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Discussion of Campbell & Gustafson

Kenneth Rice∗

As noted by the authors ("C&G" hereafter), putting ‘spikes’ in priors is contentious:
the heart of the Jeffreys-Lindley paradox is arguably [2] that tests focusing on whether
a point mass is ‘true’ can disagree totally with standard non-Bayesian two-sided tests
that use p-values. But of course p-values focus not on the truth, but whether the data
(or more extreme) data would be surprising enough under the null to merit saying
something. For a resolution without any spikes, see Rice and Krakauer [6], reviewing
work dating to at least Lehmann [3].

That said, with a spike in the prior the posterior’s discontinuity may indeed prevent
us defining credible intervals with some exact level of support. If 80% of the posterior
lies exactly at θ0, we can only have intervals with up to 20% support (excluding the
spike) or those over 80%, which include it. C&G say this is "puzzling", but it is textbook
stuff: the same behaviour crops up with frequentist tests in discrete sample spaces, with
only a finite set of outcomes. I do agree that "bizarre" is the right term for C&G’s artifice
of randomizing the intervals – it is essentially the same workaround described by e.g.
Bickel and Doksum [1, pg 224], who are clear it is only a device for proving optimality.
Young and Smith [7, pg 67] add pragmatic advice on how, in practice, to avoid the
embarrassment of having the analysis’ conclusions rest so heavily on the toss of a coin.

Defining credible intervals when spikes are present is a detail addressed in Rice and
Ye [5]’s general regret formulation of credible regions, where one specifies an estimation
loss and forms the credible region as the least-bad 95% of the posterior with regard to
the expected loss. Following longstanding non-Bayesian practice – e.g. Neyman [4, pg
112] – it defines a 1−α credible region as being just big enough to have support at least
1 − α, so not "undefined" as C&G would have it.

Exploring a little of how these regions behave in posteriors with spikes, we consider
C&G’s Normal location problem, with Ȳ = 1.645/

√
n; Figure 1 shows the posterior

CDF for n = 10, for a 50:50 mixture of a N(0, 1) prior and a spike at θ = 0, and also
for the N(0, 1/2) continuous prior that has the same variance. To distinguish between
priors with spikes at exactly θ = 0 and decisions that return exactly θ = 0, we consider
two losses. First is familiar squared error loss, L(d) = (θ − d)2, for which we show the
regret. Second, as considered in Rice and Ye [5, §4.2], the more general ‘shrinkage’ loss

L(d, h) = γ1/2h(d − θ)2 + γ−1/2(1 − h)
(
(d − θ0)2 + (θ − θ0)2)

, (1)

that combines testing decision h ∈ {0, 1} with a real-valued estimate d. (Following Rice
and Ye [5] we use we use γ = 0.207.) The corresponding Bayes rule for d depends on the
ratio of posterior mean to posterior standard deviation; based on which it is shrunk to
exactly θ0, or remains the unshrunk posterior mean. Figure 1 shows the profile regret,
i.e. the excess expected loss for estimate d′ if one optimizes out auxiliary decision h.
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Figure 1: Posterior CDFs, regret under squared error loss and profile regret under the
shrinkage loss for z = 1.645, n = 10. Bayes rule point estimates and 95% regret/profile
regret intervals are shown below, for both priors and losses

The lower part of Figure 1 shows how the 50:50 mixture prior does not always lead
to smaller posterior variance and hence narrower regret intervals; with n = 10, 95%
intervals that are symmetric around the posterior mean have to be 5.8% wider under
the spiked prior. (For larger values of n this pattern is reversed, and the ratio of widths
decreases roughly linearly until near n = 5400, when the posterior spike reaches support
95%.) For the shrinkage loss function, the spiked posterior provides slightly (i.e. 8%)
narrower intervals than the continuous one – and this pattern increases monotonically
until n = 5400, again, when both intervals shrink to single points. The plot also shows
that there is a cost (in terms of credible interval width) for using the shrinkage loss
versus squared error, regardless of prior. This too persists at larger n up to n = 5400,
where under the spiked prior using shrinkage results in an ≈15% wider interval, and for
the continuous prior ≈70% wider.

We see that the impact (on intervals) of using priors with/without spikes at exactly
θ0 can differ from that of asking questions that yield estimates of exactly θ0. I welcome
C&G’s insights on how analysts can be helped to describe what is known about their θ,
what they want to know about θ, and how their ways of addressing those two questions
may interact.
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