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Biowhat?

Biostatistics is the application of statistics to

topics in biomedical science. UW Biostat is

part of the School of Public Health.

• We interpret ‘biomedical’ broadly; I work in cardiovascular
genetics, my colleagues are experts in clinical trials, environ-
mental health, infectious diseases, health services...

• We are consistently ranked the #1 Biostatistics

department in the US∗

• Many outstanding statisticians; NAS members, IoM advisors,
an FRSNZ, one (Dutch) knight, an army of ASA fellows

Today’s topic is more ‘stat’ than ‘bio’ – but matters, for high-
volume studies of small effects.

* We may also be the US department most aware of the shortcomings of

rank-based analysis
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Overview

Biostatistics... “with the p’s and the t’s” ?

Today I will discuss;

• Testing, as Fisher saw it

• Bayes – making decisions

• Bayes – making testing decisions

• Some extensions

All of this is (surprisingly) contentious – but perhaps it doesn’t

need to be.
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What is a Fisherian test?

Ronald Fisher 44 Storey’s Way
(1890–1962) (1943–1957)

Every experiment may be said to exist

only in order to give the facts a chance

of disproving the null hypothesis

The Design of Experiments, pg 18
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What is a Fisherian test?

Fisher developed tests that choose between;

• h=1: Reject the null hypothesis
• h=0: Conclude nothing

This is different to Neyman-Pearson style tests;∗

• h=1: Reject the null hypothesis
• h=0: Accept the null hypothesis

Type I errors can occur in both forms; any test that sets h=1
when p < α fixes the Type I error rate (frequentist)

Type II errors do not occur in the Fisherian approach.

* For fun, see Hurlbert & Lombardi (2009) Ann Zool Fennici Final collapse of

the Neyman-Pearson decision theoretic framework and rise of the neoFisherian
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Bayesian decisions

Bayes’ theorem: posterior ∝ prior × likelihood...

Value of θ

D
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prior
likelihood
posterior

Common sense reduced to calculus
Laplace

Bayesian: One who, vaguely expecting a horse and catching a
glimpse of a donkey, strongly concludes he has seen a mule

Stephen Senn
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Bayesian decisions

Based on deep results, Bayesian decision theory says we should

make decisions that minimize loss averaged over the posterior.

This decision is the Bayes rule.

The loss function specifies how bad it is, if our decision is d but

the true state of nature is θ. For θ ∈ R;

• L = (θ−d)2: quadratic loss; decide d = E[ θ|Y ], the posterior

mean

• L = |θ − d| : absolute loss; decide d = posterior median

• L = h1θ=θ0
+ (1− h)1θ 6=θ0

: classic Bayesian testing;

h =

{
0, P[ θ = θ0 ] > 0.5
1, P[ θ = θ0 ] < 0.5

Classic Bayesian tests offer NP-style choices; θ0 or θC0
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Bayesian decisions

But how might a Bayesian be Fisherian – rejecting the null, or

concluding nothing? One way is to decide between;

• Inaccuracy

– make an estimate, which may be badly ‘off’

– (θ − d)2

• Embarrassment

– ‘conclude nothing’, which is bad if you miss an exciting

signal

– (θ − θ0)2

Lγ = (1− h)× γ1/2(θ − θ0)2 + h× γ−1/2(θ − d)2

∝ embarrassment ∝ inaccuracy
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Bayesian decisions

As a function of θ:

θ0 d
True value, θ

Lo
ss

0

lots

h=1: Inaccuracy
h=0: Embarassment

Inaccuracy is worse than embarrassment, so scale embarrassment

by 0 ≤ γ ≤ 1. Embarrassment is γ times cheaper than inaccuracy
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Bayesian decisions

Let’s try it, for a revolting green posterior distribution;

θ0

True value, θ
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0

lots

Beliefs are centered near θ0, but also have some uncertainty
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Bayesian decisions

Let’s try it, for a revolting green posterior distribution;

θ0 d
True value, θ

Lo
ss

0

lots

h=1: Inaccuracy

Choosing h = 1, we’d select the posterior mean, for d
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Bayesian decisions

Let’s try it, for a revolting green posterior distribution;

θ0 d
True value, θ

Lo
ss

0

lots

h=1: Inaccuracy
h=0: Embarassment

Looks better to choose h = 1, here
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Bayesian decisions

Another example;

θ0

True value, θ
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This posterior is diffuse, with mean closer to θ0
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Bayesian decisions

Another example;

θ0 d
True value, θ

Lo
ss

0

lots

h=1: Inaccuracy
h=0: Embarassment

Here, we do better choosing h = 0
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Bayesian decisions

We get the Bayes rule formally by minimizing a quadratic; we

decide h = 1 (inaccuracy) iff

E[ θ − θ0|Y ]2

Var[ θ|Y ]
≥

1− γ
γ

• If h = 1, d is the posterior mean, E[ θ|Y ] (may be inaccurate)

• If h = 0, any d is equally good/bad; we make no conclusion

(embarrassing!)

Note that a non-committal decision is 6= a non-committal

prior/likelihood/posterior
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On sanity

Scientifically, this loss is sane. Embarrassment and inaccuracy

are measured on the same scientifically relevant scale
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On sanity

Trading h = 0,1 vs (θ − θ0)2? Apples vs oranges;
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Connections

Moreover, this sane test shouldn’t upset frequentists;

Bayes rule Wald test

E[ θ − θ0|Y ]2

Var[ θ|Y ]
≥

1− γ
γ

(θ̂ − θ0)2

V̂arθ̂
≥ χ2

1, 1−α

• Interpreting γ in terms of α is straightforward

• Justify your choice of γ! (but γ = 0.21 ≈ α = 0.05, if you

must... γ = 0.03 for α = 5× 10−8)

• For ‘nice’ situations, by Bernstein-von Mises as n → ∞ the

posterior is essentially a Normal likelihood, and everyone

agrees

• Classic Bayes Tests can give opposite results from Wald

tests (the ‘Jeffreys/Lindley paradox’) – particularly for small

θ and large n. With the ‘new’ tests, this does not happen
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Example

An old genetics problem – testing Hardy-Weinberg Equilibrium;

Genotype AA Aa aa Total

Count nAA nAa naa n

Proportion pAA pAa paa 1

Under exact HWE, for some pA the proportions are

{pAA, pAa, paa} = {p2
A,2pA(1− pA), (1− pA)2}

Deviations from HWE can measured by;

θ =
2(paa + pAA)− 1− (paa − pAA)2

1− (paa − pAA)2
.

Under exact HWE, we get θ = θ0 = 0. Using a flat prior on

{pAA, pAa, paa}, γ = 0.21, let’s use the Bayesian test...

14



Example

All possible Bayesian answers, for n=200;
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Example

Any Bayes test has frequentist properties – ours has good ones!

0.0 0.2 0.4 0.6 0.8 1.0
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00
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08

Tests of HWE/inbreeding: n=200

pA

Ty
pe

 I 
er
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r 
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te

Pearson χ2 test, nominal α = 0.05
Fisher exact test, nominal α = 0.05
Bayes rule for significance tests of HWE, γ = 0.21

The other tests are;

• A simple Pearson χ2 test, based on (O − E)2

• Fisher’s test (!), which is exact but conservative
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A dual problem

A related problem; if you had to suffer both embarrassment and
inaccuracy – which tradeoff would you choose?

θ0 d
True value, θ

Lo
ss

0

lots
Inaccuracy
Embarassment

Embarrassment x100 cheaper

θ0 d
True value, θ

Lo
ss

0

lots

Embarrassment x5 cheaper

This ‘dual’ decision problem has loss function

L =
1√

1 + w
(θ − θ0)2 +

√
1 + w (d− θ)2,

for positive decision w, which parameterizes the tradeoff.

17



A dual problem

The Bayes rule looks familiar;

w =
E[ θ − θ0|Y ]2

Var[ θ|Y ]
≈

(θ̂ − θ0)2

V̂arθ̂
.

• The Bayes rule is the Wald statistic, modulo the prior’s

influence

• Two-sided p-values are essentially (sane) Bayesian decisions

• Making decision {d,w} lets others make testing {h, d} deci-

sion, for any tradeoff γ – a complementary problem

• Viewed as Bayesian or frequentist, p does not measure

evidence in favor of H0 : θ = θ0;

– Neither p nor w represents P[ θ = θ0 ] – we can give zero

support to θ = θ0 and still decide h = 0.

– It’s known that p alone behaves unlike any sane measure

of evidence (Schervish 1996)
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Interim conclusions

Big points so far;

• Two-sided p values are not evil, or unBayesian

• Bayesian analysis can be Fisherian, without difficulty

Also;

• Getting p < α is not ‘proof’ of anything. Fisherian

approaches make this obvious

• The (abstract) concept of repeated sampling is unhelpfully

confusing. Embarrassment and inaccuracy make sense with

regard to one dataset

• Calibration of anything is hard. Expressing loss in units of θ

connects ‘the statistics’ with ‘the science’
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Interim conclusions

There are several extensions to this work;

• Multivariate θ

• Shrinkage

• Model-robust inference, ‘sandwich’ approaches

• Set-valued decisions

• Point masses at θ = θ0

• Simpler measures of embarrassment and inaccuracy

– using only sign(θ − θ0)

Other extensions include multiple testing (Bonferroni, FDR)
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Final Conclusions

• If you want to do tests, this framework is attractive. But

not doing tests at all is also reasonable, if your loss looks

nothing like those seen here

• Many of the results we teach as ps and ts are better justified

as Bayesian procedures. The Bayesian version is [I think]

easier to motivate and understand – and criticize, when it’s

used inappropriately

• If methods are chosen because they are ‘cookbook’, justifi-

cation as Bayes and/or frequentist doesn’t matter. But this

choice shouldn’t be cookbook

21



Final Conclusions

Thanks to;

• Dane for the invite

• Adam Szpiro

• Thomas Lumley (Auckland)

• Jim Berger and SAMSI (initial work)

References:

• Rice (2010) A Decision-Theoretic Formulation of Fisher’s

Approach to Testing, American Statistician

• Szpiro, Rice, and Lumley (2011) Model-Robust Regression

and a Bayesian ‘Sandwich’ Estimator Annals of Applied

Statistics

faculty.washington.edu/kenrice
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Bonus Tracks: Lindley’s what?

Some Bayesians hate p-values – they often have priors like this;
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Blue ellipse ‘concentrates’ at exactly θ = 1/2; otherwise diffuse
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Bonus Tracks: Lindley’s what?

You do a massive study, and get e.g. 51% heads in 10,000 tries;
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51% is hard to see, plotted on this scale - let’s zoom in;
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Wald test rejects (p < 0.05, no prior) but small effect estimate
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Bonus Tracks: Lindley’s what?

Zoomed-in revolting green posterior; (prior × likelihood)
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Now let’s zoom out, for the big picture...
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Bonus Tracks: Lindley’s what?

Bigger ellipse⇒ Bayesian Taleban believe θ = 0.5 more strongly
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But the Wald test rejects θ = 0.5 (?) – for unpointy priors
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Bonus Tracks: Lindley’s what?

This phenomenon is called the Jeffreys/Lindley paradox

• Jeffreys spotted it, Lindley made it famous

• Our prior had 50:50 support for null, alternative – but this
doesn’t matter; classic Bayes tests use how much more we
believe the null (a.k.a. the Bayes factor)

• With point null priors, we can still trade embarassment for
inaccuracy, but the ‘balance’ in the prior does matter (seems
sensible to me!)

• In my experience, a lot else can go wrong with ‘pointy’ priors
like this, and they are not ‘real’. But some Bayesians really
like them.
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