# Equivalence of random-effects and conditional likelihoods for matched case-control studies

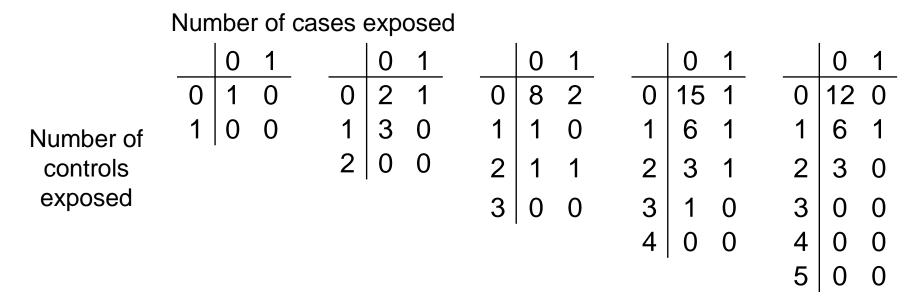
Ken Rice

MRC Biostatistics Unit, Cambridge, UK

January 8th 2004

# **Motivation**

Study of genetic c-erbB-2 'exposure' and breast cancer (Rohan et al, JNCI, 1998)



Each exposure measured imperfectly; Rate of False Positive Exposure  $\approx 0.49$ 

Rate of False Negative Exposure  $\approx 0.00$  (External validation study, 187 subjects)

Is any useful inference possible?

#### **Matched case-control studies**

- Some disease of interest, want to find if a binary 'exposure' is associated
- For each diseased case, find a control matched for other covariates; age, sex, etc
- *Then* measure exposure of interest
- The exposures are outcomes of interest, not the disease status
   must build a model for Pr(exposure), not Pr(disease)
- Common study design, efficient, simple, popular

## **Formal description**

• Control exposure (1 or 0) is  $Z_{1k}$ , Case exposure is  $Z_{2k}$ , for pair k

• 
$$Z_{1k} \sim \text{Bern}(p_{1k}), Z_{2k} \sim \text{Bern}(p_{2k})$$

• Assume odds ratio identical in all pairs *k*;

$$\psi = \frac{p_{2k}}{1 - p_{2k}} \frac{1 - p_{1k}}{p_{1k}}$$

i.e.  $logit(p_{2k}) = log(\psi) + logit(p_{1k})$ 

• Generates one nuisance parameter for each pair

#### **Problems!**

- Maximum likelihood estimates are badly inconsistent
- Neyman-Scott problem number of nuisance parameters grows with size of dataset
- Usual asymptotics not automatically valid
- 'Sensible' looking Bayes analysis can be even worse than MLEs!

# **Conditioning: a good solution**

- Assume  $T_k$  = total number of exposures (0,1,2) doesn't contain information about  $\psi$
- Condition on this (approx) ancillary statistic; conditional likelihood contributions are;

|                     |   | Number of cases exposed |                       |  |  |  |
|---------------------|---|-------------------------|-----------------------|--|--|--|
|                     |   | 0                       | 1                     |  |  |  |
| Number<br>of        | 0 | 1                       | $\frac{\psi}{1+\psi}$ |  |  |  |
| controls<br>exposed | 1 | $\frac{1}{1+\psi}$      | 1                     |  |  |  |

- Ratio of discordant pairs gives CMLE for  $\psi$
- Well behaved, standard likelihood asymptotics work, but very hard to generalize

# A wish list

- Analysis should reduce to conditional likelihood approach in standard situations
- Flexible method, easy to accommodate data which is less than ideal
- Allow use of prior information on  $\psi$
- Fully model based, for simple interpretation
- Model criticism desirable, not currently well-supported

#### **Random-effects: almost a dream solution**

- All nuisance parameters, e.g.  $p_{2k}$ , drawn independently from G Integrate likelihood w.r.t.  $p_{2k}$ , inference on  $\psi$  from marginal likelihood
- Very similar to a fully Bayesian approach;
   mixing distribution G ≈ prior for p<sub>2k</sub>
   marginal likelihood ≈ posterior for ψ (flat prior)
- Flexible, priors on  $\psi$  allowed, model based, model criticism possible Just need to choose G but no 'default' exists
- To complete the wish list, we need *G* which equate marginal and conditional likelihoods, if possible...

# **Random effects analysis**

- Suppose  $p_{2k} \sim G$ , the mixing distribution
- Marginal likelihood contributions are;

|                     |   | Number of cases exposed                |                                           |  |  |  |  |
|---------------------|---|----------------------------------------|-------------------------------------------|--|--|--|--|
|                     |   | 0                                      | 1                                         |  |  |  |  |
| Number<br>of        | 0 | $1 \cdot E_G(\Pr(T=0))$                | $\frac{\psi}{1+\psi} \cdot E_G(\Pr(T=1))$ |  |  |  |  |
| controls<br>exposed | 1 | $\frac{1}{1+\psi} \cdot E_G(\Pr(T=1))$ | $1 \cdot E_G(\Pr(T=2))$                   |  |  |  |  |

• Define  $E_G(\Pr(T = t)) = m_t$ ; the marginal probabilities

#### Equivalence

Lemma: Conditional likelihood = marginal likelihood **if and only if** *G* makes all  $m_t$  invariant with respect to  $\psi$ 

• *G* which satisfy this are called **invariant** mixing distributions

Theorem: Invariant mixing distributions exist, for any matching ratio

- Lindsay *et al, JASA,* 1991, proved that for flexible *G*, CMLE and marginal MLE agree, but only for special datasets
- Invariant G depend on  $\psi$
- Proofs follow by results on the Stieltjes Moment Problem

#### **Invariant distributions: an example**

• An example, for 1:1 matched case-control;

 $p_{1k} = 1/2$  with probability 1/2 $p_{2k} = 1/2$  with probability 1/2

- Dependence on  $\psi$  is present but implicit
- Nice 'coin-tossing' interpretation
- Get  $m = \{0.25, 0.5, 0.25\}$  other details about G don't affect analysis
- Unchanged by relabelling case/controls, or exposure/non exposure; this property holds in some generality; is this 'non-informative'?
- This example is 'pretty' but most aren't! Construction is essentially finding polynomial roots

Most applications just require existence – integrate over G to get m

# **Possible applications**

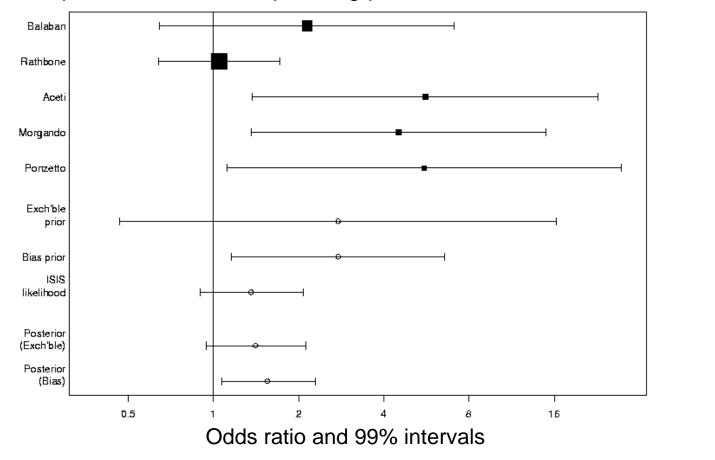
These results allow us to put together the conditional analysis with the (many) benefits of a full likelihood approach;

- 1. Using the conditional likelihood as a full likelihood;
  - Combining conditional analyses with prior information (ISIS)
  - No extra work
- 2. Fitting the conditional likelihood for  $\psi$ , and also fitting for *m* 
  - Goodness of fit measures for conditional likelihood analyses (follows)
  - Allowing for misclassification in case-control studies (follows)
  - Inference on complex function of parameters, e.g. ranks in Rasch models
  - Involves complex likelihood function
- 3. MCMC algorithms for evaluating the conditional likelihood
  - Specify invariant distribution explicitly (polynomial roots)

12/24

# **Priors and conditional likelihoods**

- Already used together, but necessary assumptions are now clear
- ISIS case-control study of helicobacter infection and myocardial infarction gave a 'ballpark' estimate incorporating prior beliefs we can formalise this



#### Random effects derivations of conditional likelihoods Goodness of fit (1)

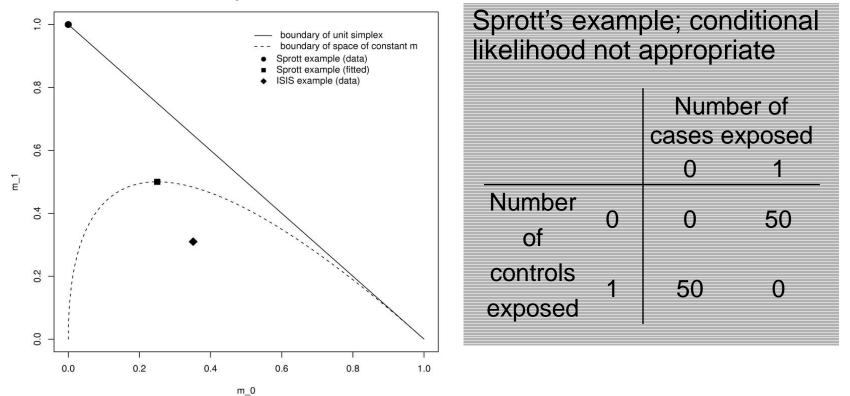
• A **binomial mixture** is a vector *v* with elements which can be written

$$v_r = E_{F(\theta)} \binom{n}{r} \theta^r (1-\theta)^{n-r}, \quad r = 0,1,K, n$$

- Previous {0.25,0.5,0.25} corresponds to degenerate *F*;  $\theta = 1/2$  *w.p.* 1
- All *m* which correspond to invariant mixing distributions are binomial mixtures
- 1:1 correspondence holds in many (useful) special cases
- Leads directly to a measure of fit for the conditional 'model' do the observed marginal totals  $T_k$  look like a binomial mixture?

# **Goodness of fit (2)**

#### What does this space look like?



• Because m and  $\psi$  are orthogonal, some straightforward analyses aren't affected by this restriction

# **Misclassification**

- Define X as the multinomial representation of  $Z_1, Z_2$
- Usual measurement error model gives mixture for each data point;

$$\Pr(X = i) = \sum_{j} \Pr(X^* = j) \Pr(X = i \mid X^* = j)$$

- Assume 'true' data  $X^*$  from conditional 'model', in multinomial form
- Observed data X follow a multinomial model, although complicated by error probabilities
- Error probabilities can be known absolutely, or estimated
- Derived from sensitivity and specificity of exposure measurement

## **Return to the motivating problem**

Study of genetic c-erbB-2 'exposure' and breast cancer (Rohan et al, JNCI, 1998)

|                                                       | Nun | nbe | r of | cases | exp | ose | d |   |   |   |   |   |    |   |   |   |    |   |
|-------------------------------------------------------|-----|-----|------|-------|-----|-----|---|---|---|---|---|---|----|---|---|---|----|---|
|                                                       |     | 0   | 1    |       | 0   | 1   |   |   | 0 | 1 |   |   | 0  | 1 |   |   | 0  | 1 |
|                                                       | 0   | 1   | 0    | 0     | 2   | 1   |   | 0 | 8 | 2 | ( | 0 | 15 | 1 | - | 0 | 12 | 0 |
| Number of                                             | 1   | 0   | 0    | 1     | 3   | 0   |   | 1 | 1 | 0 |   | 1 | 6  | 1 |   | 1 | 6  | 1 |
| controls                                              |     | •   |      | 2     | 0   | 0   |   | 2 | 1 | 1 |   | 2 | 3  | 1 |   | 2 | 3  | 0 |
| exposed                                               |     |     |      |       |     |     |   | 3 | 0 | 0 |   | 3 | 1  | 0 |   | 3 | 0  | 0 |
|                                                       |     |     |      |       |     |     |   |   |   |   | 4 | 4 | 0  | 0 |   | 4 | 0  | 0 |
| $Pr(Observed Exposed   Unexposed) \approx 0.49$ 5 0 0 |     |     |      |       |     |     | 0 |   |   |   |   |   |    |   |   |   |    |   |

Pr(Observed Exposed | Unexposed)  $\approx 0.49$ 

Pr(Observed Unexposed | Exposed)  $\approx 0.00$ 

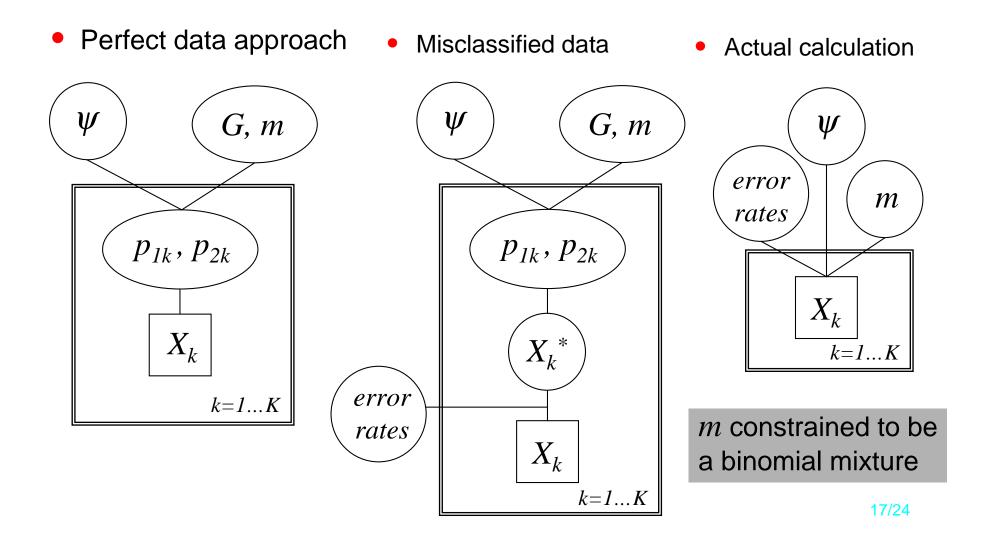
(External validation study, 187 subjects)

Assume:

Common odds ratio  $\psi$ 

Invariant mixing distribution, with different vector *m* for 1:1, ... 1:5 matching 16/24

# **Extending the random effects model**



#### **Application to breast cancer dataset**

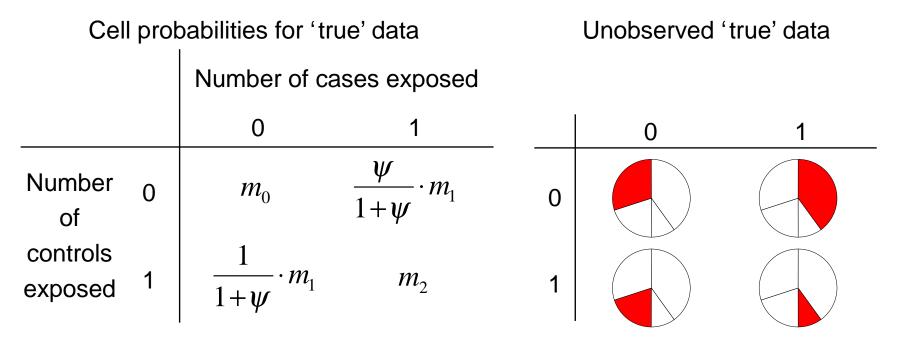
#### Analysis allowing for errors;

|                              | Odds ratio<br>estimate | False Positive<br>Rate | False Negative<br>Rate |  |  |  |
|------------------------------|------------------------|------------------------|------------------------|--|--|--|
| Ignore errors in exposure    | 0.72 (0.30,1.69)       | NA                     | NA                     |  |  |  |
| Use 'plug-in'<br>error rates | 0.66 (0.23,1.84)       | 0.49                   | 0.00                   |  |  |  |
| With uncertain error rates   | 0.62 (0.17,1.68)       | 0.46 (0.34,0.59)       | 0.01 (0.00,0.04)       |  |  |  |

- Odds ratio estimate decreases, interval widens on the log scale (attenuation towards the null)
- Some inference *is* still possible, even with these error rates
- Simulations show intervals have good coverage (approx 95%)
- Estimates are slightly biased, on the log scale

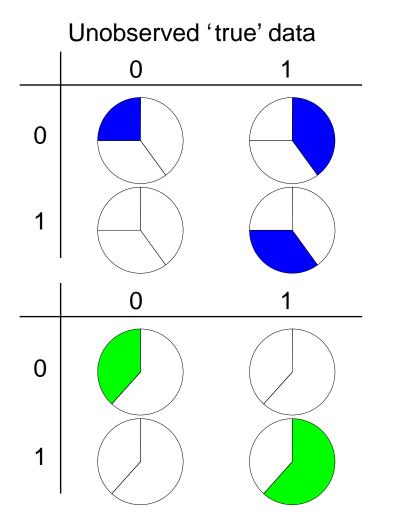
# **Unusual estimate behavior (1)**

We do **not** impute the true data  $X^*$  'above' our misclassified observations *X*, but the likely configurations characterise the analysis;



• In this example, ratio of discordant pairs gives  $\psi$  >1 and everything is 'nice'

Even with sensible data and error rates, 'niceness' is often absent;



- Most likely configuration is that all discordant pairs are same type
- The maximum likelihood estimate
   of ψ is at infinity
- Need confidence intervals which cope with extreme values of  $\psi$
- Most likely configuration is that we have no discordant pairs
- The likelihood is maximized along a ridge; any value of  $\psi$  equally good
- Need a mechanism for reporting 'no useful information' 20/24

# The (simplified) ecological problem

• Assume a single 2x2 table,

|          | Exposed     | Not exposed             | Total       |
|----------|-------------|-------------------------|-------------|
| Controls | $X_{I}$     | $n_1 - X_1$             | $n_1$       |
| Cases    | $X_2$       | $n_2 - X_2$             | $n_2$       |
| Total    | $X_1 + X_2$ | $n_1 + n_2 - X_1 - X_2$ | $n_1 + n_2$ |

where only the marginal total  $T=X_1+X_2$  is observed

• Using an invariant prior for the nuisance parameter, the marginal likelihood for  $\psi$  is



• We **never** learn about  $\psi$ - can also occur with 'standard' priors, for special datasets Do we again need to report 'no useful information'? Only if this model fits well?

#### **Summary**

- Conditional likelihood is a good approach for matched case-control studies
- An alternative derivation is available through random effects analysis
- The random effects derivation is easy to generalise and implement, allowing many new applications in matched case-control studies
- The random effects derivation uses the whole dataset, adding value to existing analysis at no 'cost' of more data, and providing new inferences in situations beyond matched case-control studies

Т

#### **Other ideas**

|                                                                      | (               | ג2   | Q2  | Q3 | 3  |
|----------------------------------------------------------------------|-----------------|------|-----|----|----|
| • Rasch models; grid of binary outcomes, $\alpha P$                  | Student 1       | 0    | 1   | 1  |    |
| $\Pr_{i,j}(success) = \frac{\alpha_i \beta_j}{1 + \alpha_i \beta_j}$ | Student 2       | 0    | 0   | 1  |    |
| $1 + \alpha_i \beta_j$                                               | :               | :    | :   | :  |    |
| Want to estimate 'abilities' $lpha$ , condition of                   | eta             |      |     |    |    |
| <ul> <li>Categorical exposures;</li> </ul>                           |                 | d    | d d | dD | DD |
| Two nuisance parameters per pair                                     | Case genotype   | C    | )   | 0  | 1  |
| Two odds ratio parameters of interest                                | Control genotyp | e  1 |     | 0  | 0  |

- Other non-standard likelihoods Cox partial likelihood, already known to be approximately Bayesian; do the same ideas apply?
- Derivations of 'good' priors our relabelling properties are not found in common non-informative priors; does this property guarantee 'sensible' analysis?

#### **References and acknowledgements**

Papers featuring work from this talk;

- Rice, K, Equivalence between conditional and mixture approaches to the Rasch model and matched case-control studies, in press, *JASA*
- Rice, K, Discussion of Wakefield, J, 'Ecological inference for 2x2 tables', in press, JRSS A
- Rice, K and Holmans, P, Equivalence of conditional and marginal approaches to matched case control studies, with application to misclassification of a biallelic marker, in preparation
- Rice, K, Full-likelihood approaches to misclassification of a binary exposure in matched case-control studies, *Statistics in Medicine*, 2003; **22**:3177-3194
- Duffy et al, Misclassification in a matched case-control study with variable matching ratio – application to a study of c-erbB-2 overexpression and breast cancer, Statistics in Medicine, 2003; 22:2459-2468

Thanks to;

- Medical Research Council, ASA Epidemiology Section
- David Spiegelhalter, Stephen Duffy, David Clayton, Vern Farewell, Jon Wakefield and several anonymous referees