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Motivation

A brave new post p-value world? How might that look?

Must not have Can live with Must be
Spikes at θ = 0 1D parameters Bayesian

Conclusions θ = 0 Parametric models Decision Theoretic
Frequentist properties Connected to p’s

Scottish!
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Scottish???

In ‘Scots Law’ there are three possible verdicts:

Verdict Hypothesis test Significance test
(Neyman-Pearson) (Fisher)

Guilty Reject H0 Reject H0
Not proven no analog No conclusion
Not guilty Accept H0 no analog
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Decision theory for hypothesis tests

Loss functions deciding signs (is θ > 0? θ < 0?) are very limited.

Doing one-sided

hypothesis tests

we can only have:

Decision
d = Above d = Below

Loss when θ > 0 lTA lFB
θ < 0 lFA lTB

And with proper

loss functions (see

Phil Dawid’s talk)

this is wlog:

Decision
d = Above d = Below

Loss when θ > 0 0 α
θ < 0 1− α 0

... for some 0 ≤ α ≤ 1. The Bayes rule sets

d = Above⇐⇒ P[ θ < 0|data ] < α.

—acts like p’s with large n, but no ‘double the smallest tail’.
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Decision theory for one-sided tests

Expressing one-sided significance tests as a decision:

Decision
d = Above d =No Decision

Loss when θ > 0 0 α
θ < 0 1 α

• ‘Proper’ loss fixes zero entry, and 0 ≤ α ≤ 1 ordering

• Assuming no decision is equally bad, regardless of truth

Different decision, same Bayes rule:

d = Above⇐⇒ P[ θ < 0|data ] < α

—acts like one-sided p’s with large n (cf Casella & Berger 1987)
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Decision theory for two-sided tests

Using “no decision equally bad” and proper losses for two-sided

decisions about θ′s sign:

Decision
d = Above d=No Decision d = Below

Loss when θ > 0 0 αAαB αA
θ < 0 αB αAαB 0

Bayes rule: do d iff P[ θ < 0 ] < αA Otherwise P[ θ > 0 ] < αB

... and enforce αA + αB ≤ 1 by insisting a randomized data-free

d =Above/Below decision is worse than d =No Decision.

With symmetry, get a close Bayesian analog of two-sided tests:

Decision
d = Above d = No Decision d = Below

Loss when θ > 0 0 α 2
θ < 0 2 α 0

Bayes rule: do d iff P[ θ < 0 ] < α/2 Otherwise P[ θ > 0 ] < α/2
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Decision theory for two-sided tests
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• Two-sided significance tests are a close (large n) approxima-
tion of a Bayes rule for choosing signs – and up to ‘proper’
conditions, no other losses/decisions are available
• With symmetry, expected posterior loss = min{P, α} for
P=2×minimum tail area – p-value tells us risk of sign-decision
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How risky is it?

Frequentist expectation of this expected posterior loss, at fixed

true θ;

E[ min(P, α); θ ] = α

(
1−

P[P < α; θ ]

α
E[α− P |P < α; θ ]

)
where P[P < α; θ ] is the power (at large n).

• Ratio P[P<α;θ ]
α is Bayarri et al’s (J Math

Psych, 2016) rejection ratio, measuring

‘evidentiary impact’

• Here (with a term in expectation of small p-values) it tells

You how risky Your sign test decision would be, on average
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How risky is it?

But full Bayes risk averages over datasets and prior. For various
priors on Normal location problem (N(θ, σ2), with σ2 known):

θ, in standard error units
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Black curve gives risk of classic non-Bayes test
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How risky is it?

• Fixing d =No Decision beats classic α = 0.05 test (i.e. t-

test) when it has ≤12% power ⇒ usual approach in crappy

studies is just futile!

• Using full Bayes in those situations is a little better, but still

almost futile – risk and Bayes risk very close to α

• Risk goes to zero as prior becomes improper – a reason to

not use that prior!

Not shown:

• Similar behavior for other models/parameters

• Expected risk decomposes into two simple parts – frequentist

replicates where P is bigger/smaller than observed P . Gives

a Bayesian analog of severity (Mayo & Spanos)
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Extensions: more nuanced decisions

Truth Decision, d
Above Suggest No Suggest Below

Above Decision Below
θ > 0 lAA lAa lN lAb lAB
θ < 0 lBA lBa lN lBb lBB

• Bayes rule determined by posterior tail area, again

• ‘Proper’ conditions on losses =⇒ means decision A/a/N/b/B

follows monotonically in left tail area

• Bayesian analog of recent Art Owen work – need more

significant p-values to declare significance and sign of θ

10



Extensions: intervals

Written as a function, 2-sided loss with ‘null’ value θ0 is

αB1d=Above1θ<θ0
+ αAαB1d=No Decision + αA1d=Below1θ>θ0

Making one decision for each possible null value θ0, and adding

the loss functions wrt non-negative measure on Θ, get

αB|A ∩ {θ0 : θ < θ0}| + αAαB|N | + αA|B ∩ {θ0 : θ > θ0}|

for set-valued decisions A,B,N .

• Bayes rule sets:

– A to all θ0 below low αA quantile of posterior

– B to all θ above high αB quantile of posterior

– N to the rest, i.e. the credible interval

• Fixing αA + αB and choosing αA gives centrality as a Bayes

rule

• Measure on Θ says how to compare with other intervals
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Extensions: tail area as decision

Significance loss trades-off Above/Below/No Decisions:

L(d, θ) = 2× 1d=Above1θ<0 + α1d=No Decision + 2× 1d=Below1θ>0

A dual problem: decide the optimal price for making tradeoffs

between these functions of θ:

L(s, a, θ) =
1
√
a

(2s1θ<0 + a + 2(1− s)1θ>0)

... for binary s and 0 ≤ a ≤ 1. Note we heavily penalize tradeoffs

that make No Decision cheap. Bayes rule sets:

• s = 0/1 depending if left/right tail is smaller

• a = 2×minimum tail area

So, two-sided p-values (with direction of smallest tail) are approx

Bayes, when deciding how to choose signs.
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Extensions: multiple testing

For a single θ had loss: (one-sided for simplicity)

L(d, θ) = 1d=Above1θ<0 + α1d=No Decision

For multiple θj and dj, trading off total No Decision loss for a

single wrong sign:

L(d, θ) = 1∪j:dj=Above{θj<0}+ α#{dj = No Decision}

• A conservative approximation to the Bayes rule rejects null

when P[ θj|data ] < α/m, i.e. Bayesian Bonferroni correction

• Better (not conservative) – trade off mean sign-wrongness

for total non-decisions, still get Bayesian Bonferroni

• Similar trade-offs provide Bayesian Benjamini-Hochberg al-

gorithm (Lewis & Thayer 2009)
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Extensions: Bayes Factors∗

Bayes Factors compare posterior to prior – so not available from
losses that use only θ. More Scottish inspiration...

Dolly the Sheep (1996–2003),

first mammal cloned from an

adult cell – at the University of

Edinburgh, Roslin Institute

• We consider a clone parameter θ∗: same prior as θ, but not
updated by data
• Decide if Sign(θ) > Sign(θ∗)? Sign(θ) < Sign(θ∗)? Or make

no decision?

* ...Ba-a-a-a-ayes Factors?
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Extensions: Bayes Factors∗

To motivate Bayes Factors as one-sided significance test for θ >

θ∗, must have loss

Truth Decision, d
d = Above d = No Decision

θ∗ < 0 θ < 0 lb lb
θ > 0 0 1

1+B

θ∗ > 0 θ < 0 1 1
1+B

θ > 0 la la

Bayes rule: do d iff P[ θ>0 ]
P[ θ<0 ]

P[ θ∗<0 ]
P[ θ∗>0 ] > B P[ θ>0 ]

P[ θ<0 ]
P[ θ∗<0 ]
P[ θ∗>0 ] < B

... for lb, la and B all > 0.

• Bayes rule sets d = A⇐⇒ P[ θ < 0 ] = P[ θ∗<0 ]
BP[ θ∗>0 ]+P[ θ∗>0 ]

• Exactly the same as earlier significance tests, now with prior-

dependent threshold α = P[ θ∗<0 ]
BP[ θ∗>0 ]+P[ θ∗>0 ]
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Conclusions

A post p-value world?

Where knowing the

signs is enough, we

can improve p-values

and much else with

Bayes fairly easily

• ... and so instead focus on whether θ is scientifically relevant

• Need tools to convey that decisions are risky: plotting risk

(and priors/posteriors) may help

• Knowing signs is enough in my applied work – see also

Matthew Stephens’ ‘new deal’ (2016, Biostatistics) on FDRs

• Please, please, don’t claim p-values are evil/unBayesian
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