1. In the genetic screening example, calculate the (unconditional) probability of testing positive, and of having the genetic variant.

We have: $\quad \mathbb{P}[$ variant $]=0.01$
$\mathbb{P}[$ no variant $]=0.99$
$\mathbb{P}[$ test + ve \mid variant $]=0.8$ (80% sensitivity)
\mathbb{P} [test -ve \mid variant $]=0.2$
$\mathbb{P}[$ test -ve \mid no variant $]=0.95$ (95% specificity)
$\mathbb{P}[$ test + ve \mid no variant $]=0.05$
So:
$\mathbb{P}[$ test + ve $] \quad=\mathbb{P}[$ test+ve \mid variant $] * \mathbb{P}[$ variant $]+\mathbb{P}[$ test+ve \mid no variant $] * \mathbb{P}[$ no variant $]$
$=0.8^{*} 0.01+0.05^{*} 0.99=0.0575$, i.e. 5.75%
$\mathbb{P}[$ have variant $]=0.01$, i.e. 1%
Compare the probability of having the genetic variant given a positive test to the unconditional probability of having the genetic variant: did getting a positive test result change much?
\mathbb{P} [have variant $\mid+$ ve result $]$ is 14%, up by a factor of 14 from $\mathbb{P}[$ have variant $]=1 \%$. So the amount you should be worried based on a positive test results is a lot more than you would be with no test at all. But it's still a (fairly) small amount.
2. In the ASE example, verify that when $Y=0$ (i.e. no expression observed in $B Y$) the classical analysis give a point estimate $=0$ and estimated standard error=0. Why are both these values implausible?

The point estimates is the sample mean, \bar{Y}, which is zero. The standard error is $\frac{\sqrt{\bar{Y}(1-\bar{Y})}}{\sqrt{n}}$, which is again zero. These are silly values! The first would imply that Brewers' Yeast can never produce expression values at some particular location, i.e. ruling it out - but based on a small sample size and not using any other information source. The zero standard error indicates we would never expect this estimate to change, regardless of how many times we ran the experiment. Expressing complete confidence in a somewhat extreme situation, based on this data alone, would not be creditable.
3. Human twins can be either monozygotic (from a single egg) or dizygotic (from two eggs). Among all sets of twins, approximately one third are monozygotic, and the ratio of males to females can be taken to be 50:50, regardless of monozygosity.

Suppose it is known that someone will have twins, e.g., from detection of two heartbeats, and a sonogram indicates there are twin girls. What is the probability that they are monozygotic?

Hint: make a Venn diagram for events G : the twins are both girls and M : the twins are monozygotic. We want $\operatorname{Pr}[M / G]$, which is related to $\operatorname{Pr}[G / M]$.

Writing out all the algebra:
$\mathbb{P}[\mathrm{G} \mid \mathrm{M}]=1 / 2$

```
\(\mathbb{P}[G]=\mathbb{P}[G \mid M]^{*} \mathbb{P}[M]+\mathbb{P}[G \mid \text { not } M]^{*} \mathbb{P}[\) not \(M]=1 / 2 * 1 / 3+1 / 4 * 2 / 3=1 / 3\)
\(\mathbb{P}[M]=1 / 3\)
\(\mathbb{P}[\mathrm{M} \mid \mathrm{G}]=\mathbb{P}[\mathrm{G} \mid \mathrm{M}] * \mathbb{P}[\mathrm{M}] / \mathbb{P}[\mathrm{G}]=1 / 2 * 1 / 3 / 1 / 3=1 / 2\)
```

So belief that there are identical twins should go up from $1 / 3$ to $1 / 2$ based on the sonogram. (Or use cell-free DNA testing and find out for sure!)

As a Venn diagram: (there are lots of ways to lay this out: the total area of the diagram is 1)

Or if you prefer to work with the sexes of both babies:

GG, not M: $1 / 4$ * $2 / 3=1 / 6$	$\begin{gathered} \text { GG, M: } \\ 1 / 2^{*} 1 / 3=1 / 6 \end{gathered}$
GB, not M: $1 / 4$ * $2 / 3=1 / 6$	
BG, not M: $1 / 4$ * $2 / 3=1 / 6$	$\begin{gathered} \text { BB, M: } \\ 1 / 2^{*} 1 / 3=1 / 6 \end{gathered}$
BB, not M: $1 / 4$ * $2 / 3=1 / 6$	

Code

```
par(mar=c (0,0,0,0)+0.1)
plot(0,0,type="n", xlab="", ylab="", axes=FALSE, xlim=0:1, ylim=0:1, asp=1)
```

```
box()
rect(0.5-sqrt(1/3)/2, 0.5-3*sqrt(1/3)/4, 0.5+sqrt(1/3)/2, 0.5+sqrt(1/3)/4,
col=adjustcolor("green",alpha=0.3), border="green", lwd=2)
```



```
col=adjustcolor("goldenrod",alpha=0.3), border="goldenrod", lwd=2)
text( x=0.5, y=0.5+c(1,0,-1)*sqrt (1/3)/2,
c("Pr[G and not M]=1/6","Pr[G and M]=1/6", "Pr[not G and M]=1/6"))
text(x=0.5 + sqrt(1/3)/2, y=0.5 + sqrt(1/3)/4, "Pr[G]=1/3", col="goldenrod",
pos=4)
text(x=0.5 + sqrt(1/3)/2, y=0.5 - sqrt(1/3)/4, "Pr[M]=1/3",
col="forestgreen", pos=4)
par(mar=c (0,0,0,0)+0.1)
plot(0,0,type="n", xlab="", ylab="", axes=FALSE, xlim=0:1, ylim=0:1, asp=1)
rect(rep(0,4), seq(0,0.75, 0.25), rep(2/3,4), seq(0.25, 1 ,0.25))
text(rep(1/3,4), seq(1/8,7/8,1/4), c("BB, not M: 1/4 * 2/3 = 1/6", "BG, not
M: 1/4 * 2/3 = 1/6", "GB, not M: 1/4 * 2/3 = 1/6", "GG, not M: 1/4 * 2/3 =
1/6"))
rect(rep (2/3,2), c(0,0.5), rep(1,4), c(0.5, 1))
text(rep(5/6,4), c(0.25, 0.75), c("BB, M:\n1/2 * 1/3 = 1/6", "GG, M:\n1/2 *
1/3 = 1/6"))
rect(2/3, 0, 1, 1, , col=adjustcolor("green",alpha=0.3), border="green",
lwd=2)
polygon(x=c(0,2/3,2/3,1,1,0), y=c (3/4,3/4,1/2,1/2,1,1),
col=adjustcolor("goldenrod",alpha=0.3), border="goldenrod", lwd=2)
```

