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Motivation

What do we want/not want from testing methods, for a real-valued θ?

Based on my applied work in high-throughput genetics...

Must not have Can live with Must be
Prior ‘spikes’ at θ = 0 1D parameters Simple to explain
Conclusions that θ = 0 Parametric models Optimal, somehow

Only specifying sign of θ Connected to p’s
Scottish!

1



Scottish???

Unlike most statistical tests,

‘Scots Law’ has three possible

verdicts – guilty, not guilty and

not proven:

How do the verdicts

overlap with test-

based decisions?

Verdict Hypothesis test Significance test
(Neyman-Pearson) (Fisher)

Guilty Reject H0 Reject H0
Not proven no analogue No conclusion
Not guilty Accept H0 no analogue

2



Decision theory for hypothesis tests

Loss functions deciding signs (is θ > 0? θ < 0?) are very limited.

Doing one-sided hypothesis tests

we can only have:

Decision
d = Above d = Below

Loss when θ > 0 lTA lFB
θ < 0 lFA lTB

And with proper loss functions this

is wlog:

Decision
d = Above d = Below

Loss when θ > 0 0 α
θ < 0 1− α 0

... for some 0 ≤ α ≤ 1. The Bayes rule sets

d = Above⇐⇒ P[ θ < 0|data ] < α.

—acts like 1-sided p’s with large n, but no 2-sided ‘double the smallest tail’.
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Decision theory for 1-sided significance tests

How we translate ‘not proven’ into a loss function:

Decision
d = Above d = No Decision

Loss when θ > 0 0 α
θ < 0 1 α

• ‘Proper’ loss fixes the single zero entry, and 0 ≤ α ≤ 1 ordering

• We also assume “no decision” is equally bad regardless of truth

Different decision, same Bayes rule:

d = Above⇐⇒ P[ θ < 0|data ] < α

—acts like one-sided p’s with large n (cf Casella & Berger 1987)
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Decision theory for 2-sided significance tests

Using proper losses and “no decision equally bad” idea for 2-sided decisions:

Decision
d = Above d=No Decision d = Below

Loss when θ > 0 0 αAαB αA
θ < 0 αB αAαB 0

Bayes rule: do d iff P[ θ < 0 ] < αA Otherwise P[ θ > 0 ] < αB

...and force αA + αB ≤ 1 by insisting that ‘Otherwise’ can happen sometimes.

With symmetry, get a Bayesian analog of usual two-sided tests:

Decision
d = Above d = No Decision d = Below

Loss when θ > 0 0 α 2
θ < 0 2 α 0

Bayes rule: do d iff P[ θ < 0 ] < α/2 Otherwise P[ θ > 0 ] < α/2
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Decision theory for 2-sided significance tests
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• Two-sided significance tests are a close (large n) approximation of a Bayes rule
for choosing signs – and up to ‘proper’ conditions, no other losses/decisions
are available
• With symmetry, expected posterior loss = min{P, α} for P=2×minimum tail

area – so significant p-value tells us risk of optimal sign-decision
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How risky is it?

Risk ( ) and also

Bayes risk ( )

using Bayes rules

for the Normal

location problem,

Y ∼ N(θ, σ2), with σ2

known:

θ, in standard error units
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Black curve gives risk of classic non-Bayes Z-test – same for any prior.
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How risky is it?

• When α = 0.05 and there is ≤ 12% power, the classic Z test has worse
risk than fixing d=No Decision regardless of the data. With very low power
two-sided Z tests are futile

• Using full Bayes rule in those situations is better, but still almost futile – risk
and Bayes risk very close to α

• Bayes risk goes to zero as prior becomes improper – a reason to not use
that prior! To say how much risk is involved, some prior (i.e. contextual)
knowledge is required

Not shown:

• Similar behavior for other models/parameters
• Connections to severity assessments of what is/isn’t warranted from a test

(but see later)
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Extensions: intervals

Written as a function, the 2-sided loss with ‘null’ value θ0 is

αB1d=Above1θ<θ0
+ αAαB1d=No Decision + αA1d=Below1θ>θ0

Making one decision for each possible null value θ0, and adding the loss functions
wrt non-negative measure π on Θ, get loss

αBπ (A ∩ {θ : θ > θ0}) + αAαBπ(N ) + αAπ (B ∩ {θ : θ < θ0})
for set-valued decisions A,B,N .

• Regardless of exact π used, Bayes rule sets:
– A to be all θ0 below low αA quantile of posterior
– B to be all θ above high αB quantile of posterior
– N to be the rest, i.e. the credible interval

• Bayesian analog of confidence interval as “set of all θ0 that wouldn’t be
rejected”, similarly respects transformations – and often has similar value
• Want to compare intervals? Choose a π and calculate!
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Extensions: multiple testing

Recall loss for a single θ: (one-sided for simplicity)

L(d, θ) = 1d=Above1θ<0 + α1d=No Decision

For m different θj/dj/αj, conservatively trade total N-loss for a single wrong sign:

L(d, θ) =

 ∑
j:dj=N

αj

+ 1∪{j:dj=A and θj<0}

and to avoid never setting all dj = N , set
∑m
j=1αj = α < 1 for some α.

• With all αj equal, do this by setting αj = α/m, i.e. Bayesian Bonferroni

correction of α. More generally, motivates Bayesian alpha-spending

• A conservative approximation to the Bayes rule here rejects null when

P[ θj|data ] < α/m, i.e. Bayesian Bonferroni correction of decisions
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Extensions: multiple testing

Trading total αj for any number of wrong signs answers a conservative question.

Instead, trading an average of weighted “No Decision” losses against the sum of

losses for sign errors, loss is

1

m

m∑
j=1

αj1dj=N +
m∑
j=1

1dj=A1θj<0.

• Exact Bayes rule sets dj = A for P[ θj|data ] < α/m, i.e. Bayesian Bonferroni,

again – but much simpler than ‘classical’ version

• A Bayesian analog of Bonferroni’s non-conservative motivation via control

of Expected False Positives (Gorden et al 2007)

• Similar trade-offs provide Bayesian Benjamini-Hochberg algorithm (Lewis

& Thayer 2009)
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Extensions: Bayes Factors∗

Bayes Factors (BFs) compare posterior to prior – so are not available from losses
that use only θ. More Scottish inspiration...

Dolly the Sheep (1996–2003),

first mammal cloned from an

adult cell – at the University of

Edinburgh, Roslin Institute

• We consider a clone parameter θ∗: same prior as θ, but not updated by data
• Decide if Sign(θ) > Sign(θ∗)? Sign(θ) < Sign(θ∗)? Or make no decision?

* ...Ba-a-a-a-ayes Factors?
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Extensions: Bayes Factors

To get Bayes Factors as 1-sided signif’ce test rule for θ > θ∗, must have loss

Truth Decision, d
d = Above d = No Decision

θ∗ < 0 θ < 0 lb lb
θ > 0 0 1

1+B

θ∗ > 0 θ < 0 1 1
1+B

θ > 0 la la

Bayes rule: do d iff P[ θ>0 ]
P[ θ<0 ]

P[ θ∗<0 ]
P[ θ∗>0 ] > B P[ θ>0 ]

P[ θ<0 ]
P[ θ∗<0 ]
P[ θ∗>0 ] < B

... for lb, la and B all > 0.

• Provides Bayesian interpretation of cutoff values for B — not “rough
descriptive” guidelines where B=1/3.2/20/150 means S/M/L/XL
• Exactly the same as earlier significance tests, now with prior-dependent

threshold α = P[ θ∗<0 ]
BP[ θ∗>0 ]+P[ θ∗>0 ]
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Extensions: tail area as decision

Significance loss trades-off Above/Below/No Decisions:

L(d, θ) = 2× 1d=Above1θ<0 + α1d=No Decision + 2× 1d=Below1θ>0

A dual problem: decide the optimal price for making tradeoffs between these
functions of θ:

L(s, a, θ) =
1
√
a

(2s1θ<0 + a + 2(1− s)1θ>0)

... for binary s and 0 ≤ a ≤ 1. Note we heavily penalize tradeoffs that make No
Decision cheap. Bayes rule sets:

• s = 0/1 depending if left/right tail is smaller
• a = 2×minimum tail area

Decision a is a Bayesian analog of two-sided p-value, and (with direction of
smallest tail) tells us about the process of choosing signs.
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Extensions: tail area as decision

For one-sided tests, need no s decision,

Loss : 1√
a
(a+ 1θ<θ0

)

Bayes Rule: a = P[ θ < θ0 ]

Minimized expected posterior loss: 2
√
P[ θ < θ0 ]

risk : E
[√

P[ θ < θ0 ] +
1θ<θ0√
P[ θ<θ0 ]

]
• Outer expectation in risk is wrt data (but also used to calculate Bayes risk)

• Proportion of risk where a from replicate data is more extreme than a from

actual data behaves somewhat like severity (Mayo & Spanos, 2006)

• ...can also motivate as proportion of risk coming from replicates with more

extreme minimized expected posterior loss

• Can view severity as assessing how bad the process of choosing signs would

be, in replicate studies, relative to that process with observed data
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Conclusions/Questions

Where learning signs is all we’ll do,

there are simple Bayesian arguments

for testing via p-values, and many

related methods.

• Not the only Bayesian way to

motivate p-values, but could be

useful for introducing them

• Prompts users to usefully ask is

the loss relevant?— does the

analysis match scientific goals?

• Normative aspect also helpful: can argue an analysis is ‘best’ without recourse

to UMPU etc

• Yes, priors matter—perhaps a lot—but may be needed. No, this version of p

won’t fix all problems, e.g. outright fraud, or saying what “evidence” means
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Bonus track: more nuanced decisions

Truth Decision, d
Above Suggest No Suggest Below

Above Decision Below
θ > 0 lAA lAa lN lAb lAB
θ < 0 lBA lBa lN lBb lBB

• Bayes rule determined by posterior tail area, again
• ‘Proper’ conditions on losses =⇒ means decision A/a/N/b/B follows mono-

tonically in left tail area
• Bayesian analog of recent Art Owen/Andrew Gelman work – counterintuitively

to some, need more significant p-value to declare significance and sign of θ.

18


	Motivation
	Scottish???
	Decision theory for hypothesis tests
	Decision theory for 1-sided significance tests
	Decision theory for 2-sided significance tests
	How risky is it?
	Extensions: intervals
	Extensions: multiple testing
	Extensions: Bayes Factors*
	Extensions: Bayes Factors
	Extensions: tail area as decision
	Conclusions/Questions
	Acknowledgements
	Bonus track: more nuanced decisions

