Pacific Upwelling and Mixing Physics

PUMP is a process study to observe and model the
complex of mechanisms that connect the thermocline
to the surface in the equatorial Pacific cold tongue.

Its premise is that climate-scale ocean models are
ready to exploit realistic vertical exchange processes,
but need adequate observational guidance.



Primary Objectives of PUMP

To observe and understand:

1) The evolution of the equatorial cell under varying winds

2) The mixing mechanisms that determine
(a) the depth of wind-input momentum
(b) the transmission of surface heat fluxes into the upper
thermocline

3) The processes that allow and control exchange across the
sharp SST front north of the cold tongue

PUMP will put mixing observations in their regime context
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ENSO is not a solved problem!

The past few years have shown that we are
a long way from being able to make accurate
ENSO forecasts even a few months ahead.

There are few targets the climate community
could set for itself that would make more
difference to more people than to improve
our ability to forecast ENSO and its effects.



O —
o) o

NINO 3
STANDARD DEVIATION
o
(o))

ENSO amplitude is principally controlled
by the efficiency of communication
between the thermocline and the surface
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“The dominant influence on El Nino
amplitude is the magnitude of the ocean
model background vertical diffusivity.
Across all model experiments, regardless
of resolution of ocean physics, the runs
with the lowest values of background
vertical diffusivity have the largest Nino3
amplitudes.”
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Cold tongue SST is a function of
the entire circulation cell




Upwelling requires mixing
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We do not understand the regime-
dependence of equatorial mixing

7 All existing eddy
diffusivity profiles
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OGCM meridional circulations
are very different
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Cold bias occurs  Forced 0OGCMs:
GFDL OM-3, NCAR gxIv3
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Components of PUMP

® Reanalysis of historical data
® Multi-scale modeling effort

® 2-3 year moored array along 140°VV,
to establish the scales and variability of
equatorial upwelling

® Two IOPs, both on and just north of the
equator at 140°W, to quantify the relative
effects of upwelling and mixing



Perfecting OGCMs
for climate forecasting

Four elements:

|) Improve the forcing fields

2) Provide benchmark data sets to compare
model circulations across the upwelling cell

3) Improve mixing parameterizations

4) Learn to use sparse sustained observations
(ENSO O5), assimilated into models,
to infer equatorial mixing
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Each mooring is a pair:
Surface buoy + ADCP

Goal is to determine:

e The structure of U(x,y,z,t)
over 2 annual cycles.

e The spinup of the poleward limb
of the meridional circulation
under varying winds. A

e The (y,z) structure of horizontal
divergence and upwelling.

e The downwelling at the SST front,
and its relation to TIW.

* The rate of diapycnal conversion,
accounting for heat fluxes.

OSSEs will refine the array
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Goal is to determine:

* The mechanisms by which internal waves are modulated, on and off the Eq
* The spatial structure of mixing across the equatorial region

* The variability of mixing and air-sea forcing across the SST front

* The turbulent heat flux integral on a scale to be compared to upwelling

* The nature of mixing during the rapid and reduced cooling periods



PUMP timeline:

Component

2005 | 2006

2007 | 2008

2009
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Summary rationale for PUMP:

|. The processes of mixing and upwelling that control
equatorial SST are poorly understood and modeled.

2. Present-generation OGCM representations of the
upwelling cell are not adequately constrained by
observed reality and differ widely among models.

3. This deficiency contributes to the fundamental
problems of coupled models of the tropical climate.

4. The tools both to observe these phenomena and to
improve the models are at hand.

= PUMP will spur a leap in our ability to diagnose and model the
tropical Pacific (and Atlantic) and to predict its variability.



Extra
figures
follow ....



SST at 0°,140°W: Rapid and reduced cooling periods
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Divergence must be sampled
very near the surface
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Estimate of meridional scale of v
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The front north of the Equator
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o during EPIC 2001.
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Sensitivity of winds to SST

2—4 September 1999

a) TMI Sea Surface Temperature
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