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In this session

• What is Mendelian randomization (MR)?

• Non-Bayesian and Bayesian methods in MR

Survey:

• Please raise your hand if you have heard about MR before.

• please raise your hand if you have heard about instrumental variables before.
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MR: an epidemiological approach to infer causality
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The basis of MR (Davey Smith and Ebrahim, 2003)

locus—if the alleles are the same, the genotype is homozygous,
if different, heterozygous. A polymorphism is the existence of
two or more variants (e.g. SNPs) at a locus.45–47 The basic idea 
is that, if such polymorphisms produce phenotypic differences
that mirror the biological effects of modifiable environmental
exposures which in turn alter disease risk, the different poly-
morphisms should themselves be related to disease risk to the
extent predicted by their influence on the phenotype. Common
polymorphisms that have a well-characterized biological func-
tion can therefore be utilized to study the effect of a suspected
exposure on disease risk. One key point is that the distribution of
such polymorphisms is largely unrelated to the sorts of
confounders—socioeconomic or behavioural—that were identi-
fied above as having distorted interpretations of findings from
observational epidemiological studies.

Two types of polymorphism with a functional consequence can
be distinguished.  First, they may have a regulatory influence,
that would modify the level of the product coded for by a gene.
In the examples given below the β-fibrinogen polymorphism
we discuss is of this type, with its influence being on plasma
fibrinogen level.  Second, polymorphisms that influence the struc-
ture (and function) of gene products can also be studied. Many
of the metabolic polymorphisms discussed below are of this kind.
In these cases interpretation is somewhat more complex than
when the factor of interest is, for example, the plasma level of
the gene product.

The basis of Mendelian randomization is most clearly seen 
in parent–offspring designs that study the way phenotype and
alleles co-segregate during transmission from parents to off-
spring.48,49 In matings in which at least one parent is hetero-
zygous at a polymorphic locus, the frequency with which one of
the two alleles from a heterozygous parent is transmitted to an
offspring with a particular disease or phenotypic characteristic
can be evaluated. If there is no association between allelic form
and the disease or phenotypic characteristic, each of the two
alleles from the heterozygous parent has a 50% probability of
being transmitted to the offspring. A shift from this 50/50 ratio
indicates an association between disease or phenotypic charac-
teristic and the alleles at this locus (Figure 3). This study design
is closely analogous to that of RCTs as by Mendelian principles
there should be an equal probability of either allele being
randomly transmitted to the offspring. Such studies may be dif-
ficult to carry out however, both because of problems in

obtaining data from parents and offspring (particularly when
parents may be dead) and because they generally have lower
statistical power than case-control studies carried out within
whole populations, rather than within families.50 Of course popu-
lations share much common ancestry and the genetic make-up
of individuals can be traced back through the random segregation
of alleles during a sequence of matings, but associating genetic
markers with disease risk or phenotype within such populations
is not as well protected against potential distorting factors as are
parent–offspring comparisons. Thus the Mendelian randomization
in genetic association studies is approximate, rather than absolute.

Mendelian randomization—applications 
in observational epidemiological studies
Martijn Katan was an early exponent of what has since become
termed Mendelian randomization.7 He was concerned with
observational studies suggesting that low serum cholesterol
levels were associated with an increased risk of cancer.51

This association might be explained by the early stages of cancer
resulting in lower cholesterol levels—reverse causality—or by
confounding factors (such as cigarette smoking) related both to
future cancer risk and to lower circulating cholesterol.52 Katan
pointed out that polymorphic forms of the apolipoprotein E
(APOE) gene were related to different levels of serum cholesterol.
If low circulating cholesterol levels were indeed a causal risk
factor for cancer, then individuals with the genotype associated
with low cholesterol would be expected to have higher cancer
risk. If, however, reverse causation or confounding generated
the association between low cholesterol and cancer, then no asso-
ciation would be expected between APOE genotype and cancer.
Individuals with lower cholesterol because of their genotype, rather
than because clinically unrecognized cancers had lowered their
cholesterol, would not have a higher risk of cancer; nor would
there be substantial confounding between genotype-associated
differences in cholesterol and lifestyle or socioeconomic factors.
While Katan did not have any data on this, he advocated it as a
study design. To our knowledge this intriguing suggestion has not
been systematically investigated with respect to the important
question Katan posed, although sporadic reports relating APOE to
risk of specific cancers have appeared.53–55

The easiest way to understand how epidemiological studies
can utilize Mendelian randomization is to consider particular
examples of how the principles can be applied to practical issues
in aetiological epidemiology. We discuss several such examples,
before concluding the paper by considering the limitations of
Mendelian randomization.

Examples of Mendelian randomization:
triangulation of genotype and phenotype
associations with disease risk
Folate, homocysteine, and coronary heart disease

The association of the amino acid homocysteine with CHD has
generated much interest. Observational studies have consist-
ently demonstrated that higher plasma homocysteine level is
associated with an increased CHD risk.56 This in itself may not
be of interest to environmentally minded epidemiologists, but
RCTs have shown that a moderate increase in folate consumption
can substantially decrease homocysteine levels.57 Therefore if
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Figure 3 Mendelian randomization in parent–offspring design

Offspring should have an equal chance of receiving either of the alleles
that the parents have at any particular locus

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/32/1/1/642797 by guest on 05 April 2021

7.3

https://academic.oup.com/ije/article/32/1/1/642797


MR in non-familial studies (Davey Smith and Ebrahim, 2003)

Of course populations share much common ancestry and the genetic

make-up of individuals can be traced back through the random segregation

of alleles during a sequence of matings, but associating genetic markers

with disease risk or phenotype within such populations is not as well

protected against potential distorting factors as are parent–offspring

comparisons. Thus the Mendelian randomization in genetic association

studies is approximate, rather than absolute.
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

BMI blood pressure

confounder

rs9939609 (FTO gene) caloric intake β0

A hypothetical RCT emulated by MR

BMI blood pressure

confounder

randomization to

BMI-lowering medication
β0
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

BMI blood pressure

confounder

rs9939609 (FTO gene)
γ β0

• SNP ↑ 1 unit ⇒ BMI ↑ γ units

• BMI ↑ 1 unit ⇒ blood pressure ↑ β0 units

• SNP ↑ 1 unit ⇒ blood pressure ↑ ? units
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

BMI blood pressure

confounder

rs9939609 (FTO gene)
γ β0

• SNP ↑ 1 unit ⇒ BMI ↑ γ units

• BMI ↑ 1 unit ⇒ blood pressure ↑ β0 units

• SNP ↑ 1 unit ⇒ blood pressure ↑ γ · β0 units
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

BMI blood pressure

confounder

rs9939609 (FTO gene)
γ β0

• SNP ↑ 1 unit ⇒ BMI ↑ γ units

• BMI ↑ 1 unit ⇒ blood pressure ↑ β0 units

• SNP ↑ 1 unit ⇒ blood pressure ↑ γ · β0 units

Hence, a linear relationship: SNP’s effect on blood pressure(γ·β0)

= SNP’s effect on BMI(γ)×Causal effect of BMI on blood pressure(β0).
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Example: causal effect of BMI on blood pressure

Key: a simple linear relationship that passes (0,0)
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Example: causal effect of BMI on blood pressure

Key: a simple linear relationship that passes (0,0)
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The principle of MR

MR uses single-nucleotide polymorphisms (SNPs) as instrumental variables
(IVs), if they satisfy three core IV assumptions:

1 Relevance: the SNP is related with the exposure
2 Randomness: the SNP is independent of the confounder
3 Exclusion restriction: the SNP has no direct effect on the outcome (i.e. no

horizontal pleiotropy)

Exposure (BMI) Outcome (SBP)

Confounder

SNP (FTO variant)
β0

%

1

2

3

%
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Two-sample summary-data MR

Combine publically available summary data∗ on SNP-exposure and SNP-

outcome associations from two separate samples.

Example: estimate the effect of BMI on SBP using 160 independent SNPs.

• Exposure dataset: A GWAS for BMI by the GIANT consortium, lm(X ∼ Zj)
⇒ γ̂j, σXj, j = 1, . . . , p.

• Outcome dataset: A GWAS for SBP in the UK BioBank, lm(Y ∼ Zj)

⇒ Γ̂j, σY j, j = 1, . . . , p.

• Assume that γ̂j ∼ N(γj, σ
2
Xj) and Γ̂j ∼ N(Γj, σ

2
Y j), where Γj = γjβ0 for j =

1, . . . , p, and σ2
Xj, σ

2
Y j’s are known. Here, p can be very large (e.g., thousands).

∗Many GWAS summary data are publically available at, e.g., IEU GWAS database and GWAS
Catalog.
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The IVW estimator in MR

• In practice, we can fit a weighted linear regression (with the intercept at 0)
> lm(beta.outcome~0+beta.exposure,weights = 1/se.outcome^2,data=df_summary)

# fix the intercept at 0

# the estimated slope is the estimated causal effect

Coefficients:

beta.exposure

0.38

• We can fit linear regression as (γ̂j, Γ̂j, j = 1, . . . , p) are approximately mutually
independent if SNPs are independent (i.e., not in linkage disequilibrium).
• This is the popular inverse-variance weighted (IVW) estimator, which is a

meta-analysis (Session 8) of Γ̂j/γ̂j across all SNPs.
• The IVW estimator can also be understood as a Beyasian estimator of the

common ratio β0 with a flat prior on β0 (see Session 4), when ignoring the
measurement error of γ̂j’s.
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The IVW estimator in MR

• However, because γ̂j’s have measurement errors, directly using the standard

error from the linear model output can underestimate the uncertainty. If γj’s

are close to zero (i.e., weak IVs), IVW will be biased toward zero (weak IV

bias) (Ye, Shao, Kang, 2021).

• What happens when αj := Γj − β0γj 6= 0? If αj | γj ∼iid N(0, τ2) (a

random effect), the IVW estimator is still unbiased but has larger variability.

Otherwise, the IVW can be biased.

• We can check heterogeneity across all SNPs (i.e. all SNPs do not agree on a

common causal effect) using Cochran’s Q statistic; see more in Session 8.
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The IVW estimator in MR
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Likelihood

Recall that we assume γ̂j ∼ N(γj, σ
2
Xj) and Γ̂j ∼ N(Γj, σ

2
Y j), for j = 1, . . . , p, which

are mutually independent, and σ2
Xj, σ

2
Y j’s are known.

This gives the likelihood

p(Γ̂j, γ̂j, j = 1, . . . , p | Γj, γj, σ2
Xj, σ

2
Y j, j = 1, . . . , p)

=
p∏

j=1

p(γ̂j | γj, σ2
Xj)p(Γ̂j | Γj, σ2

Y j)

∝ exp

− p∑
j=1

(γ̂j − γj)2

2σ2
Xj

−
p∑

j=1

(Γ̂j − Γj)
2

2σ2
Y j

 .

The causal effect of interest β0 is defined by the relationship of γj,Γj.
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Causal assumptions and some choices of priors

• Valid IVs†: Γj = γjβ0. Priors: γj ∼iid N(0, ψ2) and β0 ∼ N(0, ν2).
• Balanced horizontal pleiotropy: Γj = γjβ0 + αj. Priors: γj ∼iid N(0, ψ2)

and β0 ∼ N(0, ν2), and αj ∼iid N(0, τ2).

... for some ψ2, ν2, τ2 which may in turn have hyperpriors (More in Session 8).

Exposure Outcome

Confounder

SNPj
γj β0

Fig 1. Valid IVs

Exposure Outcome

Confounder

SNPj
γj β0

αj

Fig 2. Balanced horizontal pleiotropy

†Another good choice of prior for γj is the spike-and-slab Gaussian mixture prior (Zhao et al.
2019)
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Causal assumptions and some choices of priors

• Uncorrelated pleiotropy or InSIDE: Γj = γjβ0 +αj. Priors: γj ∼iid N(0, ψ2)

and β0 ∼ N(0, ν2), αj ∼iid N(α, τ2).

• Correlated pleiotropy‡: Γj = γjβ0 + γjη + αj. Priors: γj ∼iid N(0, ψ2) and

β0 ∼ N(0, ν2), η ∼ N(0, ν2), αj ∼iid N(0, τ2).

Exposure Outcome

Confounder

SNPj
γj β0

αj

Fig 3. Uncorrelated pleiotropy

Exposure Outcome

Confounder

SNPj
β0

1 η

αj

γ
j

Fig 4. Correlated pleiotropy

‡In Morrison et al, 2020, they considered a mixture of different pleiotropy types.
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Not so Bayes: Profile likelihood (∗)

Previously, we use the full likelihood of the summary statistics, which involves
a large number of parameters (including γ1, . . . , γp). However, γj’s are nuisance
parameters while β0 is the parameter of interest.

We can profile out γ1, . . . , γp and get the profile likelihood. Take the valid IV case
(i.e. Γj = β0γj) as an example (Zhao et al. 2020). The profile likelihood is

max
γ1,...,γp

p(Γ̂j, γ̂j, j = 1, . . . , p | Γj, γj, σ2
Xj, σ

2
Y j, j = 1, . . . , p)

∝ exp

− p∑
j=1

(Γ̂j − β0γ̂j)
2

2(σ2
Y j + β2

0σ
2
Xj)

 ,
which only has one unknown parameter β0!

• A non-Bayesian approach: directly maximize the profile likelihood.
• A Bayesian approach: put a prior on β0, e.g. a normal prior with zero mean.
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Strengths and challenges of MR

Strengths:

• Less susceptible to conventional unmeasured confounding (Mendel’s laws)
• Less susceptible to reverse causation (genetics are fixed at conception)
• Has a summary-data and a two-sample option

Challenges:

• Weak IV bias
• Genetic-outcome confounding
• Widespread horizontal pleiotropy can cause bias (multi-functions genes)
• Low power
• Assumes constant treatment effect
• Based on gene-environment equivalence (Sanderson et al. 2022)
• Only applicable to heritable exposures
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Summary

• MR leverages genetic variation to address causal questions

- Emulates a RCT

- Triangulation across multiple sources of evidence for causal inference

- MR has strengths and challenges

• Non-Bayesian and Bayesian methods in MR

- A very good tutorial here
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