Bayesian Statistics for Genetics
Lecture 7: Mendelian Randomization

July, 2023



INn this session

e What is Mendelian randomization (MR)?
e Non-Bayesian and Bayesian methods in MR

Survey:

e Please raise your hand if you have heard about MR before.
e please raise your hand if you have heard about instrumental variables before.
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Abstract

Mendelian randomization (MR) is a term that applies to the use of genetic variation to
address causal questions about how modifiable exposures influence different outcomes. The

principles of MR are based onMendel’s laws of inheritanceland|instrumental variable

estimation methods, which enable the inference of causal effects in the presence of

unobserved confounding. In this Primer, we outline the principles of MR, the instrumental
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The

basis of MR (pavey smith and Ebrahim, 2003)

o
Genotype Genotype randomly determined
aa’ aa’
Offspring Offspring Offspring Offspring
Genotype Genotype Genotype Genotype
aa a’a’ aa’ a'a

Figure 3 Mendelian randomization in parent-offspring design

Offspring should have an equal chance of receiving either of the alleles
that the parents have at any particular locus
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https://academic.oup.com/ije/article/32/1/1/642797

MR Iin non-familial studies (pavey smith and Ebrahim, 2003)

Of course populations share much common ancestry and the genetic
make-up of individuals can be traced back through the random segregation
of alleles during a sequence of matings, but associating genetic markers
with disease risk or phenotype within such populations is not as well
protected against potential distorting factors as are parent—offspring
comparisons. Thus the Mendelian randomization in genetic association
studies is approximate, rather than absolute.
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https://academic.oup.com/ije/article/32/1/1/642797

Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

59939609 (FTO gene) Caloric intake, g, 0. piood pressure

N

confounder

A hypothetical RCT emulated by MR

randomization to

Bo
- ——— blood pressure
BMI-lowering medication BMI P

N

confounder
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

rs9939609 (FTO gene) i - BMI o, blood pressure

N

confounder

e SNP 11 unit = BMI 1~ units
e BMI 1 1 unit = blood pressure 1 (g units
e SNP 1 1 unit = blood pressure 1 ? units
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Example: causal effect of BMI on blood pressure

MR: People who inherited certain alleles have naturally higher BMI.

rs9939609 (FTO gene) i - BMI o, blood pressure

N

confounder

e SNP 11 unit = BMI 1~ units
e BMI 1 1 unit = blood pressure 1 (g units
e SNP 1 1 unit = blood pressure 1 v - g units

Hence, a linear relationship: SNP’s effect on blood pressure(vy-5p)
= SNP’s effect on BMI(~v) x Causal effect of BMI on blood pressure(Sp).
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Example: causal effect of BMI on blood pressure

Key: a simple linear relationship that passes (0,0)

0.075 1
0.050 -
0.0251 e SNP1

OOOO- ........................ ...........................................................................

SNP effect on outcome

-0.025 -

0.000 0.025 0.050
SNP effect on exposure
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Example: causal effect of BMI on blood pressure

Key: a simple linear relationship that passes (0,0)
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SNP effect on exposure
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The principle of MR

MR uses single-nucleotide polymorphisms (SNPs) as instrumental variables
(IVs), if they satisfy three core IV assumptions:

1 Relevance: the SNP is related with the exposure

2 Randomness: the SNP is independent of the confounder

3 Exclusion restriction: the SNP has no direct effect on the outcome (i.e. no
horizontal pleiotropy)

©

SNP (FTO variant) @ Exposure (BMI) Bo, Outcome (SBP)

\ \ /

X (=) Confounder
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Two-sample summary-data MR

Combine publically available summary data®™ on SNP-exposure and SNP-
outcome associations from two separate samples.

Example: estimate the effect of BMI on SBP using 160 independent SNPs.

e Exposure dataset: A GWAS for BMI by the GIANT consortium, Im(X ~ Z;)

= Yj,0x5, J=1,...,D.

e Outcome dataset: A GWAS for SBP in the UK BioBank, Im(Y ~ Z;)
= |ﬁj,0yj, j=1,...,p.

e Assume that 7; ~ N(fyj,a%j) and I'; ~ N(I‘j,a}%j), where I'; = v;8q for j =
1,...,p, and O‘%j,(f}%j’s are known. Here, p can be very large (e.g., thousands).

*Many GWAS summary data are publically available at, e.g., IEU GWAS database and GWAS
Catalog.
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https://gwas.mrcieu.ac.uk
https://www.ebi.ac.uk/gwas
https://www.ebi.ac.uk/gwas

The IVW estimator in MR

e In practice, we can fit a weighted linear regression (with the intercept at 0)
> Im(beta.outcome”O+beta.exposure,weights = 1/se.outcome”2,data=df_summary)
# fix the intercept at O
# the estimated slope is the estimated causal effect

Coefficients:
beta.exposure
0.38

e We can fit linear regression as (7, fj,j = 1,...,p) are approximately mutually
independent if SNPs are independent (i.e., not in linkage disequilibrium).

e This is the popular inverse-variance weighted (IVW) estimator, which is a
meta-analysis (Session 8) of ch/ﬁj across all SNPs.

e T he IVW estimator can also be understood as a Beyasian estimator of the
common ratio By with a flat prior on 8y (see Session 4), when ignoring the
measurement error of 7;'s.
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The IVW estimator in MR

e However, because 7;'s have measurement errors, directly using the standard
error from the linear model output can underestimate the uncertainty. If yj’s
are close to zero (i.e., weak IVs), IVW will be biased toward zero (weak IV
bias) (Ye, Shao, Kang, 2021).

e What happens when «; = I'; — Bov; #= 07 If o5 | v ~jid N(0,72) (a
random effect), the IVW estimator is still unbiased but has larger variability.
Otherwise, the IVW can be biased.

e We can check heterogeneity across all SNPs (i.e. all SNPs do not agree on a
common causal effect) using Cochran’s Q statistic; see more in Session 8.
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https://projecteuclid.org/journals/annals-of-statistics/volume-49/issue-4/Debiased-inverse-variance-weighted-estimator-in-two-sample-summary-data/10.1214/20-AOS2027.short

The IVW estimator in MR
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Likelihood

Recall that we assume 7, ~ N(’Yj,d%j) and [ ~ N(I‘j,a%j), forj=1,...

are mutually independent, and J%J,a%]'s are known.

This gives the likelihood

2 2

(Iﬁ ]:17“‘7p|rj77j70-Xj70-Yj7j:17”'7p)

D
- 2 = 2
= H1 p(j 1 v, 0% )p(Tj | Tj0%,)

2
QUYj

The causal effect of interest [y is defined by the relationship of Vi -

_p, which

7.16



Causal assumptions and some choices of priors

e Valid IVs': [, = jBo. Priors: «v; ~;iq N(0,42) and By ~ N(0,v2).
e Balanced horizontal pleiotropy: I‘i- = ;80 + «;. Priors: v; ~q N(0,?)
and Bo ~ N(0,v2), and a; ~;iq N(0,72).

. for some 2,12, 72 which may in turn have hyperpriors (More in Session 8).

/%\

. .

SNP; /. Exposure Po Outcome SNP; R Exposure Ao Outcome
Confounder Confounder

Fig 1. Valid IVs Fig 2. Balanced horizontal pleiotropy

fAnother good choice of prior for v; is the spike-and-slab Gaussian mixture prior (Zhao et al.
2019)
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https://academic.oup.com/ije/article/48/5/1478/5531250
https://academic.oup.com/ije/article/48/5/1478/5531250

Causal assumptions and some choices of priors

e Uncorrelated pleiotropy or INSIDE: I"; = v,80 4 a;. Priors: ~; ~y;q N(0,?)
and Bo ~ N(0,v2), a; ~jq N(a, 72).

e Correlated pleiotropy’: ; = ;80 + v;n + a;. Priors: ~; ~;q N(0,42) and
Bo ~ N(0,v2), n~ N(0,v?), aj ~jjq N(0,72).

SNP; AR Exposure P, Outcome SNP; Exposure =% P Outcome
Confounder Confounder
Fig 3. Uncorrelated pleiotropy Fig 4. Correlated pleiotropy

'In Morrison et al, 2020, they considered a mixture of different pleiotropy types.
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https://academic.oup.com/ije/article/44/2/512/754653
https://www.nature.com/articles/s41588-020-0631-4

Not so Bayes: Profile likelihood (*)

Previously, we use the full likelihood of the summary statistics, which involves
a large number of parameters (including v1,...,7p). However, ~;'s are nuisance
parameters while By is the parameter of interest.

We can profile out ~v1,...,vp and get the profile likelihood. Take the valid IV case
(i.e. T'; = Bovj) as an example (Zhao et al. 2020). The profile likelihood is
~ . 2 2 . __
,y?:]a?,(ypp(rjafy‘ﬁ] — 177p| I_jafyjao-Xj70-Yj7.] — 177p)

r._ A2
ocexp(_i (F5 = Bo¥)) )

2 2 D
j=1 Q(UYj ‘I'ﬁo"Xj)

which only has one unknown parameter (Gg!

e A non-Bayesian approach: directly maximize the profile likelihood.

e A Bayesian approach: put a prior on g, €.9. a normal prior with zero mean.
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https://research-information.bris.ac.uk/ws/portalfiles/portal/244353308/AOS1866.pdf

Strengths and challenges of MR

Strengths:

e L ess susceptible to conventional unmeasured confounding (Mendel’s laws)
e L ess susceptible to reverse causation (genetics are fixed at conception)
e Has a summary-data and a two-sample option

Challenges:

e \Weak IV Dbias
Genetic-outcome confounding

Widespread horizontal pleiotropy can cause bias (multi-functions genes)
Low power

Assumes constant treatment effect

Based on gene-environment equivalence (Sanderson et al. 2022)
Only applicable to heritable exposures
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https://www.nature.com/articles/s43586-021-00092-5

Summary

e MR leverages genetic variation to address causal questions
- Emulates a RCT
- Triangulation across multiple sources of evidence for causal inference
- MR has strengths and challenges
e Non-Bayesian and Bayesian methods in MR
- A very good tutorial here
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https://mrcieu.github.io/TwoSampleMR/articles/index.html
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