Visualizing and summarizing data

Ken Rice, Dept of Biostatistics

HUBIO 530

January 2015
Q. What’s your talk about?

Today I will describe:

- How to visualize small datasets
- How to summarize small datasets
- Some methods for larger datasets

The ‘summary’ ideas are *usually* introduced through formulae alone – i.e. mathematical equations. Instead, I will use *only* pictures to describe/explain what’s going on.

For those who want/need it (‘keen people’) the math is given in supplementary slides.
Q. Aren’t you meant to just do math?

Very roughly, today’s approach is ‘right brain’:

Cognition research suggests that in humans, thinking is:

- Exclusively in words (25%)
- Both visual/spatial & in words (45%)
- Strongly visual/spatial (30%)

Even if you’re in the 25% – or already know the ideas – today’s explanations may help you communicate with the other 75%.
Visualization: some data

‘BBC Future’, trying to impress/amaze you with 18 numbers;

Q. What’s the message?
Visualization: some data

The statistician-approved version – does it impress? amaze?

Stock Check
Estimated remaining supplies of non-renewable resources

Climate Tipping Points
- Arctic ice-free in summer (worst-case forecast)
- 1/3 of land plant & animal species extinct due to climate change
- 2°C warming threshold likely reached

Ecosystems
- Suitable agricultural land runs out
- Indonesian rainforest completely deforested
- All coral reefs gone
- Amazon completely deforested

Fossil Fuels
- Gas
- Oil
- Coal

Minerals
- Antimony
- Indium
- Silver
- Copper
- Titanium
- Tantalum
- Phosphorus (phosphate rock)
- Aluminium

‘Position on a common scale’ is known to be the best mode of presentation, for making visual comparisons.
Visualization: some data

Typically, one ‘common scale’ will do;

Years until 18 different resources run out

Years from now

- Known as a dotplot, dotchart or stripchart
- It is a natural choice for displaying multiple blood pressures, or GFRs, BMIs, TLAs, eTLAs, times-to-event, etc etc
- Open circles work better than closed* – consider overlap
- Can be impractical with 100s of data points – we’ll see alternatives later.

* This has been known since research in Bell Labs in the 70s... though only recently among Microsoft’s Excel team
Summarizing data: how?

Some blood pressure data, from $n = 15$ unordered subjects...

... on a vertical chart – so higher values are higher, lower values are lower

- There are many different ways to summarize this data – none of them are ‘right’ or ‘wrong’, or ‘require’ that data follow any particular pattern*
- I will motivate different choices as answers to different questions

* Beware! This is a simple but often-misunderstood topic; so e.g. wikipedia entries – and some textbooks – can be unhelpful
Q. ‘Where’s the balance point in the data’?

- For any value, mark points above ‘+’ and points below ‘-’.
- What value balances these?
- Not this one (110 mmHg) ...too low
Summarizing data: find a balance

Q. ‘Where’s the balance point in the data’?

- For any value, mark points above ‘+’ and points below ‘−’
- What value balances these?
- Not this one (150 mmHg) ...too high
Summarizing data: find a balance

Q. ‘Where’s the balance point in the data’?

- For any value, mark points above ‘+’ and points below ‘−’
- What value balances these?
- This one! (128.5 mmHg) – known as the *median* value
- Note that median point is neither ‘+’ nor ‘−’, so giving 7 data on each side
Details: the median for even n

What to do when there is no ‘middle’?

- Here $n=10$ – but would see same issue for any even n
- Here, any value between 5th, 6th points gives the same ‘balance’ – 5 on each side
- Default solution uses average (halfway point) between two middle data points – here 124 mmHg, the solid red line
Details: other quantiles

The **median** is a.k.a. the 50% **quantile**, or 50\(^{th}\) **percentile**

- Shown here for \(n = 9\); 50% above/below
- 75% quantile has 75% below, 25% above
- 25% quantile has 25% below, 75% above
- Could use any percentage between 0, 100%
Details: other quantiles

Special names for splitting data at evenly-spaced quantiles:

- Split at 33%, 66%: **tertiles**
- Split at 25%, 50%, 75%: **quartiles**
- Split at 20%, 40%, 60%, 80%: **quintiles**
- Same number of data in each ‘bin’ – this is NOT equal width bins
- When no exact quantile available, use special methods – not covered here
Q. ‘Where’s the balance point in the data’?

- Back to $n=15$, data as before
- For any value (red line) bars above are purple, below are gold
- What red line value balances \textit{total} purple vs \textit{total} gold?
- Not this one! (110 mmHg) – too low
Summarizing data: find another balance

Q. ‘Where’s the balance point in the data’?

- Back to \(n=15 \), data as before
- For any value, bars above are purple, below are gold
- What red line value balances total purple vs total gold?
- Not this one! (150 mmHg) – too high
Summarizing data: find another balance

Q. ‘Where’s the balance point in the data’?

- Back to $n=15$, data as before
- For any value, bars above are purple, below are gold
- What red line value balances total purple vs total gold?
- This one! (125.5 mmHg) – known as the mean
Summary so far

- The median value balances *number* of values above/below
- The mean value balances *deviations* of values above/below
- These are not the same criteria, hence don’t give same answers (128 mmHg vs 125.5 mmHg)

Which to give? It’s often fine to give both, but if you *must* pick:

- The mean is sensitive to extremes, while the median — depending only on the middle values — is not. Consider e.g. mean/median wealth & “the 1%
- Means relate directly to totals — e.g. if I drove 10 miles in 30 mins, what was my mean speed? median?
- Means are often used in prediction — e.g. suppose in 1000 gambles each with $0, $1 for loss & win, that I win 600. What are my mean winnings per new gamble? Median?
- Pragmatism can be okay: if mean and median are close and you *must* give only one, your choice is unlikely to matter
Q. ‘What value is *most* central in the data’?

- To measure ‘centrality’, for a given value (the red line) add up all the *deviations* (blue bars) from there to the data.
- Q. What choice of red line *minimizes* the total amount of blue ink?
 (Not this one! – at 150 mmHg)
Q. ‘What value is most central in the data’?

- To measure ‘centrality’, for a given value (the red line) add up all the deviations (blue bars) from there to the data
- Another attempt... 110 mmHg
 Still not optimal!
Summarizing data: ‘best’ summaries

Q. ‘What value is most central in the data’?

- Putting the line at the ‘middle’ observation get closest – i.e. at 128 mmHg, for these data
- This is the median (again)
- For \(n \) even, all points between middle two values are equally most central
Summarizing data: ‘best’ summaries

Another measure of ‘centrality’ uses area – *squared deviations*;

- What red line value minimizes total blue ink?
Summarizing data: ‘best’ summaries

Another measure of ‘centrality’ uses area – \textit{squared deviations};

- What red line value minimizes total blue ink?
Summarizing data: ‘best’ summaries

Another measure of ‘centrality’ uses area – *squared deviations*;

- Best choice here is 125.5mmHg
- This is the *mean* (again)
Summarizing data: ‘best’ summaries

We saw before that median and mean reflect different types of balance. We can also interpret...

- ...the median as being most central, measured by \textit{absolute deviation} – a measure of length
- ...the mean as being most central, measured by \textit{squared deviation} – a measure of area

As before, these are different criteria – i.e. asking the data different questions – so they provide different answers.

Thinking about these deviations leads to measures of \textit{dispersion} – how spread out is the data?
Summarizing data: ‘best’ summaries

Ignoring spread in the data is the ‘flaw of averages’...
Summarizing data: dispersion

Q. Median length of blue bars around median? (Ordered, in RH)

The orange length (19.3 mmHg) is the median absolute deviation about the median – known as the MAD.
Summarizing data: dispersion

Q. Average area of blue box? (This is harder to ‘eyeball’)

Area of this ‘average box’ (602 mmHg2, in orange) is the variance – its edge length (24.5 mmHg) is the standard deviation.
What to do with more data?

Dotcharts get a bit clumsy beyond $n = 30$ – here is $n = 200$;

- Exact SBP for any individual not important
- Want to get an idea of the location (center) and dispersion (spread) of the data
- *Coarsened* data will do, for a summary
What to do with more data?

A stacked dotchart for the same data;

- ‘Bins’ every 2.5 mmHg (120, 122.5, 125 etc)
- Count the data points in each bin
- Plot one point per observation, in each bin
- How to read off median? 75% quantile?
What to do with more data?

A histogram for the same data;

- 'Bins' every 2.5 mmHg (120, 122.5, 125 etc)
- Count the data points in each bin
- Bin height proportional to this count, a.k.a. frequency
- Better than stacking, for large n
What to do with more data?

A *violinplot* for the same data;

- ‘Bins’ every 2.5 mmHg (120, 122.5, 125 etc)
- Count the data points in each bin
- Bin height proportional to this count, a.k.a. frequency
- Better than stacking, for large n
What to do with more data?

Finally, a boxplot; (short for box-whisker plot)

- Solid bold line is the median, box edges are 25% and 75% quantiles, box width is the interquartile range (IQR)
- ‘Whiskers’ go to last point up to $1.5 \times$ box width beyond box
- Points beyond this plotted individually
- [Fancier versions exist], but this is the default
What to do with more data?

Boxplots are crude – cruder than dotcharts, and violinplots;

The plot shows 3 different datasets: all give the same boxplot.
What to do with more data?

But plotting just quantiles aids comparison of many groups;

A quantile plot, showing various percentiles BMI by (many) ages
When the histogram (or violinplot) is symmetric, the mean and median must be equal*;

- 50% of values above & below axis of symmetry
- Equal deviations above & below axis of symmetry

* And if the histogram is approximately symmetric, mean and median must be approximately equal
But mean and median being the same does NOT imply the distribution is symmetric – even approximately;

Keen people: many texts claim seeing mean < median or mean > median implies data is skewed to the left/right, respectively. But this is not true for standard measures of skewness.

* LH example is e.g. number of ‘successes’ from 5 trials, each with 80% chance of success. RH could be e.g. height
Binary & categorical data

None of the approaches we have seen are great for binary (Yes/No) outcomes, e.g. death, pregnancy, hypertension.

Are you at least partially a visual thinker?

- Violinplot
- Histogram
- Dotplot
- Boxplot

These all show 750 Yes (coded as 1) and 250 No (coded as 0).
Binary & categorical data

Instead, just give the percentage of ‘Yes’; (somehow)

The dotchart emphasizes we’ve reduced the entire dataset (here \(n=1000\)) to just one number.
Binary & categorical data

For categorical data, the same ideas work;

For unordered factors (e.g. hair color) ordering may not matter. Frequently-asked-Q: Why not use a pie chart?
Why not use a pie chart?

Because they encode data as *angles*, not positions on a common scale – and *work less well* than the alternatives. But...
Why not use a pie chart?

Because they encode data as *angles*, not positions on a common scale – and *work less well than the alternatives*. But...
Summary

Main points

• Data summaries have graphical interpretations – often more than one interpretation
• There is no ‘right’ or ‘wrong’ summary (despite what some texts say) but they do communicate different aspects of the data
• What do you want to communicate? What is relevant to your analysis? (You must decide, the data won’t tell you)
• For larger datasets, trade off data ‘coarseness’ for clarity of message
Appendix: Math (for keen people)

First, calculating the median for our \(n = 15 \) example;

- Give new ordered labels; \(Y[1], Y[2], \ldots, Y[15] \)
- Find the middle data point – we have \(n = 15 \), so \(Y[8] \) has 7 data points both above and below
- For Q ‘What value is in the middle?’, the median is (also) your answer
Appendix: Math (for keen people)

Now without a picture;

1. Start with n observations
 item Put them in increasing order, so

 $Y_1 < Y_2 < Y_3 < Y_4 < \ldots < Y_{n-2} < Y_{n-1} < Y_n$

2. • For n odd, Median $= Y_{(n+1)/2}$
 • For n even, Median $= \frac{1}{2}(Y_{n/2} + Y_{n/2+1})$, i.e. the average of the two ‘middle’ values

For other quantiles, special methods (not covered here) are used when, as with n even, there is no uniquely-defined quantile.
Appendix: Math (for keen people)

For the mean:

\[
\text{Mean} = \frac{Y_1 + Y_2 + \ldots + Y_n}{n}
\]

i.e. to get the mean, add all the data points, then divide by the number you have. In ‘math’ notation, this is written as;

\[
\text{Mean} = \frac{\sum_{i=1}^{n} Y_i}{n}
\]

... where the numerator (i.e. top part) represents the ‘adding them all up’ step, from 1 to \(n \).

- Unlike the median, no need to order the data
- Also, no special treatment of \(n \) odd/even, or with ties
Appendix: Math (for keen people)

Defining measures of dispersion (spread) requires more notation;

Median absolute deviation;

\[MAD = \text{Median}\{ |Y_i - \text{Median}\{ Y_1, Y_2, ..., Y_n \} | \} \],

where \(\text{Median}\{ Y_1, Y_2, ..., Y_n \} \) means ‘take the median of all the observations \(Y_1, Y_2, ..., Y_n \), and the vertical bars \(|Y_i - ...| \) denote \textit{absolute values}.

Variance and Standard Deviation;

\[
\text{Variance} = \frac{\sum_{i=1}^{n} (Y_i - \text{Mean})^2}{n} \\
\text{StdDev} = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \text{Mean})^2}{n}} = \sqrt{\text{Variance}}
\]

Note: many texts will define these with \(n-1 \) instead of \(n \), in the denominator – with almost-always minor impact.

Why do that? Using \(n-1 \) removes bias when using \textit{sample} variance to estimate \textit{population} variance.
Appendix: Math (for keen people)

Want more? The mean and median are both measures of ‘location’, or ‘measures of central tendency’. There are many more of these, but mean & median are most commonly-used.