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Abstract. We show how Embedded Graph Grammars (EGGs) are used
to specify local interaction rules between mobile robots in a natural man-
ner. This formalism allows us to treat local network topologies, geometric
transition conditions, and individual robot dynamics and control modes
in a unified framework. An example EGG is demonstrated that achieves
sensor coverage in a provably stable and correct manner. The algorithm
results in a global network with a lattice-like triangulation.

1 Introduction

The overarching scientific question facing the area of networked robot systems
is how global behaviors arise from local rules in a well-defined and predictable
manner. In a dynamic task, as agents move in and out of each others sensory
or communication ranges, the network changes, resulting in inherently hybrid
dynamics. Hybrid dynamics also result from the fact that individual agents can
assume different roles depending on local network adjacency or on the geomet-
rical characteristics of the local environment. Networked robot systems require
methods that control both the network dynamics and the individual robot be-
haviors. This suggests a handful of potential formalisms [1, 2]. Unfortunately,
the available languages are not appealing for networked systems because the
local network topology associated with each robot is not cleanly represented.
Hybrid automata [3, 4], while certainly expressive enough, are cumbersome in
this setting. They additionally suffer from the state explosion problem since a
distinct state typically has to be enumerated for every possible combination of
role assignments and network topologies.

Fig. 1. Simulated formation of a δ-triangulation using an embedded graph grammar.



Thus, we take as our starting point graph grammars which provide a compact
representation of subgraph transitions arising from local interactions. Although
graph grammars have been successfully used to control robot systems [5], they
best describe changing networks, not, for example, low-level robot motion. To
address this, we augment the notion of a graph grammar, introducing the Em-
bedded Graph Grammar(EGG) model and associated analysis methods.

To demonstrate and challenge the approach, we extend the geometric prob-
lem of coverage (see also [6]) to include specifications on network topology. In
particular, we suppose that three communicating robots forming an equilateral
triangle of side-length δ cover the convex hull of their locations. The goal (de-
scribed more formally in Section 3) is to produce a triangulation of an entire
region in which any three nearby robots form a δ-triangle and there are no holes
in the resulting mesh (see Figure 1). Similar lattice-like geometries are generated
by virtual potential leaders in [7] where the system shares a global coordinate
system. What is novel here is (1) the EGG formalism that encodes the system dy-
namics, local network topology, guard conditions for switching between control
modes, and inter-robot communication rules in a unified manner; (2) the lack of
a common global reference frame among the robots; and (3) the superposition
and successful coordination of several complementary control objectives.

2 Embedded Graph Grammar Definitions

2.1 Graphs and other Notation

If Σ is a set of labels, a labeled graph is the quadruple (V, E, l, e) where V is a set
of vertices, E is a set of edges, l is a vertex labeling function that maps vertices
into Σ, and e is an edge labeling function that maps edges into Σ. We denote by
G the space of labeled graphs. Sometimes the label set Σ is a cartesian product
of atomic label spaces we refer to as fields. For example the system introduced
in this paper has a node label space where the fields are named (mode, dist).
We use dot notation to indicate the values of label fields for specific robots. For
instance i.dist = 10 indicates that robot i has the value 10 in its dist field.

If S is a set of vertices, G[S] denotes the subgraph of G induced by S. We
denote by VG and EG the edges of a graph G and when there is no danger of
confusion we write V to indicate the vertex set of the system under consideration.
If i and j are vertices in a graph, we denote their graph distance by d(i, j).

If f is a function defined on a domain A, we denote the restriction of the
function to B ⊂ A by f|B . A function f is well-defined with respect to an
equivalence relation ∼ if x ∼ y implies f(x) = f(y).

2.2 Embedded Graphs

Consider a system of N communicating robots with identical state space X .

Definition 1. An embedded graph γ is a pair γ = (G, x) where G is a labeled
graph and x : V → X is a realization function. The space of all embedded graphs
is denoted by Γ .



A vertex i ∈ V indicates the index of the ith robot. The presence of an edge
ij ∈ E corresponds to a physical and/or maintained communication link between
robots i and j. The vertex label indicates the operational mode of robot i and
(along with the edge label e(ij)) keeps track of local information. The function
x assigns to each robot a continuous state or realization in its state space X .

We write Gγ , xγ , Vγ , and Eγ to denote the labeled graph, continuous state,
vertices, and edges associated with an embedded graph γ. If S ⊆ Vγ , then the
the embedded graph induced by S, γ[S], is given by the pair (G[S], x|S ). We
define the distance between two embedded graphs, γ and ρ, by

d(γ, ρ) ,

{

∞ if Gγ 6= Gρ

||xγ − xρ|| otherwise.

The distance between an embedded graph γ and a set of embedded graphs T is
denoted by d(γ, T ) = minρ∈T d(γ, ρ).

2.3 Embedded Graph Transition Systems

A trajectory of an embedded graph transition system describes how the network
topology and continuous states of a group of robots changes over time.

Definition 2. An embedded graph transition relation is a relation A ⊆ Γ × Γ
such that (γ1, γ2) ∈ A implies xγ1 = xγ2 .

Definition 3. An embedded graph transition system is a triple (γ0,A, u) where
γ0 is an initial embedded graph and u : V ×Γ → TX is the vector field describing
the continuous flow.

Definition 4. A trajectory is a map σ : R
≥0 → Γ such that there exists a

sequence τ0, τ1, τ2, ... where

1. xσ(t) is continuous.

2. τk ≤ τk+1 and if the sequence has any finite length N , τN , ∞.
3. For all t, t′ ∈ [τk, τk+1), Gσ(t) = Gσ(t′).
4. τi 6= ∞ and i > 0 if and only if there exists a transition((G, x∗), (H, x∗)) ∈ A

such that (G, x∗) = limt→τi
σ(t) and σ(τi) = (H, x∗).

5. For all i ∈ V and t ∈ [τi, τi + 1), d
dt

xσ(t)(i) = u(i, σ(t)).

We denote the set of nondeterministic trajectories of a system by T (γ0,A, u).
Clearly an embedded graph transition system is a globally defined non-deterministic
hybrid automata where the discrete states are labeled graphs.

2.4 Locality and Embedded Graph Grammars

Our interest is in modeling and implementing embedded graph transition systems
in a local and distributed fashion. In other work [8, 9], we model notions of “local”
that include geometric restrictions on sensing and communications. In this paper
we focus exclusively on the notion of local graph neighborhoods and we develop
a model where:



1. Graph matching involves only a small subset of vertices.
2. The flow and transition relations use discrete information from the graph

neighborhood.
3. The flow and transition relation are permutation-invariant.

We refer to the neighborhood of i ∈ Vγ as the friends of i and denote this set
by F (i). In keeping with existing graph literature, we write F [i] to mean F (i)∪ i
and denote the closed out-neighborhood by F+[i].

Definition 5. Consider the pairs (A, γ) and (B, ρ) where γ and ρ are embedded
graphs, A ⊂ Vγ , and B ⊂ Vρ. (A, γ) ∼ (B, ρ) if there exists a bijective map ν
between Vγ and Vρ such that

1. For all i ∈ A, ν(i) ∈ B,
2. For all k ∈ Vγ , xγ(k) = xρ(ν(k)), and
3. For all i ∈ A, ν is a label preserving isomorphism between Gγ [F [i]] and

Gρ[F [ν(i)])].

If (A, γ) ∼ (B, ρ) we say γ from the point of view of A is equivalent to ρ from
the point of view of B .

Definition 6. A control law u : V × Γ → TX is locally implementable if u is
well defined with respect to the point of view equivalence relation ∼.

This definition captures the requirement that robots use discrete information
from their local graph neighborhood in a permutation invariant manner. Robots
form new links and update their labels on a local scale by using guarded rules.

Definition 7. A guard g is a function g : P(V )×Γ → {true, false}. A guard is
locally checkable if it is well-defined with respect to the point of view equivalence
relation on sets, ∼.

Definition 8. A guarded rule (or just rule), r = (g, L, R), is a pair of labeled
graphs over some small vertex set VL = VR and a locally checkable guard g.

Figure 4 shows an example of a guarded rule. Each breakout box contains a
dummy variable on the left used to identify specific vertices in a rule. The right
hand side of the box contains the labeling of that vertex. When the topology
and labeling of a small group of robots matches that of the left hand graph of
the rule and the robots are in a “safe” configuration (as defined by the guard),
then they can update their state to match the right hand graph in the rule.

More formally suppose γ represents a possible state of a system and h is a
label preserving subgraph isomorphism from VL into Gγ such that g(h(VL), γ)
is true. We call h a witness and the pair (r, h) an action. A rule r is applicable
if a witness h can be found. The application of an action (r, h) on an embedded
graph γ = (G, x) produces a new embedded graph γ′ = ((V, E′, l′, e′), x) defined
by

E′ = (E − {h(i)h(j)|ij ∈ EL}) ∪ {h(i)h(j) | ij ∈ ER}
l′(i) =

{

l(i) if i 6∈ h(VL)
lR ◦ h−1(i) otherwise.

e′(ij) =

{

e(ij) if i /∈ h(VL) or j /∈ h(VL)
eR ◦ h−1(i)h−1(j) otherwise.



That is, we replace h(L) (which is a copy of L) with h(R) in the graph Gγ . We

write γ
r,h
−−→ γ′ to denote that we obtain G′

γ′ from Gγ by applying action (r, h).

Definition 9. An embedded graph transition ((G, x), (H, x)) is consistent with
a rule r if there exists a witness h such that (r, h) is applicable to (G, x) and

G
r,h
−−→ H. We denote by A(r) the set of transitions consistent with rule r. If Φ

is a set of rules, A(Φ) = ∪r∈ΦA(r).

Definition 10. An embedded graph grammar system (EGG) is a triple (γ0, Φ, u)
where γ0 is an embedded graph representing the initial state, Φ is a set of rules,
and u is a locally implementable controller.

Proposition 1. The set of trajectories of a local embedded graph grammar,
T (γ0, Φ, u) are equivalent to the trajectories of an embedded graph transition
system under the transition relation consistent with Φ, A(Φ), and the vector
field described by the locally implementable controller u, i.e.

T (γ0, Φ, u) = T (γ0,A(Φ), u).

Figure 2 shows an embedded graph grammar trajectory. Note that discrete tran-
sitions involve small sets of vertices and that concurrent application of rules is
possible.

3 Coverage via δ-triangulation

3.1 Preliminaries

By a triangle, we mean any subgraph composed of three fully connected vertices
(say i, j, k). A δ-triangle is a triangle where ||xi−xj || = ||xj −xk|| = ||xi−xk|| =
δ. We say that a region of the plane A ⊂ R

2 is covered if A lies within the convex
hull of the positions of three robots in a δ-triangle.

A graph G is planar if there exists an embedding x : V → R
2 such that when

the edges are drawn as straight lines in the plane, no edges intersect except at
vertices. An embedded graph γ = (G, x) is a plane graph when G is planar via
the realization function x. The regions of a plane graph bounded by the edges
are called faces and every finite planar graph has exactly one unbounded face
called the outer face.

Definition 11. An plane graph γ is a near-triangulation if the outer face is a
cycle and all inner faces are triangles.

Definition 12. A near-triangulation γ is a δ-triangulation if every inner face
corresponds to a δ-triangle. We say a δ-triangulation γ is maximal if for every
graph H created by adding an edge to Gγ , there does not exist a realization x
such that (H, x) is a δ-triangulation.

We denote by T the set of all δ-triangulations and by Tmax the set of all
maximal δ-triangulations.
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Fig. 2. A Sample Trajectory. (a) Initial state all free robots, f , are running the Gabriel
graph pre-sorting controllers (indicated by dashed edges). (b) Hexagonal seed forma-
tion. (c) After the hexagonal seed is formed by R2, the robot in bold labeled f is
trapped inside the hexagon. (d) To correct this “error”, rule R6 changes the robot to
repulse mode, r. (e)-(f) Utilizing the repulsing controller, the robot in bold moves
away from the center. Also Rules R5 and R6 of the crystal growth process are applied.
(g) By repeatedly applying the error correction rules, the robot in bold works its way
out of the crystal where it can be absorbed as the final element in the structure.

3.2 General Algorithm

Consider N robots moving in the plane without a common reference frame and
obeying integrator dynamics given by ẋi = u. Suppose Γ0 is the class of initial
embedded graphs where: (1) Eγ0 = ∅, (2) there is a unique vertex 0 labeled
l(0).mode = master and (3) all other vertices are labeled by l(i).mode = free.
Task. Design an embedded graph grammar, (γ0, Φ, u) such that for all trajectories

σ ∈ T (γ0, Φ, u)
lim

t→∞
σ(t) ∈ Tmax.

Our method of constructing δ-triangulations is similar to that of growing “crys-

tals” where placing a “seed crystal” in a “solution” causes the solution to repli-
cate the seed and crystalize. We often view EGGs as collections of small behaviors
interacting locally, a fact highlighted by our δ-triangulation grammar, Φ, which
describes the four concurrent processes shown in Figure 2:

1. Pre-sorting–The robots not involved in the other three processes try (without
communication) to organize into a mesh that is close to a δ-triangulation.

2. Hexagon Formation–The master chooses six robots and creates a hexago-
nal “seed” formation, labeling all edges on the boundary by ij.boundary =
outer.



3. Crystal Growth–The δ-triangulation or “crystal” is grown by waiting until
robots in a boundary edge are near settling, then a robot on the exterior of
the crystal “attaches” to these robots to form a new triangle or two robots
already in the crystal add an edge to enclose a δ-triangle.

4. Error Correction–Occasionally robots executing the pre-sorting algorithm
become trapped in the interior of the crystal structure. The error correction
controller routes these robots to the exterior using local label information.

Purpose Label Control

Pre-Sort f -
P

ij∈Gabriel(i) ∇xi
Uij

Hexagon m 0
Formation 0 -

P
ij∈F+(i) ∇xi

Uij

1 − 5 - ∇xi
(||xi − P (i)||)2

Crystal Growth s -
P

ij∈F+(i)∩Con(i) ∇xi
Uij

Error Correction r - ∇xi
(||xi − p(i)||)2

Table 1. Control Law u for the δ-triangulation solution grammar. Robots execute the
control law corresponding to their label.

Suppose ΦHEX is the grammar for hexagon formation (Figure 3), ΦCG is the
grammar for crystal growth (Figure 4),ΦEC is the grammar for error correction
(Figure 6), and the solution grammar is Φ = ΦHEX ∪ΦCG ∪ΦEC . The following
notation is useful in describing the solution system (γ0, Φ, u). Fix a trajectory σ
and define γ(t) = γσ(t), x(t) = xγ(t), G(t) = Gγ(t). By r(t) and h(t) we denote the
rule and witness applied at time t. The grammar Φ uses two vertex label fields,
mode and dist(the graph distance from the master) and two edge label fields,
boundary and control. The mode labels are: master,0, 1,..., 5, slave, repulse,
and free. Figures refer to mode labels by their first letter.

The function Con(V ) takes any set of vertices V and returns another set
of vertices V ′ where V ′ is the set of vertices reachable from V via paths where
every edge is labeled as a control edge. The crystal function C(t) is defined as
the restriction of the embedded graph γ(t) to the set of vertices labeled slave

or master and defines the growing crystalline structure. We define the interior
function I(t) as the closed union of the faces in the crystal C(t). We denote by
d(i, ljk) the distance of xi from the line ljk through xj and xk. If ljk defines a
half plane in R

2, we denote by Hi
l (j, k) the region of state space where i lies in

the half plane opposite l.

3.3 Pre-Sorting using Gabriel Graphs

We use a geometric switching algorithm by Schucker, Murphey and Bennet [10]
to produce near δ-triangulations. The algorithm uses the edges of the Gabriel
graph as a switching criterion and does not require explicit communication.
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⇀

⇀

Fig. 3. Rule set ΦHEX for hexagonal seed formation. Rule R1 establishes the topology
used to move the robots into a hexagonal configuration. Once the robots are in the
attracting region, rule R2 switches to the desired topology and control modes

Definition 13. Given a realization x, we denote the Gabriel graph of x by
Gabriel(x), where ij ∈ EGabriel(x) if and only if for all k 6= i or j,

||xi − xj ||2 < ||xi − xk||2 + ||xj − xk||2.

For an edge ij we define an edge based potential Uij = (||xi − xj || − δ)2.
As seen in Table 1, free robots follow the negative gradient of Uij for Gabriel
graph edges ij, trying to make the distance between those robots δ. The first
few panels of Figure 2 show the Gabriel graph controller pre-sorting the robots.

3.4 Hexagon Formation

By a hexagonal seed graph, we mean any embedded graph µ where Gµ = W7 is
a wheel graph and xµ is a hexagonal configuration with edge lengths of δ (i.e.
µ ∈ Tmax). Forming the hexagonal seed is challenging because the robots lack of
a common coordinate system. When rule R1 is applied, the robot corresponding
to vertex i in Figure 3 changes to i.mode = 0. The master robot corresponds to
vertex o. The controller ẋi = ∇iUio limits the motion of i to a linear manifold
defined by the configuration of i and o when the rule is applied. Since the vector
voi is constant, the other robots (labeled by mode ∈ {1, 2, ...5}) form edges to
robots 0 and i and use voi as the basis of a shared local coordinate system. Then
each vertex v constructs a sink point P (v) defined by their mode labels where

P (v) = xo + δ(cos(
π

3
v.mode), sin(

π

3
v.mode))T .
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Fig. 4. Rule set ΦCG for Crystal Growth. Rules R3 and R4 add robots to the crystal.
Rule R5 encloses δ-triangulations.

Using the simple potential controllers shown in Table 1, the robots converge
towards the hexagonal configuration defined by P . Once the robots’ geome-
try is close enough to hexagonal, the robots apply rule R2 to switch to the
δ-triangulation topology. Proposition 2 states a hexagonal seed is always formed
and is proven (along with other supporting propositions) in Section 4.2. Fig-
ure 2(a)-(c)shows hexagon formation in a partial trajectory.

Proposition 2. For any ǫ, if γ(t0) = γ0, then there exists t2 > t0 and a δ-
triangulation µ ∈ T where Gµ = W7 such that for all t ≥ t2, d(C(t)[Vµ], µ) < ǫ.

3.5 Crystal Growth

Consider any crystal C(t) and an edge labeled jk.boundary = outer (we call
these edges “boundary” edges). The controllers grow the crystal by attaching a
“free” robot from the exterior (say i) to j and k and updating the boundary
labeling. The rules in Figure 4 address two different geometries. In rule R3,
if j.dist = k.dist, then i forms edges with j and k , marking the new edges
outer and labeling i.dist = j.dist + 1 and i.mode = slave. If applied in g3,
the controller for the slave label shown in Table 1 moves i to a point where
||xi − xj || = ||xi − xk|| = δ corresponding to a δ-triangulation. Figure 5 shows
the guards of R3 and the other crystal growth rules and their applications. The
unidirectional information flow from the hexagonal seed outward guarantees that
the crystal does not deform when a new robot is added.

Rule R4 is applied at the corners of the hexagon where there are two boundary
edges jl and kl with j.dist = k.dist = l.dist + 1. When ∠jlk ≈ 2π

3 , R4 adds i
between j and k and updates the distance by i.dist = j.dist.
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a δ-triangulation. Note that after the application of the rules, the new labeling of the
outer boundary remains consistent with the geometry.

Proposition 3. For all ν > ǫ and for ρ ∈ T , if d(C(t1), ρ) = ν, then there
exists t2 > t1 such that either r(t2) ∈ {R3, R4} or d(C(t2), ρ) = ǫ.

Finally, if there are two robots, j and k where j.dist = k.dist, jl and kl ∈ E
and ∠jlk ≈ π

3 , then the grammar encloses a triangle by adding an edge jk via
rule R5. This guarantees that the resulting δ-triangulation is maximal. The edge
is labeled e(jk) = (outer, comm), indicating it is not used as a control input.

Proposition 4. If d(C(t1), ρ) < ǫ, then there exists t2 > t1 such that either

i. r(t2) = R3 or r(t2) = R4 or
ii. There exists η ∈ Tmax such that (1) d(C(t2), η) < ǫ and (2) if i.mode = free

and xi /∈ I(t), R3 or R4 are applicable to i.

3.6 Error Correction

Rules R6-R9 (Figure 6) and the controller (Table 1) associated with the label
repulse remove robots trapped in the crystal structure. Suppose three robots
{j, k, l} define a face f1 and a robot i (with i.mode = free) lies in the closure
of f1. Then applying rule R6 changes i.mode to repulse. The repulsing robot
calculates a sink point p(i) such that when l.dist = k.dist < j.dist then p(i) =
2δ(xj − 1

2 (xk +xl))/(||xj − 1
2 (xk + xl)||) and when j.dist < k.dist = j.dist, then

p(i) = 2δ(1
2 (xk +xl)−xj)(||xj − 1

2 (xk + xl)||). The repulsing robot then moves
to p via the simple potential controller defined in Table 1. If xi is near p and p is
inside another face farther away from the center, either rule R7 or R8 are applied
to continue moving away from the master. Or if p /∈ I(t), rule R9 returns robot
i to free mode. Applications of these rules can be seen in Figure 2(c)-(f).

Proposition 5. For any ρ ∈ T , if i ∈ I(t1) and d(C(t1), ρ) < ǫ, then there
exists t2 > t1 such that i /∈ I(t) or r(t2) = R3 or r(t3) = R4.

Corollary 1. There exists ǫ such that if d(C(t1), ρ) < ǫ and R9 is applicable,
then there exists t2 ≥ t1 such that r(t2) ∈ {R3, R4}.
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s,* +1l

s,*j

k s,*

s,*j

s,*l

s,* +2m s,* +2n

s,*k

r,Mi

r,Mi

=(outer,cont), =(outer,comm), =(outer,*), =(inner,cont), =(inner,comm), =(inner,*)Edges:

R6)

R7)

R8)

R9)

g7: ||xi − p(i)|| ≤ ǫ.

g8: ||xi − p(i)|| ≤ ǫ.

g9: ||xi − p(i)|| ≤ ǫ.

g6 : xi lies within the convex hull of {xj , xk, xl}.

⇀

⇀

⇀

⇀

Fig. 6. Error Correction rules, ΦEC . Rule R6 initiates the error correction process, R7

and R8 move vertices towards the outside of the crystal and R9 terminates the error
correction process when the robot is sufficiently far from the crystal.

3.7 Process Interaction

Theorem 1. For all M ∈ {6, 7, ..., |V | − 1}, if |C(t1)| = M , then there exists
t2 ≥ t1 such that r(t2) ∈ {R3, R4} and |C(t+2 )| = M + 1.

Proof. Assume to the contrary that |C(t1)| = M < V but neither rule R3 nor
R4 are applied at any time t′ ≥ t1. Since at time t1, there is some ρ ∈ T such
that d(C(t1), ρ) < ∞, then by Proposition 3 if R3 or R4 are not applied the
system will flow to a state where d(C(t1), ρ) < ǫ. By Proposition 4, we know
that if i /∈ I(t) then eventually R3 or R4 are applicable. Thus eventually it must
be the case that i ∈ I(t). However, by proposition 5 and Corollary 1, i ∈ I(t)
leads to R3 or R4 being applied. Thus it must be the case one is applied and for
some i, i.mode changes to slave, therefore |C(t+2 )| = M + 1. ⊓⊔

Proposition 6. For all t1 < t2, |C(t1)| ≤ |C(t2)|.

Proof. No rule in Φ changes the vertex labels master or slave. ⊓⊔



Theorem 2. For all trajectories, γ(t0) = γ0 implies there exists a time t such
that for all t′ ≥ t, |C(t′)| = |V |.

Proof. Proposition 2 implies eventually |C| = 6. Theorem 2 follows by induction
on Propositions 1 and 6 and the finiteness of the initial graph.

Theorem 3. For all trajectories γ(t) ∈ T (γ0, Φ, u),

lim
t→∞

γ(t) ∈ Tmax.

Proof. By Theorem 2 and Proposition 4 we have that eventually Gγ(t) = Gρ for
some ρ ∈ Tmax. By Proposition 3 we know the positions converge.

The embedded graph grammar system (γ0, Φ, u) was simulated for a variety
of initial conditions with graph sizes ranging from 12 to 100. All simulations
resulted in δ-triangulations. Figure 1 shows snapshots from one such simula-
tion. Although the error correction rules are central to the proofs above, in
simulation error correction rules are rarely applied. Note that the final shape is
non-deterministic and highly dependent on the initial conditions. Nonetheless,
once an initial δ-triangulation is established, simple rules can be constructed to
form almost any global shape from local control.

4 Proof of Supporting Propositions

4.1 Auxiliary Properties

Lemma 1. Let A ⊂ V be any set such that Con(A) = A, then the equilibrium
and dynamics of A are independent of V − A.

Proposition 7. If γ(t0) = γ0, then there exists a time t2 such that r(t2) = R2.

Proof. r(τ1) = R1 since only R1 is applicable to Gγ0 . Im(h1) is the set of vertices
to which R1 is applied. R2 is the only rule applicable to vertices in h1. Since
Lemma 1 holds for Im(h1) we construct a Lyapunov function for x|Im(h1)

by

V (t) =
∑

i∈Im(h1)−{0,j}

||xi − P (i)||2 + (||xj − x0|| − δ)2

If we treat x0 as a constant, then V ≥ 0, V̇ = −∇V T∇V ≤ 0. Furthermore, if
V̇ = 0, ||xi − Pi|| < ǫ, so we can satisfy the guard g2. ⊓⊔

Proposition 8. Suppose C(t−k ) = B, r(tk) = R3, and C(t+k ) = D. If for some
ǫ, d(B, T ) < ǫ, then limt→∞ C(t)[VD] ∈ T

Proof. Suppose robot i is added to C(t−k ) by forming control edges ij and ik
to robots j and k to form D. Since for any u, v the rules never allow an edge
uv where u.dist < v.dist, Lemma 1 holds and we may consider the dynamics of
C(t)[VD ] without reference to the vertices in V −VD. We choose ǫ in gsettled small



enough so that if for R3, gsettled(L) is satisfied for j and k, their motion relative
to the coordinate frames of the robots to which they have directed control edges
is zero. Since every time a robot is added to the structure, gsettled(L) must be
satisfied, by induction we may treat xj and xk as constants.

Let V = (||xi−xj||−δ)2+(||xi−xk||−δ)2. V̇ = ∇V T dx
dt

= −∇xi
V T∇xi

V ≤ 0.
V is a Lyapunov function with stable fixed points where x∗

i satisfies ||x∗
i −xj ||−

δ = ||x∗
i − xk|| − δ = 0. We must show that the region of attraction of one of

these fixed points is the open half plane defined by line ljk containing x∗
i .

We have that ẋi ∝ (||vij || − δ)v̂ij + (||vik|| − δ)v̂ik) = αv̂ij + βv̂ik. We show
that there is no path from xi /∈ ljk to xi ∈ ljk. Suppose we pick xi near ljk such
that ||vij || < ||vik|| and β > α > 0. Then ∠v̂ij < ∠ẋi < ∠v̂ik. This remains true
(near ljk) until ||vij || = δ. Now α ≤ 0and ∠v̂ik ≤ ∠ẋi < π + ∠v̂ik. This suggests
if the trajectory intersects ljk it must do so between xj and xk. However, in this
region, α < 0 and β < 0 which means there is a component of ẋi away from the
line ljk. Thus there is no path leading from xi /∈ ljk to xi ∈ ljk.

Proposition 9. Suppose C(t−k ) = B, r(tk) = R4, and C(t+k ) = D. If for some
ǫ, d(B, T ) < ǫ, then limt→∞ C(t)[VD] ∈ T . (See proof above).

4.2 Supporting Proposition Proofs

Proof of Proposition 2. By Proposition 7, rule R2 is executed. We propose the
Lyapunov function V =

∑

i∈Im(h2)

∑

j∈F+(i) 1/2Uij. V̇ = ∇Vxẋ = −∇V T
x ∇Vx ≤

0. In addition to fixed points corresponding to δ-triangulations, the slave con-
trollers operating under the topology created by R2 have local minima at some
positions where xi = xj . However, by choosing ǫ in g2 small enough (18ǫ2 < δ2),
then for all V in the guard region, V ≤ 18ǫ2 < δ2 where δ2 is the con-
tribution to the Lyapunov function for a single edge where xi = xj . Thus
limt→∞ γ[Im(h2)](t) ∈ T. ⊓⊔
Proof of Proposition 3. By propositions 8 and 9 and the fact that edges added
by R5 are not used by the controllers, every vertex that is not settled has its
own decreasing Lyapunov function parameterized by the edge lengths. ⊓⊔
Proof of Proposition 4. Since Proposition 3 holds and since a small neighbor-
hood near ρ ∈ T satisfies guard g5, every application of R5 must be applied.
Furthermore, since the intersection of the half-planes and cones defined by the
boundary edges is a superset of the exterior of the crystal, it must be the case
that xi /∈ I(t) implying rule R3 or R4 are applicable. ⊓⊔
Proof of Proposition 5. When d(C(t), ρ) < ǫ for very small ǫ, it is clear that either
(1) p(i) lies in a face where the sum of the distances is greater or (2) p(i) /∈ I(t).
In case (1), as xi → p(i) either R7 or R8 becomes applicable. Since the graph is
finite, by induction on rules R7 and R8 eventually p(i) /∈ I(t) (i.e case (2)). By
the convergence property of the controllers, eventually xi /∈ I(t). ⊓⊔
Proof of Corollary 1. If d(C(t), ρ) < ǫ and if δ + ǫ ≪

√
3/2δ − ε, there are no

Gabriel graph edges between i and vertices on the interior of the crystal. This
implies that if i executes R9 and is labeled free, while ||xi−xj || < δ for j ∈ C(t),
the motion is away from the crystal. Thus i remains in g3 or g4. ⊓⊔



5 Conclusions and Future Work

Embedded graph grammars are a unique combination of concurrency and hybrid
systems in which we can model networked robotic systems. Our solution to the
δ-triangulation coverage problem is meant to demonstrate how embedded graph
grammars can be used to specify and reason about the correctness of complex,
multi-mode coordination problems. We note that issues such as robustness or
performance under sensing and communication limitations can be addressed by
constructing more complicated grammars. However, these questions lie outside
the scope of this paper.

We believe that as systems incorporate more complex combinations of reac-
tive tasks, the need for the unified modeling of communication protocols and
the ensuing hybrid dynamics becomes pronounced. Unfortunately, proving that
such systems are correct is unwieldy as the proofs in this paper suggest. We plan
to explore real time temporal logics, compositional methods, and automated
verification techniques, thereby completing the formalism introduced here.
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