

Knowing the Signs: Decision theory for significance tests

Ken Rice & Tyler Bonnett, University of Washington, Seattle, USA

Motivation

A brave new post *p*-value world? How might that look?

Must not have	Can live with	Must be	
Spikes at $\theta = 0$	1D parameters	Bayesian	
Conclusions $\theta = 0$	Parametric models	Decision Theoretic	
	Frequentist properties	Connected to p 's	
		Scottish!	

Scottish???

In 'Scots Law' there are *three* possible verdicts:

Verdict	Hypothesis test	Significance test	
	(Neyman-Pearson)	(Fisher)	
Guilty	Reject H ₀	Reject H ₀	
Not proven	no analog	No conclusion	
Not guilty	Accept H ₀	no analog	

Decision theory for hypothesis tests

Loss functions deciding signs (is $\theta > 0$? $\theta < 0$?) are **very** limited.

Doing one-sided				Decision	
hypothos				d = Above	d = Below
nypotnes		Loss when	$\theta > 0$	l_{TA}	l_{FB}
we can only have:			$\theta < 0$	l_{FA}	l_{TB}

And with properDecisionloss functions (see $d = Above \ d = Below$ Phil Dawid's talk)Loss when $\theta > 0$ 0this is wlog: $\theta < 0$ $1 - \alpha$ 0

... for some $0 \le \alpha \le 1$. The Bayes rule sets

 $d = \text{Above} \iff \mathbb{P}[\theta < 0 | \text{data}] < \alpha.$

—acts like p's with large n, **but** no 'double the smallest tail'.

Expressing one-sided **significance** tests as a decision:

- 'Proper' loss fixes zero entry, and 0 $\leq \alpha \leq$ 1 ordering
- Assuming no decision is equally bad, regardless of truth

Different decision, same Bayes rule:

$$d = \mathsf{Above} \iff \mathbb{P}[\theta < 0 | \mathsf{data}] < \alpha$$

—acts like one-sided p's with large n (*cf* Casella & Berger 1987)

Decision theory for two-sided tests

Using "no decision equally bad" and proper losses for two-sided decisions about $\theta's$ sign:

With symmetry, get a close Bayesian analog of two-sided tests:

		Decision		
		d = Above	d = No Decision	d = Below
Loss when	$\theta > 0$	0	α	2
	$\theta < 0$	2	lpha	0
Bayes rule:	do d iff	$\mathbb{P}[\theta < 0] < \alpha/2$	Otherwise	$\mathbb{P}[\theta > 0] < \alpha/2$

- Two-sided significance tests are a close (large n) approximation of a Bayes rule for choosing signs and up to 'proper' conditions, no other losses/decisions are available
- With symmetry, expected posterior loss = $\min\{P, \alpha\}$ for $P=2\times\min$ minimum tail area p-value tells us risk of sign-decision

Frequentist expectation of this expected posterior loss, at fixed true θ ;

$$\mathbb{E}[\min(P,\alpha);\theta] = \alpha \left(1 - \frac{\mathbb{P}[P < \alpha;\theta]}{\alpha} \mathbb{E}[\alpha - P|P < \alpha;\theta]\right)$$

where $\mathbb{P}[P < \alpha; \theta]$ is the power (at large n).

• Ratio $\frac{\mathbb{P}[P < \alpha; \theta]}{\alpha}$ is Bayarri et al's (J Math Psych, 2016) *rejection ratio*, measuring 'evidentiary impact'

• Here (with a term in expectation of small p-values) it tells You how risky Your sign test decision would be, on average

How risky is it?

But full Bayes risk averages over datasets **and** prior. For various priors on Normal location problem $(N(\theta, \sigma^2), \text{ with } \sigma^2 \text{ known})$:

 θ , in standard error units

Black curve gives risk of classic non-Bayes test

- Fixing d =No Decision beats classic $\alpha = 0.05$ test (i.e. t-test) when it has $\leq 12\%$ power \Rightarrow usual approach in crappy studies is just futile!
- Using full Bayes in those situations is a **little** better, but still **almost futile** risk and Bayes risk very close to α
- Risk goes to zero as prior becomes improper a reason to not use that prior!

Not shown:

- Similar behavior for other models/parameters
- Expected risk decomposes into two simple parts frequentist replicates where P is bigger/smaller than observed P. Gives a Bayesian analog of *severity* (Mayo & Spanos)

Extensions: more nuanced decisions

Truth	Decision, d				
	Above	Suggest	No	Suggest	Below
		Above	Decision	Below	
$\theta > 0$	l_{AA}	l_{Aa}	l_N	l_{Ab}	l_{AB}
$\theta < 0$	l_{BA}	l_{Ba}	l_N	l_{Bb}	l_{BB}

- Bayes rule determined by posterior tail area, again
- 'Proper' conditions on losses \implies means decision A/a/N/b/B follows monotonically in left tail area
- Bayesian analog of recent Art Owen work need more significant p-values to declare significance and sign of θ

Written as a function, 2-sided loss with 'null' value θ_0 is

 $\alpha_B \mathbf{1}_{d=Above} \mathbf{1}_{\theta < \theta_0} + \alpha_A \alpha_B \mathbf{1}_{d=No \text{ Decision}} + \alpha_A \mathbf{1}_{d=Below} \mathbf{1}_{\theta > \theta_0}$ Making one decision for **each** possible null value θ_0 , and adding the loss functions wrt non-negative measure on Θ , get

 $\alpha_B |\mathcal{A} \cap \{\theta_0 : \theta < \theta_0\}| + \alpha_A \alpha_B |\mathcal{N}| + \alpha_A |\mathcal{B} \cap \{\theta_0 : \theta > \theta_0\}|$ for set-valued decisions $\mathcal{A}, \mathcal{B}, \mathcal{N}$.

- Bayes rule sets:
 - \mathcal{A} to all θ_0 below low α_A quantile of posterior
 - ${\cal B}$ to all θ above high α_B quantile of posterior
 - $\ \mathcal{N}$ to the rest, i.e. the credible interval
- Fixing $\alpha_A + \alpha_B$ and choosing α_A gives centrality as a Bayes rule
- Measure on Θ says how to compare with other intervals

Significance loss trades-off Above/Below/No Decisions:

 $L(d,\theta) = 2 \times 1_{d=Above} 1_{\theta < 0} + \alpha 1_{d=No Decision} + 2 \times 1_{d=Below} 1_{\theta > 0}$ A dual problem: decide the optimal price for **making** tradeoffs between these functions of θ :

$$L(s, a, \theta) = \frac{1}{\sqrt{a}} (2s \mathbf{1}_{\theta < 0} + a + 2(1 - s) \mathbf{1}_{\theta > 0})$$

... for binary s and $0 \le a \le 1$. Note we **heavily** penalize tradeoffs that make No Decision cheap. Bayes rule sets:

- s = 0/1 depending if left/right tail is smaller
- $a = 2 \times \text{minimum tail area}$

So, two-sided p-values (with direction of smallest tail) are approx Bayes, when deciding **how** to choose signs. For a single θ had loss: (one-sided for simplicity)

$$L(d, \theta) = 1_{d = \text{Above}} 1_{\theta < 0} + \alpha 1_{d = \text{No Decision}}$$

For multiple θ_j and d_j , trading off total No Decision loss for a **single** wrong sign:

$$L(d, \theta) = 1_{\bigcup_{j:d_j = \text{Above}} \{\theta_j < 0\}} + \alpha \# \{d_j = \text{No Decision}\}$$

- A conservative approximation to the Bayes rule rejects null when $\mathbb{P}[\theta_j | \text{data}] < \alpha/m$, i.e. Bayesian Bonferroni correction
- Better (not conservative) trade off mean sign-wrongness for total non-decisions, still get Bayesian Bonferroni
- Similar trade-offs provide Bayesian Benjamini-Hochberg algorithm (Lewis & Thayer 2009)

Extensions: Bayes Factors*

Bayes Factors compare posterior to prior – so not available from losses that use only θ . More Scottish inspiration...

Dolly the Sheep (1996–2003), first mammal cloned from an adult cell – at the University of Edinburgh, Roslin Institute

- We consider a *clone parameter* θ^* : same prior as θ , but **not** updated by data
- Decide if Sign(θ) > Sign(θ*)? Sign(θ) < Sign(θ*)? Or make no decision?
- * ...Ba-a-a-ayes Factors?

To motivate Bayes Factors as one-sided significance test for $\theta > \theta^*$, **must** have loss

- Bayes rule sets $d = A \iff \mathbb{P}[\theta < 0] = \frac{\mathbb{P}[\theta^* < 0]}{B\mathbb{P}[\theta^* > 0] + \mathbb{P}[\theta^* > 0]}$
- Exactly the same as earlier significance tests, now with priordependent threshold $\alpha = \frac{\mathbb{P}[\theta^* < 0]}{B\mathbb{P}[\theta^* > 0] + \mathbb{P}[\theta^* > 0]}$

Conclusions

A post *p*-value world? Where knowing the signs is enough, we can improve *p*-values and much else with Bayes fairly easily

- ... and so instead focus on whether θ is *scientifically* relevant
- Need tools to convey that decisions are risky: plotting risk (and priors/posteriors) may help
- Knowing signs **is** enough in my applied work see also Matthew Stephens' 'new deal' (2016, Biostatistics) on FDRs
- Please, please, don't claim *p*-values are evil/unBayesian