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Motivation
Study of genetic c-erbB-2 ‘exposure’ and breast cancer (Rohan et al, JNCI, 1998)
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Each exposure measured imperfectly; Rate of False Positive Exposure ≈ 0.49

Rate of False Negative Exposure ≈ 0.00
(External validation study, 187 subjects)

Is any useful inference possible?
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Matched case-control studies

�� Some disease of interest, want to find if a binary ‘exposure’ is
associated

�� For each diseased case, find a control matched for other covariates; 
age, sex, etc 

�� Then measure exposure of interest

�� The exposures are outcomes of interest, not the disease status
- must build a model for Pr(exposure), not Pr(disease)

�� Common study design, efficient, simple, popular

Random effects derivations of conditional likelihoods
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Formal description

�� Control exposure (1 or 0) is Z1k, Case exposure is Z2k, for pair k

�� Z1k ~Bern( p1k ), Z2k ~Bern( p2k )

�� Assume odds ratio identical in all pairs k;

i.e. logit(p2k ) = log(ψ ) + logit(p1k )

�� Generates one nuisance parameter for each pair

Random effects derivations of conditional likelihoods
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Problems!

�� Maximum likelihood estimates are badly inconsistent

�� Neyman-Scott problem – number of nuisance parameters grows 
with size of dataset

�� Usual asymptotics not automatically valid

�� ‘Sensible’ looking Bayes analysis can be even worse than MLEs!

Random effects derivations of conditional likelihoods
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Conditioning: a good solution

�� Assume Tk = total number of exposures (0,1,2) doesn’t contain 
information about ψ

�� Condition on this (approx) ancillary statistic; conditional likelihood 
contributions are;

�� Ratio of discordant pairs gives CMLE for ψ
�� Well behaved, standard likelihood asymptotics work, but very hard 

to generalize

Random effects derivations of conditional likelihoods
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A wish list

�� Analysis should reduce to conditional likelihood approach in 
standard situations

�� Flexible method, easy to accommodate data which is less than ideal

�� Allow use of prior information on ψ

�� Fully model based, for simple interpretation

�� Model criticism desirable, not currently well-supported

Random effects derivations of conditional likelihoods
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Random-effects: almost a dream solution

�� All nuisance parameters, e.g. p2k, drawn independently from G
Integrate likelihood w.r.t. p2k, inference on ψ from marginal likelihood

�� Very similar to a fully Bayesian approach;

mixing distribution G ≈ prior for p2k

marginal likelihood ≈ posterior for ψ (flat prior)

�� Flexible, priors on ψ allowed, model based, model criticism possible
Just need to choose G – but no ‘default’ exists

�� To complete the wish list, we need G which equate marginal and 
conditional likelihoods, if possible…

Random effects derivations of conditional likelihoods
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Random effects analysis

�� Suppose p2k ~ G, the mixing distribution

�� Marginal likelihood contributions are;

�� Define EG(Pr(T = t)) = mt; the marginal probabilities

Random effects derivations of conditional likelihoods
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Equivalence

Lemma: Conditional likelihood = marginal likelihood 

if and only if
G makes all mt invariant with respect to ψ

�� G which satisfy this are called invariant mixing distributions

Theorem: Invariant mixing distributions exist, 
for any matching ratio

�� Lindsay et al, JASA, 1991, proved that for flexible G, CMLE and 
marginal MLE agree, but only for special datasets

�� Invariant G depend on ψ
�� Proofs follow by results on the Stieltjes Moment Problem

Random effects derivations of conditional likelihoods
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Invariant distributions: an example

�� An example, for 1:1 matched case-control;

p1k =1/2    with probability    1/2  
p2k =1/2    with probability    1/2

�� Dependence on ψ is present but implicit

�� Nice ‘coin-tossing’ interpretation

�� Get m={0.25,0.5,0.25} – other details about G don’t affect analysis

�� Unchanged by relabelling case/controls, or exposure/non exposure;
this property holds in some generality; is this ‘non-informative’?

�� This example is ‘pretty’ but most aren’t!
Construction is essentially finding polynomial roots

Most applications just require existence – integrate over G to get m

Random effects derivations of conditional likelihoods
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Possible applications

These results allow us to put together the conditional analysis with the 
(many) benefits of a full likelihood approach;

1. Using the conditional likelihood as a full likelihood;
– Combining conditional analyses with prior information (ISIS)
– No extra work

2. Fitting the conditional likelihood for ψ, and also fitting for m
– Goodness of fit measures for conditional likelihood analyses (follows)
– Allowing for misclassification in case-control studies (follows)
– Inference on complex function of parameters, e.g. ranks in Rasch 

models
– Involves complex likelihood function

3. MCMC algorithms for evaluating the conditional likelihood
– Specify invariant distribution explicitly (polynomial roots)

Random effects derivations of conditional likelihoods
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Priors and conditional likelihoods

�� Already used together, but necessary assumptions are now clear

�� ISIS case-control study of helicobacter infection and myocardial infarction 
gave a ‘ballpark’ estimate incorporating prior beliefs - we can formalise this

Random effects derivations of conditional likelihoods
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�� A binomial mixture is a vector v with elements which can be written

�� Previous {0.25,0.5,0.25} corresponds to degenerate F; T =1/2 w.p. 1

�� All m which correspond to invariant mixing distributions are binomial
mixtures

�� 1:1 correspondence holds in many (useful) special cases

�� Leads directly to a measure of fit for the conditional ‘model’ – do the 

observed marginal totals Tk look like a binomial mixture?

Goodness of fit (1)
Random effects derivations of conditional likelihoods
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What does this space look like?
Sprott’s example; conditional 
likelihood not appropriate

�� Because m and ψ are orthogonal, some straightforward analyses
aren’t affected by this restriction

Goodness of fit (2)
Random effects derivations of conditional likelihoods
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Misclassification

�� Define X as the multinomial representation of Z1,Z2

�� Usual measurement error model gives mixture for each data point;

�� Assume ‘ true’ data X* from conditional ‘model’, in multinomial form

�� Observed data X follow a multinomial model, although complicated 
by error probabilities

�� Error probabilities can be known absolutely, or estimated

�� Derived from sensitivity and specificity of exposure measurement

Random effects derivations of conditional likelihoods
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Return to the motivating problem

Study of genetic c-erbB-2 ‘exposure’ and breast cancer (Rohan et al, JNCI, 1998)
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Pr(Observed Exposed | Unexposed) ≈ 0.49

Pr(Observed Unexposed | Exposed) ≈ 0.00
(External validation study, 187 subjects)

Assume:
Common odds ratio ψ
Invariant mixing distribution, with different vector m for 1:1, … 1:5 matching 16/24
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Extending the random effects model

�� Perfect data approach

Random effects derivations of conditional likelihoods
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�� Misclassified data

k=1…K

p1k , p2k

G, mψ

Xk k=1…K

m

ψ

Xk

error
rates

k=1…K

p1k , p2k

G, mψ

Xk

Xk
*

error
rates

�� Actual calculation

mconstrained to be 
a binomial mixture



Application to breast cancer dataset
Analysis allowing for errors;

NANA0.72 (0.30,1.69)
Ignore errors in 

exposure

0.01 (0.00,0.04)0.46 (0.34,0.59)0.62 (0.17,1.68)
With uncertain 

error rates

0.000.490.66 (0.23,1.84)
Use ‘plug-in’

error rates

False Negative 
Rate

False Positive 
Rate

Odds ratio 
estimate

�� Odds ratio estimate decreases, interval widens on the log scale
(attenuation towards the null)

�� Some inference is still possible, even with these error rates

�� Simulations show intervals have good coverage (approx 95%)

�� Estimates are slightly biased, on the log scale

Random effects derivations of conditional likelihoods
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Unusual estimate behavior (1)

We do not impute the true data X* ‘above’ our misclassified 
observations X, but the likely configurations characterise the analysis;
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�� In this example, ratio of discordant pairs gives ψ >1 and everything 
is ‘nice’
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Unusual estimate behavior (2)

Even with sensible data and error rates, ‘niceness’ is often absent;

Unobserved ‘ true’ data
�� Most likely configuration is that all 

discordant pairs are same type

�� The maximum likelihood estimate 

of ψ is at infinity

�� Need confidence intervals which 

cope with extreme values of ψ

1

0

10 �� Most likely configuration is that we 
have no discordant pairs

�� The likelihood is maximized along a 

ridge; any value of ψ equally good

�� Need a mechanism for reporting ‘no 
useful information’

Random effects derivations of conditional likelihoods
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The (simplified) ecological problem

�� Assume a single 2x2 table, 

where only the marginal total T=X1+X2 is observed

�� Using an invariant prior for the nuisance parameter, the marginal likelihood for ψ is 

�� We never learn about ψ - can also occur with ‘standard’ priors, for special datasets

Do we again need to report ‘no useful information’? Only if this model fits well?

Random effects derivations of conditional likelihoods
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Summary

� Conditional likelihood is a good approach for matched case-control 
studies

� An alternative derivation is available through random effects analysis

� The random effects derivation is easy to generalise and implement, 
allowing many new applications in matched case-control studies

� The random effects derivation uses the whole dataset, adding value 
to existing analysis at no ‘cost’ of more data, and providing new 
inferences in situations beyond matched case-control studies

Random effects derivations of conditional likelihoods
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� Other non-standard likelihoods – Cox partial likelihood, already 
known to be approximately Bayesian; do the same ideas apply? 

� Derivations of ‘good’ priors – our relabelling properties are not found 
in common non-informative priors; does this property guarantee 
‘sensible’ analysis?

Other ideas

� Rasch models; grid of binary outcomes, 

Want to estimate ‘abilities’ α, condition out ‘difficulties’ β
� Categorical exposures;

Two nuisance parameters per pair
Two odds ratio parameters of interest

Random effects derivations of conditional likelihoods
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