

Knowing the Signs: Decision theory for significance tests

Ken Rice, Tyler Bonnett & Chloe Krakauer, Univ of Washington, Seattle, USA

Overview

Today, the ASA issued a statement on p-values and statistical significance. Read it online free:

The ASA Statement on p-Values: Context, Process, and Purpose (2016). The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician: Vol. 70, No. 2, pp. 129-133. Standfonline.com

7:48 AM · Mar 7, 2016 · TweetDeck

Ron Wasserstein @Ron_Wasserstein · Mar 22, 2019 Are we ready to move to a world beyond p<0.05? tandfonline.com/doi/full/10.10.... The special issue of The American Statistician tandfonline.com/toc/utas20/73/... challenges us to find out! Thanks, @AmstatNews and @tandfonline

Drop Statistical Significance, Scientists Say In service of an arbitrary threshold, p-values often lead researchers to make poorly supported claims and ignore interesting but insignificant ... & the-scientist.com

- Tests aren't the problem! but they are badly used, & misunderstood
- Aim to make tests (& p-values) simpler to understand, with decision theory
- Many extensions follow, from simple ideas. http://tinyurl.com/knowsignsUNC

Motivation

What do we want/not want from testing methods, for a real-valued θ ?

Based on my applied work in high-throughput genetics...

Must not have	Can live with	Must be
Prior 'spikes' at $\theta = 0$	1D parameters	Simple to explain
Conclusions that $\theta = 0$	Parametric models	Optimal, somehow
	Only specifying sign of $ heta$	Connected to p 's
		Scottish!

Scottish???

Unlike most statistical tests, 'Scots Law' has *three* possible verdicts – guilty, not guilty and **not proven**:

How do the verdicts overlap with testbased decisions?

Verdict	Hypothesis test (Neyman-Pearson)	Significance test (Fisher)
Guilty	Reject H ₀	Reject H ₀
Not proven	no analog	No conclusion
Not guilty	Accept H ₀	no analog

Decision theory for hypothesis tests

Loss functions deciding signs (is $\theta > 0$? $\theta < 0$?) are very limited.

Doing one-sided hypothesis			Decision	
tests we can only have:			d = Above	d = Below
tests we can only have.	Loss when	$\theta > 0$	l_{TA}	l_{FB}
		$\theta < 0$	l_{FA}	l_{TB}
And with proper loss				icion
And with proper loss			Dec	ISION
functions this is wlog:			d = Above	d = Below
	Loss when	$\theta > 0$	0	lpha
		$\theta < 0$	1-lpha	0

... for some $0 \le \alpha \le 1$. The Bayes rule sets

$$d = \text{Above} \iff \mathbb{P}[\theta < 0 | \text{data}] < \alpha.$$

—acts like 1-sided p's with large n, but no 2-sided 'double the smallest tail'.

How our RSS paper translates 'not proven' into a loss function:

Decision
$$d = Above$$
 $d = No$ Loss when $\theta > 0$ 0 $\theta < 0$ 1 α

- 'Proper' loss fixes the single zero entry, and 0 $\leq \alpha \leq$ 1 ordering
- We also assume "no decision" is equally bad regardless of truth

Different decision, same Bayes rule:

$$d = \text{Above} \iff \mathbb{P}[\theta < 0 | \text{data}] < \alpha$$

—acts like one-sided p's with large n (cf Casella & Berger 1987).

For 2-sided decisions, proper losses & "no decision equally bad" idea give, wlog;

			Decision	
		d = Above	d=No Decision	d = Below
Loss when	$\theta > 0$	0	$\alpha_A \alpha_B$	$lpha_A$
	heta < 0	$lpha_B$	$lpha_A lpha_B$	0
Bayes rule:	do d iff	$\mathbb{P}[\theta < 0] < \alpha_A$	Otherwise	$\mathbb{P}[\theta > 0] < \alpha_B$

...and insisting that 'Otherwise' can happen *sometimes* forces $\alpha_A + \alpha_B \leq 1$.

Add symmetry and wlog we *must* have a **Bayesian analog of 2-sided tests:**

		Decision		
		d = Above	d = No Decision	d = Below
Loss when	$\theta > 0$	0	α	2
	$\theta < 0$	2	lpha	0
Bayes rule:	do d iff	$\mathbb{P}[\theta < 0] < \alpha/2$	Otherwise	$\mathbb{P}[\theta > 0] < \alpha/2$

An example to make this all, er, transparent:

Left and right posterior tail areas are 0.89, 0.11, both $> \alpha/2$, so d=No Decision.

And with larger n:

Twice the minimum posterior tail area = 0.020, classical *p*-value is 0.022

Two-sided significance tests are a close (large n) approximation of a Bayes rule for choosing signs – and up to 'proper' conditions, *no other losses/decisions are available for this problem.*

Corollaries:

- Two-sided tests are **Bayesian**, and simple, and always have been
- Standard two-sided tests are **inevitable**, in some applications, so it makes no sense to ban, retire or 'cancel' them
- Any controversy should be on context and costs, **not** Bayes versus frequentist

With very little extra work, can also motivate:

- *p*-values
- Intervals
- Why *post hoc* power is a waste of effort
- Multiple testing
- Bayes Factors

Making peace with $p\sb{\prime}s$

Everyone's favorite vegetable statistical topic;

... should we eat our p's?

Our testing loss trades-off Above/Below/No Decisions:

$$L(d,\theta) = 2 \times 1_{d = \text{Above}} 1_{\theta < 0} + \alpha 1_{d = \text{No Decision}} + 2 \times 1_{d = \text{Below}} 1_{\theta > 0}$$

A dual problem: decide the optimal price for *making* tradeoffs between these functions of θ :

$$L(s, a, \theta) = \frac{1}{\sqrt{a}} (2s \mathbf{1}_{\theta < 0} + a + 2(1 - s) \mathbf{1}_{\theta > 0})$$

... for binary s and $0 \le a \le 1$. Note we *heavily* penalize tradeoffs where No Decision is cheap, relative to sign errors. The Bayes rule sets:

- s = 0/1 depending if left/right tail is smaller
- $a = 2 \times \text{minimum tail area}$

Decision *a* is a **Bayesian analog of the two-sided** *p***-value**, and (with direction of smallest tail) tells us about the *process* of choosing signs.

Corollaries of two-sided *p*-values being Bayesian after all:

- There is **no reason** to ban/retire/cancel *p*-values though we *should* always consider context and costs. (Do you?)
- In our framework, p values are optimal costs for decisions a form of shadow price. This term is from economics and (hence) **not that complex**
- It's well known *p*-values don't measure support for the null (& don't seem to measure support for *anything*; Schervish 1996) but costs \neq support
- Can connect Bayes to *severity* used for *post hoc* test assessment. Severity appears as a component of the *risk* of this loss

Intervals: what θ_0 lead to no decision?

The general 2-sided loss with 'null' value θ_0 ;

 $\alpha_B \mathbf{1}_{d=\mathsf{Above}} \mathbf{1}_{\theta < \theta_0} + \alpha_A \alpha_B \mathbf{1}_{d=\mathsf{No}} \operatorname{Decision} + \alpha_A \mathbf{1}_{d=\mathsf{Below}} \mathbf{1}_{\theta > \theta_0}$

Making one decision for *each* possible null value θ_0 , and adding the loss functions wrt non-negative measure π on Θ , get loss

 $\alpha_B \pi \left(\mathcal{A} \cap \{ \theta : \theta > \theta_0 \} \right) + \alpha_A \alpha_B \pi(\mathcal{N}) + \alpha_A \pi \left(\mathcal{B} \cap \{ \theta : \theta < \theta_0 \} \right)$

for set-valued decisions $\mathcal{A}, \mathcal{B}, \mathcal{N}$.

- Regardless of exact π used, Bayes rule sets:
 - \mathcal{A} to be all θ_0 below low α_A quantile of posterior
 - ${\cal B}$ to be all θ above high α_B quantile of posterior
 - ${\cal N}$ to be the rest, i.e. the $credible\ interval$
- Bayesian analog of confidence interval as "set of all θ_0 that wouldn't be rejected", large-*n* equivalent, and similarly respects transformations
- Want to compare intervals? Choose a π and calculate!

Some fallacies of the fallacy of post hoc power

A (rightly!) famous result: (here 2-sided test of $\theta = 0$, data iid $N(\theta, \sigma^2), \alpha = 0.05$)

- Power, evaluated at $\hat{\theta}_{MLE}$ is just a monotonic function of the *p*-value...
- So provides zero new information claiming it does is a "pervasive fallacy"
- Hoenig & Heisey 2001 showed it, & claimed it's general... it isn't

Some fallacies of the fallacy of post hoc power

Using decision theory, would **like** to use data to assess whether a test result is correct, or not – i.e. do *loss estimation*. What happens?

- Either d = N and $loss = \alpha$ with certainty, or d = A, B and $loss \in \{0, 2\}$
- Any posterior summary of loss is monotonic in $\mathbb{P}[loss = 2]$, i.e. $2 \times$ smaller tail area, the Bayesian analog of the *p*-value
- Zero new information for *post hoc* assessment of test just like H&H but for *any* model

How risky is it?

Loss assesses how good/bad a specific test result is.

Risk, the expected loss over replicate datasets, assesses the testing *process*.

 θ , in standard error units

- With $\alpha = 0.05$, Z-test is *futile* for power $\leq 12\%$ can just decide d = N!
- Power \geq 80% means risk \leq 0.01, i.e. $\alpha/5$ see also Shafer *et al*, in press

How risky is it?

Risk estimates **do** give information beyond *p*-value – but typically not very much.

- Here Z test gives p = 0.05, but also strong skepticism of testing process
- Getting 50% support for risk<0.01 requires Z-test p < 0.005 or lower

Extensions: multiple testing

Recall loss for a single θ : (one-sided for simplicity)

$$L(d, \theta) = \mathbf{1}_{d = Above} \mathbf{1}_{\theta < 0} + \alpha \mathbf{1}_{d = No}$$
 Decision

For m different $\theta_j/d_j/\alpha_j$, conservatively trade total N-loss for a single wrong sign:

$$L(\boldsymbol{d},\boldsymbol{\theta}) = \left(\sum_{j:d_j=N} \alpha_j\right) + \mathbf{1}_{\cup\{j:d_j=A \text{ and } \theta_j < 0\}}$$

and to avoid never setting all $d_j = N$, set $\sum_{j=1}^m \alpha_j = \alpha < 1$ for some α .

- With all α_j equal, do this by setting $\alpha_j = \alpha/m$, i.e. Bayesian Bonferroni correction of α . More generally, motivates Bayesian alpha-spending
- A conservative *approximation* to the Bayes rule here rejects null when $\mathbb{P}[\theta_i | \text{data}] < \alpha/m$, i.e. Bayesian Bonferroni correction of decisions

Trading total α_j for any number of wrong signs answers a conservative question. Instead, trading an average of weighted "No Decision" losses against the sum of losses for sign errors, loss is

$$\frac{1}{m} \sum_{j=1}^{m} \alpha_j \mathbf{1}_{d_j = N} + \sum_{j=1}^{m} \mathbf{1}_{d_j = A} \mathbf{1}_{\theta_j < 0}.$$

- *Exact* Bayes rule sets $d_j = A$ for $\mathbb{P}[\theta_j | \text{data}] < \alpha/m$, i.e. Bayesian Bonferroni, again but much simpler than 'classical' version
- A Bayesian analog of **Bonferroni's non-conservative motivation** via control of Expected False Positives (Gordon *et al* 2007)
- Similar trade-offs provide a Bayesian Benjamini-Hochberg algorithm (Lewis & Thayer 2009)

Extensions: Bayes Factors

Bayes Factors (BFs) compare posterior to prior – so are not available from losses that use only θ . More Scottish inspiration...

Dolly the Sheep (1996–2003), first mammal cloned from an adult cell – at the University of Edinburgh, Roslin Institute

- We consider a *clone parameter* θ^* : same prior as θ , but *not* updated by data
- Decide if $Sign(\theta) > Sign(\theta^*)$? $Sign(\theta) < Sign(\theta^*)$? Or make no decision?
- * ...Ba-a-a-ayes Factors?

To get Bayes Factors as 1-sided significe test rule for $\theta > \theta^*$, must have loss

Truth	Decision, d			
	d = Above	d = No Decision		
$ heta^* < 0 heta < 0$	l_b	l_b		
heta > 0	0	$\frac{1}{1+B}$		
$ heta^* > 0 \hspace{0.2cm} heta < 0$	1	$\frac{1}{1+B}$		
heta > 0	l_a	l_a		
Bayes rule: do d iff	$\frac{\mathbb{P}[\theta > 0]}{\mathbb{P}[\theta < 0]} \frac{\mathbb{P}[\theta^* < 0]}{\mathbb{P}[\theta^* > 0]} > B$	$\frac{\mathbb{P}[\theta > 0]}{\mathbb{P}[\theta < 0]} \frac{\mathbb{P}[\theta^* < 0]}{\mathbb{P}[\theta^* > 0]} < B$		

... for l_b, l_a and B all > 0.

- Provides **Bayesian interpretation** of cutoff values for B not "rough descriptive" guidelines where B=1/3.2/20/150 means S/M/L/XL
- Exactly the same as earlier significance tests, now with prior-dependent threshold $\alpha = \frac{\mathbb{P}[\theta^* < 0]}{B\mathbb{P}[\theta^* > 0] + \mathbb{P}[\theta^* > 0]}$

Conclusions/Questions

Where learning signs is all we'll do, there are simple Bayesian arguments for testing via *p*-values, and many related methods.

- Not the only Bayesian way to motivate *p*-values, but could be useful for introducing them
- Prompts users to usefully ask is the loss relevant?— does the analysis match scientific goals?

- Normative aspect also helpful: can argue an analysis is 'best' without recourse to UMPU etc
- Yes, priors matter—perhaps a lot—but may be needed. No, this version of p won't fix all problems, e.g. outright fraud, or saying what "evidence" means

Acknowledgements

This work would not be possible without two University of Washington students;

Tyler Bonnett Chloe Krakauer (now at NIH)

Thanks also to: All at UNC! And Thomas Lumley, Lurdes Inoue, Jon Wakefield, Leonard Held, JRSSA referees and editors.

Funding: National Institutes of Health Contract No. HHSN261200800001E

Bonus track: more nuanced decisions

Truth	Decision, d				
	Above	Suggest	No	Suggest	Below
		Above	Decision	Below	
$\theta > 0$	l_{AA}	l_{Aa}	l_N	l_{Ab}	l_{AB}
$\theta < 0$	l_{BA}	l_{Ba}	l_N	l_{Bb}	l_{BB}

- Bayes rule determined by posterior tail area, again
- 'Proper' conditions on losses \implies means decision A/a/N/b/B follows monotonically in left tail area
- Bayesian analog of recent Art Owen/Andrew Gelman work counterintuitively to some, need **more** significant p-value to declare significance **and** sign of θ .