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Overview

• Tests aren’t the problem! – but they are badly used, & misunderstood
• Aim to make tests (& p-values) simpler to understand, with decision theory
• Many extensions follow, from simple ideas. http://tinyurl.com/knowsignsUNC
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Motivation

What do we want/not want from testing methods, for a real-valued θ?

Based on my applied work in high-throughput genetics...

Must not have Can live with Must be
Prior ‘spikes’ at θ = 0 1D parameters Simple to explain
Conclusions that θ = 0 Parametric models Optimal, somehow

Only specifying sign of θ Connected to p’s
Scottish!
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Scottish???

Unlike most statistical tests,

‘Scots Law’ has three possible

verdicts – guilty, not guilty and

not proven:

How do the verdicts

overlap with test-

based decisions?

Verdict Hypothesis test Significance test
(Neyman-Pearson) (Fisher)

Guilty Reject H0 Reject H0
Not proven no analog No conclusion
Not guilty Accept H0 no analog
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Decision theory for hypothesis tests

Loss functions deciding signs (is θ > 0? θ < 0?) are very limited.

Doing one-sided hypothesis

tests we can only have:

Decision
d = Above d = Below

Loss when θ > 0 lTA lFB
θ < 0 lFA lTB

And with proper loss

functions this is wlog:

Decision
d = Above d = Below

Loss when θ > 0 0 α
θ < 0 1− α 0

... for some 0 ≤ α ≤ 1. The Bayes rule sets

d = Above⇐⇒ P[ θ < 0|data ] < α.

—acts like 1-sided p’s with large n, but no 2-sided ‘double the smallest tail’.

4



Decision theory for 1-sided significance tests

How our RSS paper translates ‘not proven’ into a loss function:

Decision
d = Above d = No Decision

Loss when θ > 0 0 α
θ < 0 1 α

• ‘Proper’ loss fixes the single zero entry, and 0 ≤ α ≤ 1 ordering

• We also assume “no decision” is equally bad regardless of truth

Different decision, same Bayes rule:

d = Above⇐⇒ P[ θ < 0|data ] < α

—acts like one-sided p’s with large n (cf Casella & Berger 1987).

5

https://doi.org/10.1111/rssa.12496
https://www.jstor.org/stable/2289130


Decision theory for 2-sided significance tests

For 2-sided decisions, proper losses & “no decision equally bad” idea give, wlog;

Decision
d = Above d=No Decision d = Below

Loss when θ > 0 0 αAαB αA
θ < 0 αB αAαB 0

Bayes rule: do d iff P[ θ < 0 ] < αA Otherwise P[ θ > 0 ] < αB

...and insisting that ‘Otherwise’ can happen sometimes forces αA + αB ≤ 1.

Add symmetry and wlog we must have a Bayesian analog of 2-sided tests:

Decision
d = Above d = No Decision d = Below

Loss when θ > 0 0 α 2
θ < 0 2 α 0

Bayes rule: do d iff P[ θ < 0 ] < α/2 Otherwise P[ θ > 0 ] < α/2
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Decision theory for 2-sided significance tests

An example to make this all, er, transparent:

θ, treatment effect

de
ns

ity

−0.7 −0.5 −0.3 −0.1 0.1 0.3θ0 = 0

prior

posterior
likelihood
(normalized)

Pr[θ > 0]=0.11

Left and right posterior tail areas are 0.89, 0.11, both > α/2, so d=No Decision.
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Decision theory for 2-sided significance tests

And with larger n:

θ, treatment effect

de
ns

ity

−0.7 −0.5 −0.3 −0.1 0.1 0.3θ0 = 0

prior

posterior
likelihood
(normalized)

Pr[θ < 0]=0.01

Twice the minimum posterior tail area = 0.020, classical p-value is 0.022
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Decision theory for 2-sided significance tests

d=Above

d=Below

d=No   
Decision

0θ<0 θ>0
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αB

True θ
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Two-sided significance tests are a close (large n) approximation of

a Bayes rule for choosing signs – and up to ‘proper’ conditions, no

other losses/decisions are available for this problem.
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Decision theory for 2-sided significance tests

Corollaries:

• Two-sided tests are Bayesian, and simple, and always have been

• Standard two-sided tests are inevitable, in some applications, so it makes no

sense to ban, retire or ‘cancel’ them

• Any controversy should be on context and costs, not Bayes versus frequentist

With very little extra work, can also motivate:

• p-values

• Intervals

• Why post hoc power is a waste of effort

• Multiple testing

• Bayes Factors
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Making peace with p’s

Everyone’s favorite vegetable statistical topic;

... should we eat our p’s?
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Making peace with p’s

Our testing loss trades-off Above/Below/No Decisions:

L(d, θ) = 2× 1d=Above1θ<0 + α1d=No Decision + 2× 1d=Below1θ>0

A dual problem: decide the optimal price for making tradeoffs between these
functions of θ:

L(s, a, θ) =
1
√
a

(2s1θ<0 + a + 2(1− s)1θ>0)

... for binary s and 0 ≤ a ≤ 1. Note we heavily penalize tradeoffs where No
Decision is cheap, relative to sign errors. The Bayes rule sets:

• s = 0/1 depending if left/right tail is smaller
• a = 2×minimum tail area

Decision a is a Bayesian analog of the two-sided p-value, and (with direction
of smallest tail) tells us about the process of choosing signs.
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Making peace with p’s

Corollaries of two-sided p-values being Bayesian after all:

• There is no reason to ban/retire/cancel p-values – though we should always

consider context and costs. (Do you?)

• In our framework, p values are optimal costs for decisions – a form of shadow

price. This term is from economics and (hence) not that complex

• It’s well known p-values don’t measure support for the null (& don’t seem to

measure support for anything; Schervish 1996) – but costs 6= support

• Can connect Bayes to severity – used for post hoc test assessment. Severity

appears as a component of the risk of this loss
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Intervals: what θ0 lead to no decision?

The general 2-sided loss with ‘null’ value θ0;

αB1d=Above1θ<θ0
+ αAαB1d=No Decision + αA1d=Below1θ>θ0

Making one decision for each possible null value θ0, and adding the loss functions
wrt non-negative measure π on Θ, get loss

αBπ (A ∩ {θ : θ > θ0}) + αAαBπ(N ) + αAπ (B ∩ {θ : θ < θ0})
for set-valued decisions A,B,N .

• Regardless of exact π used, Bayes rule sets:
– A to be all θ0 below low αA quantile of posterior
– B to be all θ above high αB quantile of posterior
– N to be the rest, i.e. the credible interval

• Bayesian analog of confidence interval as “set of all θ0 that wouldn’t be
rejected”, large-n equivalent, and similarly respects transformations
• Want to compare intervals? Choose a π and calculate!
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Some fallacies of the fallacy of post hoc power

A (rightly!) famous result: (here 2-sided test of θ = 0, data iid N(θ, σ2), α = 0.05)
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• Power, evaluated at θ̂MLE is just a monotonic function of the p-value...
• So provides zero new information — claiming it does is a “pervasive fallacy”
• Hoenig & Heisey 2001 showed it, & claimed it’s general... it isn’t
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Some fallacies of the fallacy of post hoc power

Using decision theory, would

like to use data to assess

whether a test result is

correct, or not – i.e. do loss

estimation. What happens?

θ̂, in standard error units

lo
ss
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ro

ba
bi

lit
y
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0

α = 0.05

E[Loss | data]

Pr[Loss=2 | data]

• Either d = N and loss=α with certainty, or d = A,B and loss ∈ {0,2}
• Any posterior summary of loss is monotonic in P[ loss = 2 ], i.e. 2× smaller

tail area, the Bayesian analog of the p-value
• Zero new information for post hoc assessment of test – just like H&H – but

for any model
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How risky is it?

Loss assesses how good/bad

a specific test result is.

Risk, the expected loss

over replicate datasets,

assesses the testing process.

θ, in standard error units

0
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R
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non−Bayesian Z test

strong prior/
weak data

• With α = 0.05, Z-test is futile for power ≤ 12% – can just decide d = N !
• Power ≥ 80% means risk ≤ 0.01, i.e. α/5 – see also Shafer et al, in press

17

https://rss.org.uk/getattachment/Training-Events/Events/Online-Interactive-Discussion-Meeting-at-RSS-Confe/jrss_shafer.pdf.aspx/


How risky is it?

Risk estimates do give information beyond p-value – but typically not very much.

θ, in SE units
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• Here Z test gives p = 0.05, but also strong skepticism of testing process

• Getting 50% support for risk<0.01 requires Z-test p < 0.005 or lower
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Extensions: multiple testing

Recall loss for a single θ: (one-sided for simplicity)

L(d, θ) = 1d=Above1θ<0 + α1d=No Decision

For m different θj/dj/αj, conservatively trade total N-loss for a single wrong sign:

L(d, θ) =

 ∑
j:dj=N

αj

 + 1∪{j:dj=A and θj<0}

and to avoid never setting all dj = N , set
∑m
j=1αj = α < 1 for some α.

• With all αj equal, do this by setting αj = α/m, i.e. Bayesian Bonferroni

correction of α. More generally, motivates Bayesian alpha-spending

• A conservative approximation to the Bayes rule here rejects null when

P[ θj|data ] < α/m, i.e. Bayesian Bonferroni correction of decisions
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Extensions: multiple testing

Trading total αj for any number of wrong signs answers a conservative question.

Instead, trading an average of weighted “No Decision” losses against the sum of

losses for sign errors, loss is

1

m

m∑
j=1

αj1dj=N +
m∑
j=1

1dj=A1θj<0.

• Exact Bayes rule sets dj = A for P[ θj|data ] < α/m, i.e. Bayesian Bonferroni,

again – but much simpler than ‘classical’ version

• A Bayesian analog of Bonferroni’s non-conservative motivation via control

of Expected False Positives (Gordon et al 2007)

• Similar trade-offs provide a Bayesian Benjamini-Hochberg algorithm

(Lewis & Thayer 2009)
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Extensions: Bayes Factors

Bayes Factors (BFs) compare posterior to prior – so are not available from losses
that use only θ. More Scottish inspiration...

Dolly the Sheep (1996–2003),

first mammal cloned from an

adult cell – at the University of

Edinburgh, Roslin Institute

• We consider a clone parameter θ∗: same prior as θ, but not updated by data
• Decide if Sign(θ) > Sign(θ∗)? Sign(θ) < Sign(θ∗)? Or make no decision?

* ...Ba-a-a-a-ayes Factors?
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Extensions: Bayes Factors

To get Bayes Factors as 1-sided signif’ce test rule for θ > θ∗, must have loss

Truth Decision, d
d = Above d = No Decision

θ∗ < 0 θ < 0 lb lb
θ > 0 0 1

1+B

θ∗ > 0 θ < 0 1 1
1+B

θ > 0 la la

Bayes rule: do d iff P[ θ>0 ]
P[ θ<0 ]

P[ θ∗<0 ]
P[ θ∗>0 ] > B P[ θ>0 ]

P[ θ<0 ]
P[ θ∗<0 ]
P[ θ∗>0 ] < B

... for lb, la and B all > 0.

• Provides Bayesian interpretation of cutoff values for B — not “rough
descriptive” guidelines where B=1/3.2/20/150 means S/M/L/XL
• Exactly the same as earlier significance tests, now with prior-dependent

threshold α = P[ θ∗<0 ]
BP[ θ∗>0 ]+P[ θ∗>0 ]
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Conclusions/Questions

Where learning signs is all we’ll do,

there are simple Bayesian arguments

for testing via p-values, and many

related methods.

• Not the only Bayesian way to

motivate p-values, but could be

useful for introducing them

• Prompts users to usefully ask is

the loss relevant?— does the

analysis match scientific goals?

• Normative aspect also helpful: can argue an analysis is ‘best’ without recourse

to UMPU etc

• Yes, priors matter—perhaps a lot—but may be needed. No, this version of p

won’t fix all problems, e.g. outright fraud, or saying what “evidence” means
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Bonus track: more nuanced decisions

Truth Decision, d
Above Suggest No Suggest Below

Above Decision Below
θ > 0 lAA lAa lN lAb lAB
θ < 0 lBA lBa lN lBb lBB

• Bayes rule determined by posterior tail area, again
• ‘Proper’ conditions on losses =⇒ means decision A/a/N/b/B follows mono-

tonically in left tail area
• Bayesian analog of recent Art Owen/Andrew Gelman work – counterintuitively

to some, need more significant p-value to declare significance and sign of θ.
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