbit of Rc.

Thus, to check that the reference field Ro performs the task specified by C', we check
that the stable orbits of x = Rg(x), which are given by the stable fixed points of
z = H(z), correspond to the task.

3.4 Examples

In this section we apply the above criterion to the examples in Section 3.1.

3.4.1 Example 1: An Alternating Tripod

Start with the connect graph Cy; defined in (3.1) and let x = (¢, ..., ps)T. The
system is then

X = I{ll - KQLgéaltS(LGX)

where C,; is defined as in Definition 3.3.3. To understand this system, we use Theo-

rem 3.3.1 and examine the system (3.8), given in this case by
¥ = —LeLg Cans(y)
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where y = Lgx (without loss of generality we let ko = 1). Now take the projection

z £ Py to the first five elements of y to get the system

( 2sin(z;) + sin(z; — 22) + sin(zg) — sin(zs) \

sin(zy) — sin(z; — 22) + 2sin(z2) — sin(zs)

z=H(z) £ sin(z;) + sin(zy) + sin(zz — 24) + sin(z3 — z5) — sin(zs) . (3.10)
) — sin(zs)

\ sin(z1) + sin(zo) — sin(z3 — z4) — sin(z4 — 25) — 2sin(z;) )

sin(z;) + sin(zy) — sin(z3 — 24) + sin(zy — 25

Setting z = 0 and solving for z gives 72 fixed points. Straightforward calculation of
the eigenvalues of the Jacobian of H at each of these points shows that only one fixed
point, namely (0,0, 7,7, 7) is stable and the rest are unstable. Using Corollary 3.3.1,
we conclude that the task performed by this system is given by

alt—{(¢1,--,¢6)|¢1—¢2=¢1—¢3=03nd¢1—¢4=¢1—¢5=¢1—¢6:7T}

with the task dynamics qﬁ, = K1, which is equivalent to the task specified by the

connection matrix Cy;.

3.4.2 Example 2: An Unintended Behavior

Now consider the specification given by Cy,q and defined by (3.2). In this case,
# = —PsLg LY Cyoqs(PJz) is given by

/ 2sin(z1) + sin(z; — 22) + sin(zs) \

sin(z;) — sin(2z; — 22) + sin(zy — 23) + sin(zs)

z=H(z) = sin(z1) — sin(ze — z3) + sin(z3 — 2z4) + sm(z5) . (3.11)

sin(z;) — sin(zg — z4) + sin(z4 — 25) +
)

\ sin(z1) — sin(zs — 25) + 2sin(2s) )

The desired fixed point of this equation is (, 0, , 0, 7), which is indeed stable. How-

2 4m 0 2 47r)
)

ever, if we check the eigenvalues of the Jacobian of H at the point z* = (£ 35350, 5,3

we find that the z* is stable, among others. Thus, the system (3.11) does not perform
the task specified by Cy.q because it has five distinct, stable limiting behaviors.
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3.4.3 Example 3: Where Linearization Doesn’t Work

Next we consider the system, similar to the one in Example 3.4.2, obtained from

the four node cycle

which gives the z system

2sin(z1) + sin(z; — 29) + sin(z3)
z=H(z) £ | sin(z) — sin(z; — 22) + sin(zo — 23) + sin(z3)

sin(z;) — sin(zg — z3) + 2sin(z3)

This system does indeed perform the task associated with C;. However, the analysis
is more difficult than the previous two examples because the solutions to H(z) = 0
are not all isolated, hyperbolic fixed points. In fact, all points in the circle {(7 —
s,m,s) | s € [0,2m]} are solutions to H(z) = 0 among others. The eigenvalues of
the Jacobian of H evaluated at these points are 0, 2cos(s) and —2cos(s) so we can
conclude that all of these points are repelling except z} = (3,0, %) and z3(—%,0, —%).
In fact, the Jacobian evaluated at these latter two points evaluates to the zero matrix
and so further analysis must be done. Numerically, z} and z; do appear to be unstable

as do the rest of the zeros of H except for the point (,0,7), which is attracting and

corresponds to the task described by C}.

3.5 Summary

Although we have introduced a formalism for coupling oscillators with a desired
connection specification, we have left many questions about this class of systems
unanswered. In this final section of the chapter, we list several conjectures that are
informed by extensive simulation experience with various connection graphs. These
conjectures, for the most part, concern the form of the connection graphs we have

introduced and attempt to sidestep the analysis of the zeros of H.
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First, let us call a reference field R associated with the connection graph C' well
formed if it performs the task specified by C. Next, call a graph C' consistent if,

for any cycle vy, ..., v in C' we have

CUI:'Uk H C”j,'”j+1 =1

Thus, a graph is consistent if it does not specify transitively that an oscillator be
out of phase with itself. The first conjecture is: 1) If Ro is well formed then C is
consistent and connected. We have no hope of proving the converse since the graph
Chaa in Example 3.4.2 is consistent but R, , is not well formed. However, we could
begin to add edges to C that are consistent with edges already in C'. This leads us
to the next conjecture: 2) If C' is connected then there exists a consistent graph C’
such that C C C" and R is well formed.

By examining a large number of consistent, connected graphs it is apparent that
cycles often cause R¢ to be not well formed. Thus, another conjecture is: 3) If C' is
a tree then R is well formed. Furthermore, trees made up of well formed subgraphs
seem to be well formed. That is, suppose C4, ..., C, are well formed and Cj,.. is a

tree containing exactly one node from each C;. Put

C= Ctree U LnJ Cz

i=1
Then the conjecture is: 4) R¢ is well formed. A corollary to (3) that is related to (2)
is: 3’) If C is consistent and T is a spanning tree of C, then Ry is well formed and
performs the task specified by C.

The coupling function we use for these graphs is the sine function. The next

conjecture is that no other coupling function performs better. Specifically, suppose

R, is defined by
¢i=1-) Ci;f(¢i— &))-
7j=1

Then the conjecture is: 5) Ri, with f(z) = sin(z) is well formed if and only if Ry,

with f(x) equal to any other 27 periodic function is well formed.
More generally, we desire a set of graph operations that preserve well formedness.

The tree construction above is one such (n-ary) operation. Furthermore, we desire a
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complete set: The set of all well formed reference fields should be obtained from the
closure of some set of basic graphs with respect to a set of well formedness preserving
operations on graphs. Such a theory would eliminate the need to do an analysis of the
solutions to H, as done in the examples above, and would be an important and prime
example of the compositional approach reviewed in Chapter 2 applied to continuous
control systems. Investigating the answers to these questions represents, hopefully,
future work by the author and his collaborators. The simple reference fields we are
able to construct so far, however, do have many uses. These are explored in the next

chapters.
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CHAPTER 4

Composing Intermittent Contact Systems

To demonstrate the relevance of the reference dynamical systems constructed in
the previous chapter to robot control, we show in this chapter a means of constructing
controllers for a kind of intermittent control problem where there is at least one degree
of freedom that may only be actuated under certain circumstances. For example, we
consider the task of bouncing a ball on a paddle (a kind of juggling), wherein the
robot may only actuate the ball during collisions. The rest of the time the ball is
under the influence of gravity alone. The other example we consider is the control
of hopping robots where there is a flight phase. While on the ground, the robot has
some affordance over its trajectory. While in the air, it does not. The question we
address is whether the assumption of continuous actuation made in Chapter 3 can
be relaxed, allowing us to use the cyclic reference fields (3.5) we have defined as the
basis of control algorithms for these systems. The answer so far seems to be yes.

Both of these tasks, juggling and hopping, are cyclic. Furthermore, the height of
the bouncing ball (or the hopping robot) corresponds to phase velocity: the higher
the ball goes, the more energy it has, the longer it takes to complete a cycle. In
Section 4.1 we describe how to change from the body coordinates of these systems
to phase coordinates which are more natural for dealing with cyclic systems — the
first step toward casting the problem as a phase regulation problem. In Section 4.2
we describe the tasks of bouncing a single ball and hopping a single leg. The main
difference between the two is that bouncing a ball to a certain height is done with

deadbeat!control, while hopping to a certain height is achieved only asymptotically.
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Then we show how to juggle two balls with one paddle and how to synchronize two
hopping robots, using as a basis the reference field (3.4), and analyze the stability of

each control algorithm.

4.1 Phase Coordinates for Intermittent Systems

We first show how to obtain phase coordinates for intermittent cyclic dynamical
systems, by which we mean systems for which a global cross section can be found.
Let f': Rx X — X be a flow on X. Formally, a global cross section ¥ is a connected
codimension one submanifold of X which transversally intersects every flowline. For

any point z € X, define the time to return of x to be
tT(z) = min{t > 0| f'(z) € 3} (4.1)
and define the time since return of x to be
t () =min{t>0] f(z) e T} . (4.2)

The first return map, p : ¥ — X, is the discrete, real valued map given by p(z) =
[t (). Let s(z) = tT(x) +t (z). sis the time it takes the system starting at the
point f*" (z) € ¥ to reach ¥ again. Now, define the phase of a point z by

b(z) = 20 (4.3)

Notice that the rate of change of phase, q'ﬁ, is equal to 27/s. The relationship of these
functions to X is shown in Figure 4.1. Therefore, ¢ is constant or piecewise constant,
changing only when the state passes through X.

In the examples we give in Section 4.2, the function A : X — Y, defined by
h(z, ) = (¢, ng), is actually a change of coordinates where X is the space of positions

and velocity pairs and Y = S! x Rt. In juggling, we use the section ¥ C X defined

!By deadbeat control in this case we mean that from the environment model an appropriate
paddle velocity may be determined so that the ball achieves a desired height in one hit. This is not
the case in hopping, given the spring stiffening control authority assumed. Because deadbeat control
is not very robust to model uncertainty, usually a feedback term is added in similar to that in (4.7)
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Figure 4.1: The relationship between ¢t~ (z), t*(z) and z.

by z = 0 which corresponds to the set of states where the robot may contact (and
thereby actuate) the system. In hopping we use the section in X defined by & = 0
and z < 0 which corresponds to the lowest point in a hop. See Sections 4.2.1 and
4.2.2 for the definitions of these systems. By construction, h(X) will be given by the
set @ = {(0,¢) | ¢ € Rt} in both examples. In these intermittent control situations,
it is only in € that ¢ may be altered by the control input u. That is, we change <;5
according to a control policy u to get the return map in phase coordinates p' : € — €
given by p'(0, (;5) = (0, u(qﬁ)) We design the controller so that there is a unique and
stable fixed point at some desired phase velocity ¢* = w.

Of course we really want to control the system so that the return map p has a
stable fixed point at some z*. Whether or not h~'(0,w) = (0,%*) depends on the
dimension of Y. If dim ¥ = 1, as it will be in the examples we supply, then the
preimage of w is indeed a point. Otherwise there must be some additional control
mechanism which regulates the remaining degrees of freedom.

The main point of this section concerns the composition or interleaving of two
such cyclic systems. That is, we suppose we have the system (z,Z1, T2, T2) € X2
with corresponding phase coordinates (¢, él, 0o, ¢2) € Y2. As before, system i may
only be actuated when ¢; = 0. In the examples we consider, we suppose that it is
undesirable for the systems to be actuated simultaneously. Thus, the set of states

where ¢; = ¢ = 0 should be repelling. One task that realizes these goals is (M, G)
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where

M £ {(¢1’ éla ¢2, ¢2) | ¢1 = ¢2 +m (mOd 27T)}
G(p1,82) 2 (d1,60) = (w,w) - (4.4)

The constraint ¢, = ¢ + 7 (mod 27) encodes our desire to have the pair of phases
as far from the situation ¢; = ¢ = 0 as possible, which in juggling, for example,
corresponds to the case where both balls collide with the paddle simultaneously.

To analyze and control such a system, we restrict our attention to the sections
¥, CY?and ¥, C Y? defined by ¢; = 0 and ¢, = 0 respectively. For now, suppose
that the flow alternates between the two sections. Let ¢' = H o F* o H~! be the flow
in Y2 conjugate to the flow in X? where F' = (f, f) and H = (h, h) and

7i(w) = min{r > 0| ¢"(w) € ¥3_;} .

Start with a point w € ¥;. Let w' = ¢™ (w) and w” = g™ (w'). We have w' € 3, and
w"” € Y1, so we have defined the return map on ;. Now since g is parameterized by

the control inputs u; and uy; we get

w = (Oa¢;17¢27¢;2) = wl = (¢’1’u1’0’¢.§2)

= w" = (0,uy, ¢y, ug)

Thus, the phase velocity updates ui(w) and wus(w') must be found so that (4.4) is
achieved. See Figure 4.2(a) for an illustration of the return map. This derivation is
based on the assumption that there is direct immediate control over phase velocity
during updates, which turns out to be the case in juggling. In hopping, however,
there is only asymptotic control over phase velocity updates. This case is shown in
the more general Figure 4.2(b) where the delay between the assertion of control and
its effect on phase velocity is represented by the function ¢ which maps a control input
and current phase velocity to the updated phase velocity. In Section 4.2.2 we describe
in detail the form of g which, as mentioned, is nontrivial in the case of hopping.

In Section 4.5, we will show that simply choosing u; = R;(¢},0), the first com-
ponent of a 1:1 reference field as in (3.4), and us = Ry(0, ¢%) for well chosen values

of k1 and ko results in a controlled system that realizes the task (3.3.1). First we
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Figure 4.2: Construction of the return map for a two degree of freedom intermittent contact
system. (a) Control of individual phase velocities is deadbeat. (b) Control of individual

phase velocities is asymptotic.

describe the two systems and their control laws in detail, describing in particular how

to obtain the phase coordinates of each.

4.2 Two Examples of Intermittent Contact Tasks

In Section 4.2.1 we consider as an example of a cyclic, intermittent contact prob-
lem, the task of bouncing a ball vertically on a piston to a desired height. In this
fairly simple task, the paddle can hit the ball at just the right velocity to achieve the
desired height in one collision (assuming such actuation is within the torque limits of
the paddle), as described in [14]. In Section 4.2.2 we describe a model of a one degree
of freedom hopping robot, inspired by Raibert’s hopper [67], similar to that studied
in [46]. In this model, the robot hops on a spring loaded leg and has control over the
stiffness of the spring. We assume that it may instantaneously change the stiffness of
the spring just before the decompression phase, at the point of maximal compression,
thereby roughly modeling the effect of a pneumatic piston of the type used by Raibert
in the design of his hopping robots [67]. With the control algorithm we give for this
task, the robot may only approach the desired hopping height asymptotically, so that
the discussion at the end of Section 4.1 only approximately applies. Nevertheless,

when regulating two such hoppers, the same control idea — to “sample” the refer-
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ence field at the cross section — applies in this situation as well. In Section 4.3 we
describe how to juggle two balls at once and how to synchronize to hoppers. Then in

Section 4.5 we give analytical and numerical evidence that this method is correct.

4.2.1 Juggling

Consider a system wherein a paddle with position p controls a single ball with
position z to bounce, repeatedly, to a prespecified apex. Suppose the paddle always
strikes the ball at p = x = 0 and instantaneously changes its velocity according to
the rule

Tpew = —ad + (1 + a)p. (4.5)

The constant 0 < @ < 1 is the coefficient of restitution. We suppose that the velocity
of the paddle is essentially unchanged by collisions. Evidently, a paddle velocity of
p=(a—1)/(a+1)i will set e, = —%. Now define n = 1i* + vz to be the total
energy of the ball, where v =~ 9.81 describes the force due to gravity. By conservation
of energy, 77 = 0 between collisions. Set n* to be a desired energy (corresponding to

a desired apex). Define a reference trajectory for the paddle to follow by

U= cx (4.6)
where
a—1
= k(n—n* 4.7
=S+ k=) @7

is constant between collisions. p is called a mirror law because it defines a distorted
“mirror” of the ball’s trajectory. As the ball goes up the paddle goes down and wvice
versa. The gain, k, adjusts how aggressively the controller minimizes the energy
error. If we assume that the paddle follows the reference trajectory very closely, the
dynamics of the paddle are then a function of the ball position so that the system is
effectively two dimensional (the position and velocity of the ball). It can be shown
[14] to drive the ball to the height corresponding to the energy n*.

Using (4.3) we define the phase ¢ of the ball so that ¢ = 0 when it leaves the
paddle, ¢ = 7 at the highest point of its flight, and ¢ = 27 as it hits the paddle

again. Suppose the ball rebounds from a collision with the paddle with velocity
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Figure 4.3: The relationship between phase, phase velocity and the orbits of the (a)
juggling and (b) hopping systems. Shown with black lines are typical one-cycle orbits,
corresponding to a certain phase velocity, and with dashed lines, the curves ¢ = /2

and ¢ = 37/2.

Zo. By integrating the dynamics & = —v and noting that collisions occur when
x = 0, we obtain the time since the last impact and the time between impacts —

computationally effective instances of (4.1) and (4.2) — as

o 0
=207 and s=t 4t =220 (4.8)
y

=
Y

respectively. The change of coordinates h : (Rt x R) — (0,0) — S* x R" from ball
coordinates to phase coordinates is given by h(z,#) = (¢, ) where, following the

recipe (4.3), we take
b= W(xo.— ) and ¢="7. (4.9)

Zo 3.70
In Figure 4.3(a) we illustrate the relationship between phase, phase velocity and the

orbits of the juggling model.

4.2.2 Hopping

We model a single, vertical hopping leg, a mass m = 1 attached to a massless
spring leg, by a dynamical system with three discrete modes: flight, compression and
decompression. The latter two modes each have the dynamics of a linear, damped

spring. The flight mode is entered again once the leg has reached its full extension.
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The equations of motion are

—g if >0 (flight)
z = —w?(1+ )z —2wpt if 1 <0AZ <0 (compression)

—wi (14 B2)x — 2wo ot if 1 <0OAZ >0 (decompression)

where w and § are parameters which determine the spring stiffness w?(1 + 4%) and
damping 2w during compression. This model is similar to that studied in [46] where
a period of thrust at the beginning of decompression was used to stabilize the hopper.
We abstract the dynamics of thrust and suppose that, during decompression, thrust
simply results in a change in spring stiffness and damping. Thus, wy and [, are
control inputs in our model.

Let z;, be the lowest point that the robot reaches in a given hop, just before

decompression. In Appendix B we show that choosing 3 =  and wy = w7 (z3) where
7= (1=ky)e’™ /(1 — 1)

results in a feedback controller that stabilizes the system to have its maximal com-
pression point at k. In fact, it can be shown that the discrete, real-valued return map
f : R~ — R~ that takes the maximal compression point of cycle k£ to the maximal

compression point of cycle k + 1 is

(1 — kb).’L'b

4.10
[ (4.10)

Th,next = f(xb) =

To determine the phase of this system, it suffices to derive the period, s(z), of a
cycle starting at (xp,0). The value of s is obtained by summing the decompression
time t4, the flight time ¢;, and the compression time ¢.. It is shown in Appendix B

that

s(zy) = ta+tp+t.
(7T — 01)65“(1 — iL'b)
1=k
2
— 2001 = k)1 + e <1L) 4o
Y

— Ty w

(4.11)

1
8

phase of a point (z, %) to be ¢(z, %) = 2nt~ (x,4)/s(xp). In Figure 4.3(b) we illustrate

where 6; = tan~!(+). Given the period corresponding to a particular z, we define the

the relationship between phase, phase velocity and the orbits of the juggling model.
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Figure 4.4: (a) A plot of a typical orbit of the system described in (4.10) in position-
velocity space. (b) A plot of f(zp) showing iterations of the return map for the same
system. (c) A plot of g(T), the conjugate map, showing corresponding iterations. Note
that the convergence to the set-point is asymptotic in this system. For these simulations,

w=6,8=0.1, k, = —1.5.

It can be shown that s is a diffecomorphism on (—oc,0). We may, therefore, work

equally well with the conjugate map,
g(T)=so fo sil(T) (4.12)

representing each orbit of the system (4.10) uniquely by it’s period. The functions f
and g are plotted, along with sample orbits, in Figure 4.4.

4.2.3 Controlling Phase Velocity

By changing n* in (4.7) we change the desired energy of the ball. This corresponds
to changing the desired phase velocity which is 7y/4/2n*. Thus, n*, or more generally
the coefficient ¢ in the mirror law (4.6), can be used as a control input to the single
juggle. This idea is used in Section 4.3.1 to combine two two-juggles. Similarly, the
gain k; in (4.10) can be used as a control input which affects the point x;, of maximal
compression in a hop. Of course, z;, corresponds to the period, as shown in Figure
4.4, which is the same as the phase velocity. The value of £, is used to change the
periods of two hoppers in Section 4.4 so that the synchronize. The responses of (4.10)

and (4.12)to changing ky, for example, is illustrated in a simulation in Figure 4.5.
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Figure 4.5: The responses of (4.10) and (4.12) to changing k;

4.3 Implementing the Reference Dynamics

Knowing how to juggle one ball, or control one leg, should somehow lead us to a
way of juggling two balls or synchronizing the controllers of two legs. We now show
how to use the reference field (3.4) in the case that A: B = 1:1 to accomplish both of

these tasks with only slight modifications to the control algorithms presented above.

4.3.1 Juggling Two Balls

For a two ball system with ball positions x; and z,, we obtain two phases ¢,
and ¢,. The velocity (b, is reset instantaneously upon collisions, corresponding to the
update rule (4.5).

We next take advantage of the fact that the flow G' = H o F* o H=!, described
in Section 4.1 and instantiated here, has the very simple form (yi, 91, yo, 92) — (y1 +
U1t, U1, Yo + Uat, §2) between collisions. For each ball i we define a mirror law, u; which
the paddle should follow when it is about to hit ball 7. First, define the lookahead
function C1(¢1, ¢2) to be the phase of ball two when the next ball one collision occurs.
Then )

Ci(1, ¢2) = %(27 —¢1) + ¢2

1
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Now, for the first ball we require that, after its next collision,

él,new = ._7r7 = B T = :R1 o 01(¢1, Qﬁg) (4.13)

Tnew  —i1 + (14 a)erdy
where ¢; is the coefficient in the mirror law trajectory u; = c;zq and Ry(4) is the
first component of the reference field (3.4) evaluated at (¢, ¢2). Let 1, be the energy
of the first ball. Solving for ¢; and using the fact that when x; = 0, the potential

energy is 0 so that z; = \/2771, gives

o= ——— |ay/2n — (4.14)

(1+ 04 Rio Cl(¢la ¢2)

A similar expression for ¢y can be obtained in terms of Ry 0Cy. This gives us a mirror

law for each ball. Combining these trajectories into a single trajectory of the form

p=sp1+ (1 —s)ps (4.15)

that allows the paddle to manage both systems requires an attention function s : T? —
[0, 1] which is 1 before ball one hits and 0 before ball two hits. The construction of s is
relegated to Appendix A because it would otherwise be a distraction to the problem
at hand. We will assume in Section 4.5 that, away from the situation where both
balls strike the paddle simultaneously, the paddle can service both mirror laws in an

interleaved fashion.

4.4 Synchronized Hopping

Now suppose we have two physically unconnected hoppers, operating simultane-
ously, with states (z1, 1) and (xq, £3). We will show how to control both hoppers so
that they are kept out of phase (one is at its highest point while the other is at its
lowest point) and so that they stabilize at a desired hopping height z} (or period T%).
We do this essentially by changing the set-points, now denoted k;, for each hopper
according to the phase of the other hopper. This corresponds to changing the period
and thus allows us to regulate the relative phase of the hoppers.

To apply our phase regulation algorithm we reset the gains ks ;, each time a leg

reaches its lowest point, according to the reference field (3.4) so that
kb,i — R((I%) = kb — ks sin(qﬁj) (416)
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where 7 = 3 — ¢ and k; is a gain about which we will have more to say later. The
parameter k; sets the desired lowest point in a cycle (which defines the hopping height
and, equivalently, the period). Recall that k, corresponds to period. It appears in
the first term of the phase regulation expression instead of phase velocity because
it is convenient to later analysis. Using the fact that changing z;; is equivalent to
changing the period 7T, this amounts to a period adjustment scheme for each leg
that pushes them out of phase with each other. However, a leg does not respond
immediately to the reset because control is asymptotic and not deadbeat. It must,
therefore, be shown that this simple method indeed achieves the desired result.

We have defined a system that may be described by the state vector
r = (¢1,¢2,T1,T2) €T x R" x R"

which evolves as follows. We have ¢Z = 27 /T; until some ¢; becomes 27 = 0. At this
point, its desired hopping height (equivalently, period) is changed according to (4.16)
and the period is reset according to the assignment T; < gy, ,(Ti). The system then

continues similarly.

4.5 Analysis

We now analyze the local stability of the controlled systems described in Section
4.3. To analyze such systems, we derive the return map of each as described in Section
4.1. We let ©y = {(¢1, ¢o, b1, d2) | ¢1 = 0} and define a map F : ¥y — ¥, that gives
the phase of oscillator two, and the phase velocities of both oscillators, just before
the first oscillator’s phase becomes zero. — under the assumption that zero phase
crossings alternate. That is, start with a point w € 3;, integrate the system forward
to obtain a point in Y, then integrate again to get a point in F(w) € ;. Then,
compute the Jacobian Jy« at the fixed point w* of F' corresponding to the out of
phase situation given by (4.4). If the eigenvalues of the Jy~ lie within the unit circle
in the complex plane, then w* is a stable fixed point of F'. In both models we show
this to be the case for certain parameters of the system.

Notice that when A : B =1 : 1, then R(0, ¢2) = R(¢1,0). To simplify notation
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in this section, we redefine R : S — R to be the reference field restricted to ¢, = 0.
Therefore, with A:B =1:1,

R(P) = k1 — Ko sin(g). (4.17)

4.5.1 Local Analysis of Juggling

Supposing that the paddle in the juggling system exactly tracks the reference
trajectory (4.15), we may consider the juggling system to be equivalent to the system
(61, da, b1, do) € T2 x R? where ¢; is constant except for discrete jumps made when
¢; = 0. These jumps are governed by the reference field (3.4). That is, when ¢; = 0,
é; instantaneously becomes R(;).

A point in ¥; has the form w = (0, ¢2,</51,q52). This maps to the point w' =
(Cl,O,IR(ngQ),gZ)g) € Yo where C; is the phase of the first system when the trajec-
tory of the total system first intersects ¥s. w' in turn maps to the point f(w) =
(0,Co, R(¢1), R(C1)) where C is the phase of the second system when the trajectory
next intersects YX;. The phases C; and Cy, which can be obtained via the point-slope

formula for a line (in the ¢1, ¢» plane), are given by

CROG) o RCY
== (2m — ¢2) and Co R(6n)

Let (z,y,2) = (¢2,¢1,¢2). Then, expanding f(w), we obtain a discrete, real valued

Ch

2r — C) . (4.18)

map on Xy given by

- ~ R o
Tg+1 = R(zr) |:27T %k (2 k)

e = R(z) (4.19)

1 = R[R(Zi’“)(%—xk)} |

Since the x and z advance functions are not functions of y, we can treat y as an
output of this system. Thus, analytically, it will suffice to treat (4.19) as an iterated
map of the the variables (z, z) € S x R given by F(zy, 2¢) = (Tg11, 2k+1). We have

the following fixed point conditions:
Proposition 4.5.1 F(z,z) = (z,2) if and only if R(z) = R(27 — z) = 2.
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We omit the proof, which is straightforward algebra (note that the values of x are
always taken modulo 27 since z = ¢, € S!). For the reference field we are using, we

have:

Corollary 4.5.1 If R(¢) = k1 — ko sin(¢), then the only fixed points of F are (7, K1)
and (0, k).

We wish to show that the first fixed point, (7, k), is stable, since it corresponds to
the situation where the two subsystems are out of phase and at the desired velocity.

To do this, we examine the Jacobian:

2 22
K] — 3K1K2T + Ko . (@W )

2 K1
W F = il 4.2
T (s ) e (4.20)
K2 K1

Values of x; and kg which guarantee that the eigenvalues of (4.20) lie within the unit
circle are not difficult to find. For example, if the desired phase velocity k; is given,
then we can choose ky, which adjusts how aggressively the balls are pushed out of

phase, to be ky = 2k /m:

Proposition 4.5.2 If k, = %/@1/% then the eigenvalues of Jix . F are both 1/2. The

point (m, k1) is a stable fived point of F under these conditions.

The proof is just a calculation: simplify (4.20) using the constraint and compute the
eigenvalues. In practice, it is not difficult to find other parameters which make F'
stable. For a given x;, we first choose ko to be quite small and increase it slowly

while the controller remains aggressive, yet still stable. It is also simple to show

Proposition 4.5.3 The eigenvalues of J,)F are 0 and 1+ 4'72%. The point (0, k1)
s an unstable fized point of F'.

This follows from the fact that x; and ko are both positive. Proposition 4.5.3 shows
that the situation in which the two balls collide with the paddle simultaneously is

repelling: the system is driven away, locally, from this “obstacle”.
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4.5.2 Local Analysis of Synchronized Hopping

In deriving the return map of the juggling system, (4.19), we used the fact that
the paddle can strike the ball at just the right velocity to realize the reference field
directed updates to phase velocity. In the hopping system, however, adjusting the
spring stiffness in decompression does not allow for this. That is, in the juggling
system, after a ball one hit, the phase velocity is adjusted according to <i51 — R(¢2).
However, in the hopping system, when leg one reaches the bottom-most part of a cycle,
the spring stiffness is adjusted so that the period of the hopper is reset according to
Ty — gk, (1)) where g is as in (4.12) and k, = R(¢) is obtained from the reference

trajectory.

Derivation of the Return Map

Define to be 3 = {(¢1, ¢, T1,T5) | 1 = 0}. Assuming that resets of the legs alter-
nate, we construct the return map F': ¥ — 3. We begin with a point (0, ¢2, 71, T3)
just before resetting the period of hopper one. This evolves until a reset of hopper two.
If we suppose that C' is the phase of hopper one just before hopper two is reset, then,
just after the reset we have the point (C1,0, g(R(¢2), T1),T2), where g(ky, T') = gi, (1)
is as in (4.12). This point evolves back to X so that the state just before hopper one
is reset for a second time is (0, Cy, g(R(¢2),T1), g(R(C1),T»)) where C5 is the phase
of the second hopper just before the second reset of the first hopper. Calculating C}
and Cy we have

1

O = Ry )

Q(R(%)a Tl)
9(R(C1), Tz)

Letting z = T}, y = ¢ and z = T5 we obtain the three dimensional, discrete, real-

02 (27’(’ - 01)

valued return map F(z,y,z) = (2',y',2') corresponding to the oscillating system

(4.10) defined by
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Figure 4.6: A simulation of the 1:1 juggling system described in Section 4.3.1. The

positions of the balls and paddle are shown as functions of time.

. 9(R(y), z) p_ %
Yo IR Gtz 27 —v)), 2l [2 9(R(y), )

Z = g|R( (27r—y)),2]. (4.21)

9(R(y), =)

It is instructive to compare these equations with the return map (4.19) for juggling
— the difference being the appearance of g which accounts for the lag between the

assertion of control and its effect.

Local Stability of the Return Map

It can be shown that the point (7*,7,T*) is a fixed point of this system, where

T* = sy, (kp) is the period corresponding to the set-point k,. We now have

Proposition 4.5.4 The point (T*,7,T*) is a stable fized point of the system defined

by (4.21) when the synchronization gain ks is chosen to be

(o= bk [ka _o4 /1 4kb+3k§}. (4.92)
b

The proof is given in Appendix C

4.6 Numerical Studies and Simulations

We have simulated various combinations of hoppers and jugglers with various

couplings and observed that our method stabilizes each system as expected. Figure
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Figure 4.7: A simulation of the juggling system for A: B = 3:4. Each dot corresponds
to a ball-paddle collision in a simulation with 40 collisions. (a) The first 20 collisions
are scattered around the equilibrium orbit. The second 20 are at the equilibrium

orbit, showing 3 ball one hits for every 4 ball two hits.

4.6 shows a simulation of the 1:1 juggling system described in Section 4.3.1. Besides
the relationship on the the synchronization gain k, required to show Proposition
4.5.2, other settings of the gains are satisfactory as well. Increasing ko increases the
response time of the system. However, a higher setting results in equation (4.19)
becoming period two stable, the period four and so on. Eventually, too high a setting
gives what appears to be chaotic behavior.

Although Proposition 4.5.2 requires a 1:1 coupling, we have in fact observed in
simulation that any ratio A: B that we tried could be stabilized provided that ko is
small enough. Figure 4.7, for example, shows the hit-points in (the phase of ball two
for a ball one collision and wvice verse) in a simulation of a system with A: B = 3:4
which stabilizes after only a few ball/paddle collisions.

In Proposition 4.5.4, constraining the value of k, to a function of k;, achieves ana-
lytical simplicity but is hardly necessary. Numerical simulations of the synchronized
hopper system suggest a wide interval of &, settings around the guaranteed values in
(4.22) yield stability. In Figure 4.8, we show a simulation starting from arbitrarily
chosen initial conditions which eventually stabilizes at the desired hopping height
and phase relationship. In our simulations, with &, suitably small, we could not find

initial conditions that did not eventually stabilize — leading us to believe that the
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Figure 4.8: A simulation of the 1:1 synchronized hopping system described in Section

4.4. The positions of the leg masses are shown as functions of time.
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Figure 4.9: A simulation of six hopping robots synchronized into two out of phase
groups. The two groups consisting of robots one, two and three and robots four, five

and six respectively, are forced to be in phase with other members of their groups.

system is in fact globally asymptotically stable.

Of course, the general theory laid out in Chapter 3 and particularly in 3.3 may
be applied to intermittent contact systems with more than two oscillators. Figure
4.9 shows a six-hopper system as an example of this. The connection matrix for the
system is (3.1) and thus specifies an alternating tripod wherein two groups of three
are synchronized out of phase.

We also investigated the eigenvalues of (C.1) numerically without the simplifica-
tion (4.22). For example, fixing k,; and changing k;, results in the following situation:
when k;, = 0, the system is not stable (the eigenvalues have magnitude one) because
the hopping height is zero and, therefore, the decompression phase never ends. As k;
decreases (resulting in a larger hopping height), the sizes of the eigenvalues decrease
for a time and then one of them increases toward one as k; approaches —oo. If we
instead fix k, and vary k,, the we observe the following: when £, = 0, there is no cou-

pling and the system is only neutrally stable at the fixed point. As k, increases, the

60



Kb ks

Figure 4.10: (a) Magnitudes of the eigenvalues of (C.1) (without the simplification
(4.22)) versus kp with w = 6, § = 0.1 and ks = —0.1. (b) Magnitudes of the

eigenvalues versus k; with w =6, = 0.1 and k, = —2.

system stabilizes until a certain point, after which the magnitude of one eigenvalue
exceeds one. In our simulations, values of k; larger than the point at which two of
the eigenvalues become imaginary resulted in significant overshoot of the fixed point
and longer convergence time. We usually chose ks to be such that the eigenvalues are

all real, and this improved performance.

4.7 Discussion

We have described two intermittent contact systems: ball batting and hopping and
shown how to use the reference dynamics of Chapter 3 to combine such systems into
synchronized version. We believe that these systems are representative of a a larger
class of intermittent contact systems in general. For example, it has been shown [25]
that the Stick Insect regulates the phase relationships between its legs using only the
posterior extremal position (PEP) of each leg. The PEP is the back most angle that
a leg reaches during a given power stroke, or stance phase. The further back PEP is,
the longer the period of a leg’s cycle is. If PEP is less far back, the period is shorter.
Cruse [25] has proposed and experimentally verified a model of gait regulation for the
stick insect which is based on certain communication mechanisms between the legs.
Thus, the control of gait in this animal seems to be decentralized and intermittent.

In [16], Callvitt and Beer analyze the stability of a two legged model of the stick
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insect with one way communication (from one leg to the other). In [43], we show
for our own dynamical model of the stick insect that the reference field idea (where
PEP is modulated in a way similar to (4.16)) can mimic a two way version of the
Cruse mechanism for synchronization. Our method, furthermore, can be adapted
produce to other behaviors by altering the energy function V' (as in equation (3.4)).
We believe that our method is somewhat more parsimonious and better applicable to
the task of controlling robots — as in Chapter 5.

There are several avenues yet to explore regarding the work presented in this
chapter. First of all, the analyses in Section 4.5 are local. Although numerically,
in simulation these systems seem to have global stability properties, the analysis
of two and three dimensional return maps is difficult and has not been done here.
Furthermore, we assumed that hit points alternate when constructing the return
maps. The transients encountered in other mode sequences need careful attention
as well. This has not been done here, although once again, numerically evidence
suggests stability. Finally, although it is easy to construct and simulate systems with
more than two components being synchronized, these systems are high dimensional
indeed. A more sophisticated approach is needed before the stability of such systems
can be regularly investigated. Finally, it is possible to compose composed systems
hierarchically in the following sense: one a system is phase regulated, its phase can be
defined as well. For example, a synchronized pair of hoppers represents a cyclic system
itself and can be synchronized with respect to another pair, and so on. Simulations
not reported here suggest that the gain to use as an input to a pair of systems is the

nominal phase velocity represented by x; in (3.5).
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CHAPTER 5

Application to the RHex Robot

The oscillator networks we constructed in Chapter 3, and specifically those similar
to the examples in Section 3.4, can be used to produce gait controllers for legged
robots. We first saw this in the stick insect model in Chapter 4. In this chapter we
consider gait controllers for the six legged RHex robot [74] shown in Figure 5.1(a).
RHex is a result of an approach to building robots called functional biomimesis [45],
where the design of mechanisms is inspired by biological example in function but
not necessarily in detail. The philosophy of functional biomimesis is that practicable
engineering designs are derived from biological understanding by developing analogies
at the appropriate level of abstraction. Thus, each leg of RHex is a one degree of
freedom, spring leg instead of a six degree of freedom leg as might be found on a more
appearance-based biomimetic robot. Despite its distinctly unnatural appearance and
apparent kinematic simplicity, RHex is designed to mimic certain functions exhibited
by sprawled posture, many-legged runners such as the cockroach species Blaberus
discoidalis.

Each of RHex’s legs is controlled by a single motor, mounted at the hip, with
encoders used to measure their angular positions. Although RHex has some sen-
sors (accelerometers and gyroscopes) we consider only the position of each leg in our
algorithms — particularly the error between a leg’s position and some reference sig-
nal. In Section 5.1 we review a very simple (yet successful) centralized, feedforward
controller (described in [74]), for generating an alternating tripod gait for the robot,

which drives each leg to follow an appropriate reference trajectory. In Section 5.2
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Figure 5.1: (a) The RHex robot has six one DOF, compliant legs. RHex weighs
about 7 kg and is roughly the size of a shoe box, about 50 cm x 30 cm. (b) The gaits

discussed in this chapter send a fast-slow-fast profile to the legs, as shown here.

we describe an alternative means of controlling RHex, which uses a coupled oscillator
network and velocity-based PD control. We show that by tuning a certain gain we can
mimic the feedforward controller or investigate the effect of feedback from the legs.
In Section 5.3 we report the results of initial experiments with the coupled oscillator
controller that suggest that a certain amount of feedback of the sort facilitated by

our controller reduces the power consumption of the robot slightly.

5.1 Feedforward Control

The basic part of the centralized, feedforward controller [74] for RHex is a central
pattern generator, or CPG, which is in part inspired by the idea of biological pat-
tern generators — units of neural tissue that oscillate in isolation and excite motor
activity in intact animals [60, 64]. Beginning with the work of [21] and continuing
through more elaborated refinements [22, 52, 47, 28|, a flourishing applied mathe-
matical literature has employed dynamical systems theory to model the nature of

such feedforward motor control signals, as mentioned in Chapter 1. The feedforward

64



controller for RHex represents a very simple application of the CPG idea.
In RHex, the CPG is a simple, internal oscillator ¢, € [0,27]/{0 ~ 27} with the
dynamics

(b = Vcpg

where v, is a constant parameter that ultimately affects the speed of walking. Each
leg follows a reference trajectory that is a function, f,,s illustrated in Figure 5.1(b),
of ¢pg. More correctly, each leg has its own copy of f,r,y which it may instantiate
with different values of the parameters. The velocity parameter v.,, together with
the parameters 0y, kg and ko in fp,,r, which correspond to the sweep angle, the
duty factor and the leg offset (as illustrated in Figure 5.1(b)) are used to tune the
walking behavior.

Denote by 64, ..., 0 the angles of the legs. In the most simple mode of the feed-
forward controller, using PD control, the legs in the first tripod, #;, 85 and 85, are
made to track fprof(depg) While legs in the second tripod, 6, 84 and 6, are made to
track fprof(@epg + ™). The result is that the two tripods alternate: While tripod one
is in the slow part of the profile, where the legs are likely to be touching the ground,
the other tripod is in the fast mode of the profile, swinging over the top of the robot.
The duty factor kg4 controls the amount of overlap the two tripods have in slow (or
fast) mode with k4 = 0.5 corresponding to no overlap. Other modes of operation
can be obtained by changing the parameters of the different leg reference trajectory
functions. For example, the robot can be made to turn in place by having the legs on
one side of the robot track the reverse of their reference trajectories. Also, the robot
can be made to turn while walking by increasing k,; for legs on one side of the robot
and decreasing it for legs on the other side.

With this simple control scheme, RHex is uniquely successful in its ability to
“scamper” over rough and variable terrain. Because of its inherent mechanical sta-
bility, balance and foot placement are of minimal concern and the legs are used more
to propel the body forward. We suspect, however, that more efficient means of loco-
motion may be possible, particularly if a control scheme which incorporated feedback
from the legs (with respect to ground collisions, for example) could be devised. To

that end, we introduce a more decentralized controller that allows for feedback, as
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described in the next section.

5.2 Decentralized Feedback Control

The above controller is centralized in the sense that the CPG sends the same
signal (possibly out of phase) to each leg. A decentralized version of the same idea
can also be constructed. We start with six peripheral pattern generators (PPGs), one
for each leg. Each leg tries to match its phase velocity with the PPG. A PPG, like
a CPG, is an oscillator. Unlike a CPG, however, the phase velocity of a PPG is not
constant; it may be affected by other PPGs or by sensory-motor activity. Each PPG
tries to match its phase and phase velocity with the phase of a corresponding leg
and also tries to synchronize, with respect to some coordination specification, with
the other PPGs. Figure 5.2 illustrates the connection structure of this decentralized
scheme. The structure of the internal PPG network can be anything consistent with
the fully connected graph shown in gray in the figure where each tripod is out of
phase with the other. In practice, we have experimented with the fully connected
graph and with the first graph in Section 3.4.

We suppose that we have velocity control of the legs, even though the steady state
velocity of a motor for a given voltage command is just that and not the velocity
immediately obtained upon application of a particular terminal voltage. Thus, given

the present velocity v; and desired velocity v; .y of motor 4, we apply the voltage

‘/;ommand = m[vi - kD('Uz' - Ui,'ref)]

where m maps steady state velocity to voltage using the parameters of the motor and
the attached gear box. kp is a tunable gain.

The problem of controlling each leg, then, is to provide it with the reference
velocity v;,er. Let z; € [0,27] be the position of leg i, let ¢; be the phase of PPG i.

Then we desire

Viref = (kpsin[z; — fpror(¢i)] + 1) éif;rof(qbi)- (5.1)

Thus, if z; — fyrof(¢i) = 0 — that is, if the position of the leg corresponds to the
desired position given by the PPG — then this equation is simply v; ;. = b; Forop (i)
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Figure 5.2: The structure of the oscillator network implementing the distributed gait
controller for the RHex robot. The connection structure of the internal oscillators is
gray, indicating that various subsets of the complete graph illustrated can be used —
as long as they perform the task specified (see Chapter 3). The legs are coupled to
corresponding oscillators via gains kj,, which determines the strength of the feedback
signal from the legs, and kp, which determines the strength of the feedforward signal

from the oscillator.

which is the desired velocity given by the PPG. The sin term is the feedback term
and is based (essentially) on the phase difference between the leg and the PPG. The
constant gain kg is used to tune the amount of feedback.

The internal oscillators are connected via a connection matrix (see Chapter 3) C
which specifies an alternating tripod that the corresponding oscillator system (in the
absence of the legs) can perform. The equation for an individual oscillator is similar

to (3.4) with a term added to synchronize the PPG with its leg:

6
i = Viger — ks Y _ Cizsin(g; — ¢;) — ky sin(¢; — 65) (5.2)

=1

where 6; is the “phase” of leg 7 and is given by

0; = f,;if(l‘i)-
The gain kg tunes the internal synchronization strength, and the gain k£, controls the
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amount of feedback from the leg. When the PPG is perfectly synchronized with the
other PPGs and with its leg, its phase velocity is simply vp,-

In [43] we argue, with respect to a similar control scheme for a very simple model
of a planar robot, that the gains k; and kg correspond to the various extremes of
feedback wversus feedforward and centralized wversus decentralized. Thus, if £k, = 0
then the system is feedforward and centralized, — essentially the same as the control
scheme in Section 5.1, because in the absence of disturbances from the legs, the
internal oscillators will synchronize and essentially send the same signal to all the of
legs as would a single CPG. If k£, is small, then the gains kg and kp seem to tune the
degree of decentralization. If they are small, then the PPGs and the legs are more
independent of each other. If they are larger, then the PPGs are more yoked to each

other, and the legs are less independent.

5.3 Initial Experimental Results

Our initial experiments with the coupled oscillator controller for RHex focus on
the feedback/feedforward axis of control and its effect on power consumption. In its
present configuration, RHex can operate on level ground for about 30 minutes before
its batteries are drained. A more power-efficient gait may increase RHex’s running
time. One way to gauge the power efficiency of a locomoting robot is with specific
resistance [30], which for our purposes is defined by

7] (5.3)
mgu
where P,,, is the average (electrical) power consumption of the robot, m is its mass,
g is the force due to gravity and v is the velocity of the robot.

Presently, the electronics and motor driver circuitry of the robot account for about
43.6W. While walking, power consumption rises from this baseline by about 10W,
with spikes of up to another 50W when the legs strike the ground or switch from fast
to slow. The specific resistance measure takes into account both the power needed
to walk and the electronics power. We suspect that future versions of the robot will

be more efficient in terms of the power consumption of the electronics so that even
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Specific Resistance versus Leg Feedback (KL) (Error Bars are Std. Deviation)
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Figure 5.3: Specific resistance, :f;j, as ky, varies where I,,, is the average electrical
power of the robot, m is the mass of the robot, g is the force due to gravity and v
is the velocity of the (center of mass of the) robot. For these experiments, kg = 1.5,
ks = 2.0, kp = 2.25, vepy = 8.5 seconds, kg = 0.69, 0, = 0.61 radians and kqf =

0.69.

a small drop (as percentage of the total value) in specific resistance for the present
version may represent a greater percentage of the same measure in a later version of
the robot.

To measure s for RHex, we placed strips of tape on a smooth, level, cement floor
parallel and 3m apart. We started RHex walking with the coupled oscillator controller
1m behind the first strip going toward the second strip. When the robot crossed the
“starting line,” we started, via remote control, logging the time, battery current and
voltage as well as the leg positions and phases of the internal oscillators. We stopped
logging when the robot crossed the “finish line.” From the logged current and voltage
data we obtain electrical power as P = I'V. Average power is computed to be the
sum of all power readings divided by the total number of readings. The velocity is
computed as Azx/At = 3m/(t; — tg) where ; is the time logging began and ¢, is the
time logging ended.

Figure 5.3 shows the effects on specific resistance of varying &z from 0 (purely
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Figure 5.4: Synchrony of the legs (solid line) and synchrony of the internal oscillators
(dashed line) versus time for £, = {0, 1,5} and the rest of the parameters as in Figure

9.3.

feedforward) to 2.0. In all, seven values of k; were examined. For each value, six
experiments were done, represented by the data points. The error bars represent the
experimental standard deviation over the six experiments. A small dip in the value
of s near k;, = 1.5 is apparent in this figure. Evidently, the feedback to the PPG
network delivered by the legs has a good effect on power consumption. Beyond 1.5
the measured value of s increases with kz, and after a certain point (k; > 8.0) the
walking controller destabilizes (not shown).

Some intuition about why an increase k, should lower s can be found by examining
the degree of synchrony of the internal oscillators and of the legs. For an alternating

tripod gait, with legs 1, 3, and 5 in one tripod and legs 2, 4 and 6 in the other, a
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measure of synchrony is

o= (5.4)

6
3 eilostm)
=0

where ¢ = +/—1. A similar definition of the synchrony of the leg phases is obtained

using the 6;s and is denoted by ©. A value of 0 for these measures means perfectly
un-synchronized while a value of 1 means perfectly synchronized. The question is, for
various values of k7, how well do ® and © coincide? Roughly speaking, the idea is
that the internal oscillator network is acting like a model of the external legs. If the
model is good, then © and ® should be close. In Figure 5.4, © and ® are plotted as
functions of time for three different values of k. In the first plot, k;, = 0 so that the
internal oscillators synchronize and stay synchronized. Meanwhile, the legs attempt
to follow the feedforward signal generated by their corresponding PPGs. When £k,
is increased, ® fluctuates as the legs hit the ground and temporarily desynchronize
with their PPGs. The result is that the legs do not have to “do as much work” to
synchronize with their PPGs because the PPG phases are closer to the leg phases
than they would be without the extra feedback term in (5.2). When £y, is even larger,
the internal oscillators are much less synchronized so that the totality of the reference
signals they are sending to the legs do not describe an effective alternating tripod

gait, and both © and ® fluctuate considerably.

5.4 Further Work on RHex

As these initial experiments show, the parameters in the coupled oscillator con-
troller warrant further investigation. The gain £k in a sense tunes the strength of
the feedback from the legs, defining a “feedback/feedforward axis.” The gains kg and
kp tune the strength of the coupling between oscillators, in a sense defining a “cen-
tralized /decentralized axis.” Thus, the controller gives us a two axis design space to
explore for the right combination of gains for optimal power consumption. We have
only explored a small part of the space. Ultimately, however, the coupled oscillator
controller as described above does not “know” enough about the task of walking. A

more informed controller for each leg, one that will not lift off until the other tri-
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pod is about to touchdown or one that synchronizes itself with the compression and
decompression dynamics of the spring legs is needed. We believe that the coupling
mechanisms introduced in Chapter 3 will, nevertheless, apply to synchronizing such

controllers.
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CHAPTER 6

Conclusion

This thesis represents a subset of our attempts to make formal a simple idea that
has already been used more or less intuitively in the lab as matter of common practice.
The idea is to compose already working controllers into larger, coupled controllers.
The point is to reuse knowledge about how to perform subtasks in order to under-
stand how to perform some global task. The work of Koditschek and Burridge on
sequential composition of juggling behaviors [15] and the work of Biihler, Rizzi and
Koditschek on juggling two balls with a paddle [14, 12, 73] was the starting point for
this investigation, but we have also been informed by other work in computer science
and robotics as outlined in Chapter 2. Presently, devising a broadly applicable class
of controller compositions, and beginning to propose a general theory, is a very dif-
ficult, although fundamentally important, problem. Such a theory could be applied
toward controlling or understanding anything composed of many similar parts: agile
manufacturing systems where factories need to be built from off-the-shelf components
and programmed in time to get a critical product to market; legged locomotion of
robots where many legs do essentially the same thing; biological and neuro-mechanical
systems, which seem to be decentralized and are certainly composed of similar parts;
embedded systems with hundreds of sensing, actuating and communicating proces-
sors; and so on. An understanding of controller composition may even address the
symbol to signal problem, which is the problem of grounding the meaning of a symbol
in a physical system. We might call a controller a symbol, or try to put differential

topology on the same footing as the logical topologies encountered in Domain Theory
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and seemingly demanded by discrete event supervisory controllers or specification
languages. Although we have only begun to understand composition and have only
scratched the surface of what is possible, the compositions described in this thesis
nevertheless comprise a significant step toward a theory of controller composition.
In developing our compositional approach, we discovered obstacles that many
others have undoubtedly encountered before us. Essentially the problem is this:
Controllers do not compose transparently unless they are practically decoupled to
begin with. Otherwise composition requires no small amount of either luck or perhaps
wizardly intuition. We envision a specification language that can describe how a
large system is composed of subsystems and how each of the subsystems further
decompose. That the actual implementation will have the same discrete structure as
the specification may be too much to hope for, however, unless we restrict ourselves
to very simple, structured situations. This is exactly what we have done in this
thesis and in other work ([39, 42|, outlined in Section 2.2). In juggling, the task
of the paddle, besides managing the energy of the two balls, is to keep the balls
separated in space (as in the three degree of freedom case [73]) and in phase, thereby
essentially decoupling them. In the case of the two hoppers are already decoupled.
With the RHex controller, we imagine that the ground is only a minor disturbance
(which of course it is not) to an otherwise mechanically decoupled set of six legs. In
the manufacturing work, concurrently operating controllers are separated into disjoint
workspaces. Sequences (or threads) of controllers are obviously decoupled in that they
operate at different times. The composition of nonlinear PD horizontal stabilization
with ball energy stabilization in the work on ball batting with a paddle [14] or the
parallel stabilization of body pitch, hopping height and forward velocity in hopping
[67] is more interesting. An argument can be made, however, that these separate tasks
operate on different degrees of freedom (or different controllable submanifolds of the
state space) that are all but decoupled (and completely decoupled at equilibrium).
Robust feedback control takes care of any coupling that might sneak in. Perhaps,
then, the task of composing controllers is that of determining how to arrange or
manage them so that they feel decoupled, either because they are in fact decoupled

in time or space or because of the presence of some coupling mechanism, such as the
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coupled oscillator framework in Chapter 3.

Another theme that has emerged from our investigation of compositional methods
is decentralization, as indicated by the title of this thesis. As noted in the introduction,
models or frameworks for decentralization of control systems have not been developed
or are not widely accepted or practicable. Certainly in discrete systems, concurrency
models such as Petri Nets are quite useful. But two systems of differential equations
look essentially the same even if one is derived from a network and the other is not.
Nevertheless, systems whose components are of the form (1.1) do stand out as a new
and interesting class of problems — especially if the neighbor relationship changes over
time or is subject to interference. The coupled oscillator networks and the Threaded
Petri Nets are the first examples we have produced of such decentralized systems. We
hope that our methods will apply to other systems and tasks as well.

We next review some unanswered questions raised by this work which have not

already been asked in the summaries of the individual chapters.

Reference Fields from Connection Graphs These systems are a wonderful
source of complexity. A graph may yield a system that performs the desired task
or performs some other task. Its fixed points may or may not be hyperbolic, and in
general a complicated repellor/attractor structure arises for which we do not have a
general analytical technique. We do not even have a method for solving H(z) = 0.
Ultimately what is desired is a computationally effective method for determining the
behavior of a system given its graph. Such a method would be quite interesting
if it did not rely directly on obtaining and analyzing the zeros of H. It would be
more informative and unique if the method instead was based only on the structure
of the graph. Suppose for example that predicates such as “C contains such and
such a subgraph,” “C' can be composed from some of these simpler graphs” or “C' is
(represented by) a string in the language generated by a particular grammar” could be
used to determine the behavior of the corresponding system. This would tie together
topological dynamics and graph theory in a completely new way. Another way of
putting together reference systems is hierarchically. The phase of a reference system

can be defined as the phase of its limiting behavior. Thus, two such systems can be
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phase regulated. This certainly deserves some attention as it captures the idea of

composition very nicely.

Using Reference Fields We have used reference fields to control intermittent con-
tact systems and to drive a PD-like velocity controller for RHex. An obvious question
remains: How can reference fields be used for systems with other control authorities?
What about qﬁl = u; for example? More interestingly, can phase regulation be com-
bined with the Petri Net cycles discussed in Section 2.27 These systems have wait
modes which seem on the surface to be antithetical to phase regulation. But perhaps
not. One place where one can imagine such a thing working is in a new controller for
RHex. The coupled oscillator controller does not “know” about configuration space
“obstacles” such as the undesirable situation in which all the legs are up in the air.
Wait modes can avoid this and other situations. However, away from such obstacles,
phase regulation based on reference fields seems like the right approach. One can
imagine situations on an assembly line where such a technique might be useful as
well. Finally, the reference field idea itself can be extended to systems other than
cyclic dynamical systems and used as a template for producing behaviors for systems
with control authorities more complex than & = w. This idea is similar to Ostrowski’s

work on nonholonomic systems [62].

Gait Regulation As discussed in the introduction, there is evidence that insects
and other animals use networks for coupled oscillators to produce rhythmic move-
ments in their limbs so as to locomote. This is essentially what we have done with
our RHex controller. It remains unclear, however, why one would choose a particular
connection structure over another and what the role of feedback is in these systems.
In Chapter 5 we supplied one simplistic idea of how feedback could be incorporated
into a network of oscillators, but certainly there must be more informed ways of doing
this. Another aspect of the RHex controller that we explored but did not report on
in this thesis (although see [43]) is the degree of centralization of the controller, which
can be, to a first approximation, related to the gain k9 in (3.5) which clearly controls

how tightly coupled the oscillators are. A smaller value for ks loosely corresponds to
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more autonomy for each oscillator. In general, we can (just barely) perceive a two axis
design space for controllers like the RHex controller. One axis is feedforward /feedback
and the other is centralized/decentralized.! Locating a particular point in this de-
sign space as being more or less optimal according to some measure (such as specific

resistance) is the challenge.

6.1 Final Thoughts

The methods for the decentralized phase regulation of cyclic systems presented in
this thesis, and compositional methods in general, are attempts to address the prob-
lem of scalability in robotics and control. The approach is inspired by the success of
computer engineering, which has taken advantage of the recursive explosion enabled
by computer languages to produce complex software systems and VLSI hardware
that would not be possible without modularity and abstraction, the hallmarks of a
compositional approach. Can robotics and control achieve the same heights? The
applications of the future — embedded systems, micromechanical manipulation and
assembly, nanosystems, computational biology and chemistry — demand methods
that can conquer the complexity that the presence of thousands or millions of in-
teracting components entails. Decentralization, modularity, abstraction and coupling
(or communication) mechanisms all seem to be a part of the solution, as demonstrated

in this thesis.

! This is probably the wrong terminology. Decentralized has to do with where decisions are made
and actions are executed. The gain ks really controls how much a particular oscillator conforms to
its neighbors.
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APPENDIX A

Construction of Attention Functions

In this appendix we will generally work in the covering space R? of T? or restrict
our attention to [0,1]%> — thinking of the torus as the square [0,1]? with opposite
edges identified. The attention function we define is a two times differentiable function
s :[0,1]> — [0, 1], as required by PID control, that remains C? under the identification
of opposite edges.

The construction of s takes several steps. First, we consider just the attracting
limit cycle of the reference field R (3.4) as encoding the essential behavior of the
system. Collisions occur where this cycle crosses either of the two sections ¢; = 0 or

» = 0 of T?, thereby defining a characteristic sequence of collisions in the limiting
behavior. We define a function s; from the limit cycle to the interval [0, 1] where
sy = 1 near ¢; = 0 and s; = 0 near ¢ = 0 and varies smoothly between these
extremes at all other points. Next, we extend s; to a switch function on the rectangle
[0,1] x [-1,1] via an operation that is like a reverse deformation retraction. The
result is a switch function on a two dimensional strip built around a copy of the limit
cycle. The rectangle is then stretched, rotated and offset to lie between the lines
Ay = Bz and Ay = Bz + 1. Finally, this strip is wrapped around T? to complete the

construction. These steps are illustrated in Figure A.1. We describe the details next.
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(b) (c)

Figure A.1: The construction of an attention function for the case A: B = 3:2. (a)
The attention function on an ideal version of the limit cycle of (3.4) with dots added
to indicate when hits occur. (b) The limit cycle extended to [0,1] x [-1,1]. (c) The
strip in (b) wrapped around T?.

A.1 The Attention Function on the Limit Cycle

To construct s;, we first examine some basic properties of the limit cycle and
in particular the sequence of collisions that a given A : B generate. To this end,

parameterize the limit cycle in (3.4) by ¢A¢t, Bt+ ' ;) (taken modulo 1), ¢t € R.

Definition A.1.1 A hit point is a pair (¢1,ps) where either ¢; = 0 (mod 1) or
¢9 =0 (mod 1).

Hit points occur along the limit cycle when At =0 (mod 1) or Bt + 55 =0 (mod 1)
or equivalently when there is some j € Z such that
i 11
t—Aort—B( 2A)'

Property A.1.1 On the limit cycle, points of the form (k, k) € Z* are not hit points.

(A1)

That s, hits do not occur simultaneously.

Proof: Suppose (k, k) € Z? is a hit point on the limit cycle. Then for some ¢, At = k
and Bt + ﬁ = k. Thus, substituting k/A for ¢ in the second equation gives
1

t
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or equivalently

1
Bk+ - =
kit =k,

which is a contradiction. The term on the left hand side is not an integer, while the

term on the right hand side is. O

It is convenient to define o = 2AB, for it allows us an easy characterization of hit

points, as the following property demonstrates.

Property A.1.2 All hit points are of the form (At, Bt + ﬁ) where t = 2 for some
n € 7.

Proof: Suppose (At, Bt + 55) is a hit point. Then either At =k or Bt + 5 = k for
some integer k. In the first case, t = 2Bk/o so that n = 2Bk. In the second case,
t = (2Ak —1)/o so that n = 2Ak — 1. O

We define the partial function h : Z — {0,1, L} to determine the kind of hit point
2 is, if it is a hit point at all. We let 1 correspond to a ball one hit, and 0 to a ball
two hit. We correspond the special object L (to mean undefined) to the case that

neither ball is hit. Then we have

Proposition A.1.1 Let t =2 and P = (At, Bt + 55). Define the function h : Z —
{0,1, L} by h(n) =1 when P is a ball 1 hit point (i.e., At =0), h(n) =0 when P is
a ball 2 hit point (i.e., Bt + 55 =0) and h(n) = L when P is not a hit point. Then

1if " eZ
h(n)=¢ 0 if DB c 7 (A.2)

g

1 otherwise .

Note by Property A.1.1 that h is well defined. The proof is a simple rewriting of the
conditions that (At, Bt 4+ 5-) be a hit point.

For those n such that h(n) = L, we have to decide which ball to attend to. An
obvious choice is to have the paddle attend to the ball that will be hit next. So we
define a new function A recursively:

h(n) if h(n) # L

h(n) =
h(n + 1) otherwise.

(A.3)
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The function & is the basis for the switch function on T2, which we are now prepared
to build. Notice that & is defined on the integers, but is described completely by its
values on the set {0,1,2,...,0 — 1}.

Property A.1.3 h(n+ ko) = h(n) for all integers k.

(n+ko)A
o

Proof: First we show that % € Z is equivalent to € Z. Accordingly, if

% = j for some j € Z then

A
M:j—f-kAEZ

(n+ko)

since kA is an integer. Conversely, if 4 = j for some j € Z then

" ez
g

By a similar argument, @ € 7Z is equivalent to w € Z. The desired result

follows. O

Next, we define a function s; on the interval [0, 1] by dividing [0, 1] into o subin-
tervals [g, "T“], 0 < n < 0. The function A tells us what to do at the endpoints of
these intervals. Thus, s;(t) agrees with 2(ot) when ot is an integer, or equivalently,
when |ot| = [ot]. We just need to fill in the rest of the intervals. We will need C?
step functions up : R®* — R and down : R* — R. The function up(t, a,b) is used
to fill in an interval [a,b] wherein h(a) = 0 and h(b) = 1. It is thus 0 when t < a,
between 0 and 1 when a < ¢ < b and 1 otherwise. Such a function can be constructed
with polynomial splines of degree 6. down is defined similarly. The function down
is used, for example, between the second and third hit points in Figure A.1(a). The

smoothed function s; is then

(0 if h(lot]) = h([ot]) =0

1 if h(|ot]) = h([ot]) = 1
Sl(t)

N\

(A.4)
up(t, 2 120y i R(|ot]) = 0 A h([at]) =1

| down(t, 24, 170y i h(|ot]) =1 AR([at]) = 0.

' o7 o
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Notice that s1(0) = s1(1) by Property A.1.3. This function is shown for the case
A:B = 3:2in Figure A.1(a).

A.2 Extending the Attention Function to T?

We further extend s; to the function s, : [0,1] x [-1,1] — [0, 1] defined by

sol,) = by)sa (x) + £ (1~ b(w))

where
b(y) = up(y, 0,¢€) - down(y,1 —¢,1).

Here, € is some small number that defines the width of the “borders” along y = 1
and y = —1. This function is shown is Figure A.1(b) as a contour plot. Note that if
we form a cylinder or Mobius strip from the domain of sy by identifying the segment
x = 0 with the segment 2 = 1, then s, is C? along the identification line. This follows
from the cyclic nature of i noted above.

We next take the domain of sy, distort it and wrap it around T? to complete the
attention function. We wish for the line y = 0 in the domain of s, to be mapped to

the limit cycle on T2. Thus we define a map f : [0,1] x [-1,1] — R? by

z A —L x 0
/ = 7 +1 (A.5)
y B i y 54

As desired, f(t,0)" = (At, Bt + 55)7.
The final step is to collapse the image of f down to [0, 1]%. For this we simply set
w(z,y) = (z (mod 1),y (mod 1)) and obtain the desired switch function

(¢, d2) = s20 [T ow (¢, ha). (A.6)

Since we designed s, so that for all z, sy(z,£1) = 1, we are assured that along
the “seams” of the wrapped s, s is still C?. Notice that the paddle pays attention
to neither ball along the seam. This is a that choice which we could have made

differently. A contour plot of the case A: B =3: 2 is shown in Figure A.1(c).
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! exists, we have only been able to find it for

Presently, although we know w~™
specific cases of A and B. A general formula has yet to be found. For practical pur-
poses, however, it is not likely that arbitrary attention functions are useful. Rather,
an attention function will be worked out for each of the basic cases 1:1, 1:2, 2:3 and

2:5 for example.
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APPENDIX B

Single Hopper Return Map and Period of a Hop

To integrate the system (4.10), we change coordinates in the compression and

decompression phase [14] so that the system

0 1
—w?(1+4 3?) —2wp

A=

is in real canonical form [33]. The change of basis is given by

AT F o

We define energy and angle to be

. . T [x-‘
E. =z, z|W"W

0. = tan ! v = tan™* (Lt %) .
‘ y w(l+ 82)2z + B(1+ 52)7120
The subscript ¢ denotes “compression.” In these coordinates, the compression phase

becomes
Ec = —2wlE,
0, = —w.
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A similar expression is obtained for ; and E; where the d stands for “decompression”:

Ed = —QW/BEd

0; = —wr.

Thus, both 6, and 6, have a constant rate of change (and decrease in time).

Now, starting at a point (zp,0) corresponds to starting at a point (FEp, 7). The
lift-off point is (E;, ;) and the touchdown point is (Fy, 6;d). Since energy is conserved
in flight, we have that (Ey, 0:) = (E}, 0, — 7). Now, integrating (B.1) gives

El = E0€2ﬂ2(01_7r)
and we know E;; = E;. Finally, let E}, be the energy at the next bottom point. Then

E, = Etd€2,3(0b—9td) — Etde2ﬂ(—7r—(01—7r)) _ Ele_gﬁgl

= E062ﬂ2(01—7r)6—2ﬂ01 — E0€2[01(ﬁ2_ﬂ)_ﬂ27r]_

Now, Ey = wj(1+ 35)z; and Ey, = w?(14 )} .0y and 6, = tan~'(1/,). Therefore,
vy = VI an10/8)8-8) - (B.1)
, " m
Substituting B, = 8 and wy = wr with 7 = (1 — k)e®™ /(1 — z;) results in (4.10),
denoted by f.

The return map f has the two fixed points 0 and k,. Assuming k, < 0, the
derivative of f at 0 is 1 — k > 1 and, thus, 0 is an unstable fixed point of f. At ky,
the derivative of f is 1/(1 — ky) < 1 and, thus, k; is a stable fixed point of f. Since
there is a unique stable fixed point of f, there is a unique, closed stable orbit of the

system given by (4.10) which passes through the point (k, 0).

Derivation of the Period of a Hop

Let tg, t;, t;q and t, be the initial time at bottom, the lift-off time, the touchdown
time and the next bottom time. Then ¢; = ¢, is the time of decompression,t;q = ¢4+t
is the sum of the decompression time and the flight time, and ¢, = t4 + 5 + ¢..

Now, integrate éd = —wy to get 0, = By — woty so that

td = i(00 — 01) = i [’ﬂ' - tan_l(l/ﬁ)} .

%)
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We next need the velocity ; at lift-off. This can be found using the equation
E; = (0, 2)W'W(0,4;)" = 7.

Thus,
i = VE, = —wr/1 + (22,70

Now integrating the flight phase gives that

21 2
tf = ﬂ = —;LO’TW /1 4+ ﬁ?xbeﬂ("rfol)_

v

Lastly, integrating 0, = —w from 6,4 to —7 and solving for ¢, gives

1
te = " tan"'(1/03).

Summing the three times and substituting the value for 7 given in the main text

yields the desired result, (4.11).
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APPENDIX C

Proof of Proposition 4.5.4

We describe the salient points of the proof of this theorem. Essentially, we linearize
F and show that the linearized system is stable at (T*,m,7*). To compute the
Jacobian of the map F', first define

a 2 (1—6)e"

1
b 2 2w\ /14 32
v

c £ 0w
kyksmb
(1 —kp)(a — bky+c)

Straightforward computation of partial derivatives yields that the Jacobian evaluated

at (T, m,T) is equal to

1 T 0
1—ky s
w(2+446) w(2—kp+0(1—kyp))
Tk 1T30+ 52 e | (C.1)
4 T5(1+4) 1
kbfl - ™ lfkb + 5

Finding the characteristic polynomial of (C.1) and substituting (4.22) for &, gives
-X+6A+ & (C.2)

Where

_ 1
& = oy — 1) and

£ = (kb’iibly(ﬁ — Tk — 4/T — 4k, + 3K2).

88



We may now show the following:

Lemma C.0.1 The roots of (C.2) all have magnitude less than one whenever ky is

negative.

Proof: Suppose p;, p2 and p3 are the roots of (C.2). Then

A=p)A=p2)(A—p3) =A% = &A= &.
Thus,

prtpt+ps =0
p1p2 + p1ps + peps = —&
pip2ps = &o (C.3)

Now, it can be shown that when k;, < 0 the coefficients of (C.2) satisfy the conditions
0 <& <1and —1 <& <0 giving the following conditions on the roots

pr+p2+p3=0
0 <pipz+pips+pep3 <1 -
0 <pipeps <1

Using these conditions it is straightforward to show that two of the roots are complex
conjugates, the other is real and negative and all have magnitude less than one.
Now, since the eigenvalues of (C.1) all have magnitudes less than one, we can

conclude that (7*,7,T*) is a stable fixed point of the system (4.21). O
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ABSTRACT

Decentralized Phase Regulation

of Cyclic Robotic Systems

by

Eric Klavins

Co-Chairs: Daniel E. Koditschek and William C. Rounds

Control algorithms are difficult to scale up to large decentralized systems because
of potentially complex couplings between components. As a result, many such systems
function conservatively — damping out most of their energy and moving slowly or in
a start-stop fashion. Synthesis tools for dynamical behaviors that admit a modular,
bottom-up approach attempt to address this problem. Without such tools, the full
potential of modern actuators, sensors and computing power likely cannot be realized,
dooming robots (and more generally, physically situated computing systems) to a
clumsy and inefficient future.

This dissertation describes efforts to provide a formal basis for designing and ver-
ifying decentralized control algorithms for robotic systems such as factories, dynamic
manipulators, hoppers and walkers. The methods are based on synthesis and, particu-
larly, composition. The idea behind the compositional approach is simple. A designer
should not have to start from scratch when building complicated systems. Instead
knowledge of how to make a machine do two tasks separately should be leveraged to
make the machine do the two tasks in some combination.

To avoid the complexity of arbitrary couplings, we consider systems that may be
decomposed in very regular ways. In particular, we focus on methods for coordi-

nating multiple cyclic behaviors, based on defining ideal, model dynamical systems



called reference fields. In using reference fields to control coupled cyclic systems, it is
assumed that each cyclic system can be continuously actuated. However, many tasks
in robotics, such as ”juggling” and hopping, allow only intermittent control. Thus,
we also show that reference fields can be used as the basis for controlling these more
complicated tasks. Finally, reference fields are applied to the control of a six-legged,
scampering robot and the performance of the approach is examined with respect to

the speed and power consumption of the robot.



