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Abstract

Many clustering algorithms have been proposed to analyze gene expression data, but little
guidance is available to help choose among them. We provide a systematic and quantitative
framework to assess the results of clustering algorithms. A typical gene expression data set
contains measurements of the expression levels of a fixed set of genes under various experimental
conditions. Clustering algorithms attempt to partition the genes into groups exhibiting similar
patterns of variation in expression level, hopefully revealing biologically meaningful patterns of
activity or control. Our methodology is to apply a clustering algorithm to the data from all but
one experimental condition. The remaining condition is used to assess the predictive power of the
resulting clusters—meaningful clusters should exhibit less variation in the remaining condition
than clusters formed by coincidence. We have successfully applied the methodology to compare
three clustering algorithms on three published gene expression data sets. In particular, we found
our quantitative measures of cluster quality to be positively correlated with external standards of
cluster quality (functional categorizations of genes known for two of the three data sets).
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1 Introduction and Motivation

In an attempt to understand complicated biological systems, large amounts of gene expression data
have been generated by researchers (see [3] and [14]). Because of the large number of genes and
the complexity of biological networks, clustering is a useful data exploratory technique for gene
expression analysis. Many clustering algorithms have been proposed for gene expression data. For
example, Eisenet al. [5] applied the average linkage hierarchical clustering algorithm to identify
groups of co-regulated yeast genes. Ben-Doret al. [1] reported success with their CAST algorithm.
Tamayoet al. [13] used self-organizing maps to identify clusters in the yeast cell cycle and human
hematopoietic differentiation data sets.

Assessing the clustering results and interpreting the clusters found are as important as generating
the clusters [7]. In much of the published clustering work on gene expression, the success of clus-
tering algorithms is assessed by visual inspection using biological knowledge (for example, [11] and
[5]). The following example (illustrated in Figure 1) shows the importance of assessing clustering
results. In Figure 1(a) and Figure 1(b), genes are clustered using the average linkage hierarchical
clustering algorithm so that similar genes are placed adjacent to each other along the vertical axis.
The experiments or conditions along the horizontal axis are not clustered. The color intensity of each
cell in the figure is proportional to the measured gene expression ratio, with bright red representing
the most positive and bright green being most negative. Figure 1 (a) shows a cluster identified by
Eisenet al. (Figure 2E in [5]) from a data set with 2467 yeast genes and 79 conditions. Figure 1
(b) shows a striking pattern obtained in our simulation data set which doesnot contain any intrinsic
pattern. The simulation data set,D(i, j), is obtained by randomly choosing a mean expression level
αi for each genei and randomly choosing a mean valueβj for each conditionj according to standard
normal distributions. Each entry in the simulation data set,D(i, j), is chosen from the normal distri-
bution with mean (αi + βj) and variance 1. Therefore, the simulation data set contains no instrinsic
pattern. The CLUSTER software [5], which is an average linkage hierarchical clustering algorithm,
is then applied to the genes in the simulation data set. Figure 1(b) is a pattern representing a subtree
in the dendrogram identified by visual inspection using the TREEVIEW software [5]. Due to some
technical difficulties, the resolutions of Figures 1 (a) and (b) are different. Despite the difference in
resolution in the two figures, genes in Figure 1(b) show a striking pattern which can easily be inter-
preted as a potential cluster without any validation procedures. To the best of our knowledge, there
is no systematic data-driven method to quantitatively evaluate gene expression clustering results.

Furthermore, the clusters obtained by different clustering algorithms can be remarkably different.
A biologist with a gene expression data set is faced with the problem of choosing an appropriate
clustering algorithm for his or her data set. Our paper provides a quantitative data-driven framework
to evaluate and compare different clustering algorithms.

Many clustering algorithms take a similarity matrix, instead of the raw gene expression data, as
input. In the similarity matrix, the similarity between two gene expression series in the raw data is
reduced to a single value, calledpairwise similarity. The pre-clustering step of choosing the similarity
metric, with which pairwise similarities are computed, can have a serious impact on clustering results.
There are no general guidelines in the literature for the choice of similarity metrics [12]. Our approach
can also be used to investigate the effect of similarity metrics on the quality of clustering results.
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(a) Figure 2E from Eisen et al.                       (b) simulation data
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Figure 1: (a) Figure 2E from Eisenet al. [5] (b) A striking pattern from our simulation data which
contains no intrinsic pattern.

2 Previous Work on Cluster Validation

According to Jain and Dubes [7],cluster validationrefers to procedures that evaluate the results of
cluster analysis in a quantitative and objective fashion. In the statistics literature, cluster validation
procedures are divided into two main categories: external and internal criterion analysis [7]. Chapter
4 in Jain and Dubes [7] provides a detailed discussion of the various indices proposed to validate
clustering results.

The external criterion analysis validates a clustering result by comparing the clustering result to a
given “gold” standard which is another partition of the objects. The “gold” standard can be obtained
by an independent process based on information other than the given data set. This criterion will be
discussed in more details in Section 6.

The internal criterion analysis uses information from within the given data set to represent the
goodness of fit between the input data set and the resulting clustering results.

There are usually some tunable parameters to clustering algorithms which in turn determines the
number of clusters produced. Another aspect of cluster validation is to justify the number of clusters
in a clustering result. Determining the optimal number of clusters is a very difficult problem [8]. Jain
et al. [8] used a bootstrapping technique to estimate the optimal number of clusters in a given data
set.

3 Problem Statement and Basic Idea

Our work to assess the quality of clustering results is motivated by thejackknifeapproach [4]. A
typical gene expression data set contains measurements of expression levels ofn genes measured
underm experimental conditions. Presumably, the expression levels of co-regulated genes will vary
similarly across them conditions (or experiments), so clustering the genes based on similarities
among these expression level measurements should isolate clusters of biologically related genes. Our
goal is to compare the clustering results of two (or more) clustering algorithms, say algorithm A
and algorithm B. Our idea is to apply a clustering algorithm to the data from(m − 1) conditions,
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and to use the remaining condition to assess the predictive power of the clustering algorithm. A
clustering algorithm is said to have good predictive power if genes in the same cluster tend to have
similar expression levels in the condition that is not used to produce the clusters. We define a scalar
quantity called thefigure of merit(FOM), which is an estimate of the predictive power of a clustering
algorithm.

The idea is illustrated in Figure 2, in which a clustering algorithm is applied to the data from con-
ditions0, 1, . . . , (e−1), (e+1), . . . , (m−1), and conditione is used to estimate the predictive power
of the algorithm. Supposek clusters,C1, C2, . . . , Ck, are obtained, with cluster sizess1, s2, . . . , sk,
such that

∑k
i=1 si = n. Let R(i, j) be the expression level of genei under conditionj in the raw

data matrix. LetFOM(e, k) be the figure of merit fork clusters and using conditione as validation.
There are many possible definitions of the figure of merit (see Section 5). For example, a possible
definition of FOM is the average squared distance from the mean expression level in each cluster,

which can be written asFOM(e, k) =
√

1
n ∗ ∑k

i=1

∑
x∈Ci

(R(x, e) − µCi(e))2, whereµCi(e) is the
average expression level in conditione of genes in clusterCi.

Each of them conditions can be used in turn as the validation condition. Theaggregate figure of
merit, FOMtot(k) =

∑m−1
e=0 FOM(e, k), is an estimate of the total predictive power of the algorithm

over all the conditions fork clusters in a data set.
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Figure 2: Raw data matrix.
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Figure 3: Comparison of algorithms A and B.

In the case of using the average of the squared distance from the mean as the figure of merit, a
small aggregate figure of merit is an indication of a high predictive power clustering algorithm. For
example, in Figure 3, algorithm B has higher predictive power than algorithm A. Different algorithms
typically have different tunable parameters. To compare the quality of clusters produced by two
different algorithms, we must adjust the parameters so that the number of clusters is the same in both
cases. Otherwise, simply producing more (and therefore smaller) clusters will produce a smaller
FOM. Determining the optimal number of clusters is a very difficult problem [8]. Since we cannot
determine the optimal number of clusters for a given data set, we cannot produce clustering results
with the optimal number of clusters. Therefore, our methodology of comparing clustering algorithms
over a range of number of clusters is a reasonable way to get around the problem of determining the
optimal number of clusters.

Our approach is different fromleave-one-out cross validationin machine learning. In leave-one-
out cross validation in machine learning, the objective is to estimate the accuracy of aclassifier,
which is an algorithm that maps an unlabelled instance to a label, bysupervised learning[9]. The



4 4 CLUSTERING ALGORITHMS

labels of the objects to be clustered are assumed to be known. The idea is to hide the label of each
object in turn, and to estimate the label of the object using a classifier. This is in contrast to our
approach in which we donot assume any prior information of the genes to evaluate the quality of
clustering results. Instead, we define figures of merit, which are estimators of the predictive power of
clustering algorithms, to assess the quality of clustering results.

We demonstrated our technique on three clustering algorithms (CAST [1], k-means and an iter-
ative algorithm) and three gene expression data sets: the rat Central Nervous System (CNS) data set
[14], the yeast cell cycle data set [2], and the human hematopoietic differentiation data set [13]. Sec-
tion 4 describes the clustering algorithms, and Section 5 discusses different definitions for the figure
of merit. Section 6 provides a methodology to measure the correspondence of a clustering result with
a given partial categorization of genes. We will show that the performance of the clustering algo-
rithms depends on the specific data set, the number of clusters and the definition of figure of merit.
None of the three clustering algorithms is a clear winner in our results. In general, the k-means algo-
rithm has comparable average performance to the CAST algorithm. We will also provide evidence
that the figure of merit is an estimator for the predictive power of clustering algorithms using external
validation with known functional categories of genes. We will also show that the predictive power of
the CAST algorithm using the Euclidean distance and the correlation coefficient as similarity metrics
are comparable on the rat CNS data set. The detailed results will be described in Section 7. Our
main contribution is not the comparison of these specific algorithms and metrics, but rather the de-
velopment of a simple, quantitative data-driven methodology allowing such comparisons to be made
between any clustering algorithms and any similarity metrics.

4 Clustering Algorithms

We implemented three clustering algorithms: theCluster Affinity Search Technique(CAST) [1], an
iterative partition algorithm1 and theK-meansalgorithm[7]. For comparison, a random clustering
algorithm is also implemented.

4.1 CAST [1]

We implemented the pseudo-code of CAST in [1] with two additional heuristics that have been added
to BIOCLUST, the implementation of CAST by its authors. Please refer to [1] for the details of the
algorithm. One heuristic is to choose a gene with the maximum number of neighbors to start a
new cluster. After the CAST algorithm converges, there is an additional iterative step, in which all
clusters are considered at the same time, and genes are moved to the cluster with the highest average
similarity.

4.2 Iterative Partition Algorithm

The input to the iterative partition algorithm consists of a similarity matrixS, and a parameterα.
Varying the parameterα produces clustering results with different number of clusters. The total sim-
ilarity of a geneg to a clusterC, Simtot(g,C), is defined as the sum of the pairwise similarities from
g to each gene inC, i.e., Simtot(g,C) =

∑
x∈C S(g, x), whereS(g, x) is the pairwise similarity

1The iterative algorithm was suggested by Richard M. Karp at University of California, Berkeley.
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of geneg and genex. Theexcess similarityfrom a geneg to a clusterC, Excesssim(g,C), is de-
fined as the excess of the total similarity fromg to C overα multiplied by the size of cluster C,i.e.,
Excesssim(g,C) = Simtot(g,C) − α ∗ |C|.

Initially, each gene is in its own cluster. A random order is selected for the genes in the iterative
step. In each iteration, for each geneg, the excess similarity from geneg to each existing cluster is
computed. IfCmax is the cluster with the maximum excess similarity to geneg and geneg is not
currently in clusterCmax, geneg is removed from the cluster it is in, and is inserted in clusterCmax.
This process is repeated until no genes are moved between clusters.

Note that in CAST, there is only one cluster open at a time, while all clusters are open at the same
time in the iterative algorithm.

4.3 K-means

The number of clusters,k, is an input to the k-means clustering algorithm. Clusters are described
by centroids, which are cluster centers, in the algorithm. In our implementation of k-means [7],
the initial centroids consist ofk randomly chosen genes. Each gene is assigned to the centroid (and
hence cluster) with the closest Euclidean distance. New centroids of thek clusters are computed after
all genes are assigned. The steps of assigning genes to centroids and computing new centroids are
repeated until no genes are moved between clusters.

4.4 Random Clustering

To evaluate the performance of a clustering algorithm, we can compare the clustering algorithm to
random clustering. A random clustering fork clusters and conditione can be obtained by randomly
putting the data values in conditione into k bins. If the figure of merit obtained from a clustering
algorithm is considerably lower than that from random clustering, this is evidence that the clustering
algorithm has higher predictive power than random clustering.

5 Figure of Merit

A figure of meritis an estimate of the predictive power of a clustering algorithm. Suppose a clustering
algorithm A is applied to all conditions except conditione, and there arek clusters. The figure
of merit, FOM(e, k), considered in Section 3 is an estimate of the mean error of predicting the
expression levels from the average expression levels of the clusters in conditione. Let R(x, e) be the
expression level of genex in conditione, andµCi(e) be the average expression level in conditione
of genes in clusterCi. The2-normfigure of merit,FOM2, is defined as:

FOM2(e, k) =

√√√√ 1
n
∗

k∑
i=1

∑
x∈Ci

(R(x, e) − µCi(e))2 (1)

Similarly, we can define the1-normfigure of merit,FOM1, as the average Manhattan distance
between the mean expression level in each cluster and the expression levels of genes in the cluster in
conditione.

FOM1(e, k) =
1
n
∗

k∑
i=1

∑
x∈Ci

|R(x, e) − µCi(e)| (2)
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Define therangein conditione of clusterCi as the difference of the maximum expression level,
maxCi(e), and the minimum expression level,minCi(e), in conditione of clusterCi. The range
measures the diameter of a cluster. The average range of thek clusters is defined as therangeFOM,
FOMR.

FOMR(e, k) =
1
k
∗

k∑
i=1

(maxCi(e) − minCi(e)) (3)

Theminimum achievable figure of meritfor conditione is the minimum possible FOM given the
data values in conditione only. The minimum achievable figure of merit represents the lower bound
of the figure of merit of any clustering algorithm.

Theorem 1: The minimum achievable figure of merit for the range FOM,FOMmin
R (e, k), can be

computed inO(n log n) time.
Proof Outline:

First, we proved by contradiction that the optimal solution must be a partition of sorted data
values. In the second part of the proof, we showed that the cluster boundaries should be placed in
the (k − 1) largest gaps in the sorted data values in conditione sinceFOMmin

R (e, k) is minimized
when the gap values between sorted data values are maximized. Therefore,FOMmin

R (e, k) can be
computed by sorting the data values in conditione, and placing the cluster boundaries in the(k − 1)
largest gaps between sorted data values. This can be done inO(n log n) time.2

The 2-norm, 1-norm and range FOM estimate the predictive power of a clustering algorithm
by measuring the dispersion of the gene expression levels in the left-out conditione. Intuitively,
genes in the same clusters are expected to have similar expression levels. Moreover, disjoint clusters
are expected to be relatively far apart from each other. Therefore, we can define theratio FOM
to be the ratio of the within-cluster dispersion to the between-cluster separation. The within-cluster
dispersion can be represented by the 1-norm FOM. The between-cluster separation can be represented
by the distance between the centers of thek clusters in conditione. Let µCi(e) be the average gene
expression level of clusterCi in conditione. Denote the maximum average gene expression level in
conditione by µmax

Ci
(e) = maxCi µCi(e). Similarly, the minimum average gene expression level in

conditione is µmin
Ci

(e) = minCi µCi(e). The average between-cluster separation can be estimated by

the average Manhattan distance between cluster means,i.e.,
µmax

Ci
(e)−µmin

Ci
(e)

k−1 . Hence, theratio FOM
can be written as:

FOMratio(e, k) =
1
n ∗ ∑k

i=1

∑
x∈Ci

|R(x, e) − µCi(e)|
1

k−1 ∗ (µmax
Ci

(e) − µmin
Ci

(e))
(4)

6 External Validation of FOM

In this section, we will describe a methodology to justify the use of figures of merit as a measure
of the predictive power of clustering algorithms. Suppose the functional categories of a subset of
the genes in the given data set are known. Although the functional categorization may be derived
from information other than gene expression data, a gene expression data set is expected to reflect
the functional categories to a certain degree. The idea is to compare a clustering result to a given
known functional categorization of the genes. Since not all genes have been classified, we allow
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a partial functional categorization as the “gold” standard to compare clustering results with. This
methodology can also be applied to determine the similarity of two clustering results.

6.1 The Jaccard and Hurbert indices

In Chapter 4 of Jain and Dubes [7],external indicesthat assess the degree to which two partitions
with the same number of objects agree are defined. Since clustering algorithms assign each object to
exactly one cluster, clustering results can be considered as partitions. Suppose two partitions,U and
V , are to be compared. Jain and Dubes [7] definea to be the number of pairs of objects that appear
in the same cluster in both partitions,b to be the number of pairs of objects in the same cluster inU
but not inV , c to be the number of pairs of objects in the same cluster inV but not inU , andd to be
the number of pairs of objects in different clusters in both partitions. There are several known indices
that measure the similarity of two partitions, for example, the Jaccard index:

Jaccard =
a

a + b + c
(5)

They also definem1 = a + b, which is the number of pairs of objects that are in the same
group inU . Similarly, m2 = a + c is the number of pairs of objects in the same group inV . Let
M = a + b + c + d. The HurbertΓ statistic is defined as:

Hurbert =
Ma− m1m2√

m1m2(M − m1)(M − m2)
(6)

The HurbertΓ statistic is essentially the correlation between two matricesIU andIV . IU (i, j) =
1 if object i and objectj are in the same group in partitionU , andIU (i, j) = 0 otherwise. IV is
similarly defined.

The Jaccard index lies between 0 and 1, while the HurbertΓ statistic lies between -1 and 1. A high
Jaccard or HurbertΓ statistic means a high correspondence to the given functional categorization.

6.2 Our Generalization

In Jain and Dubes [7], they assume the partitions to be compared arecompletepartitions of all the
objects. We generalize the indices in Section 6.1 to comparepartial partitions since not all genes fall
into known functional categories. The main observation is that the Jaccard and HurbertΓ statistics
only depend on the valuesa, b, c, d. Our idea is that we only count the number of pairs of genes such
that both genes exist in the given known categorization. SupposeU is a clustering result ofn genes,
andV is apartial functional categorization ofr genes, wherer ≤ n. We definea to be the number
of pairs of genes such that both genes exist inV , and both genes appear in the same group ofV and
same cluster inU . We can similarly defineb, c andd.

A high Jaccard or HurbertΓ statistic indicates high similarity of a clustering result to a given
functional categorization. Recall that a low figure of merit indicates high predictive power. The idea is
to apply a clustering algorithm to all conditions except conditione to producek clusters,FOM(e, k)
and the Jaccard or HurbertΓ statistic of the clustering result based on all conditions excepte are
computed. Repeat this process for different clustering algorithm, and then plot the statistics against
FOM(e, k)’s for different algorithms. If the points show a trend of downward negative slope, this
shows that a clustering result with a low FOM tend to have a high correspondence to the given
functional categorization. This provides evidence for the predictive power of FOM for comparing
clustering algorithms.
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7 Results and Discussion

In this section, we will describe the performance of the iterative, CAST, and k-means clustering
algorithms on the rat CNS data set [14], the yeast cell cycle data set [2], and the human hematopoietic
differentiation data set [13]. We will also justify the use of figures of merit as an estimate of the
predictive power of clustering algorithms using known biological classes of genes in the rat CNS
data set and the yeast cell cycle data set. The three gene expression data sets are available via the
World Wide Web. In our experiments, the random clustering step was repeated 1000 times, the
iterative algorithm were run 10 times and the k-means algorithm were run 30 times to obtain reliable
FOM(e, k)’s.

7.1 The Rat CNS Data Set

Figures 4, 5, 6, 7 show the performance of the iterative, k-means and the CAST clustering algo-
rithms in terms of the aggregate 2-norm, 1-norm, range and ratio FOM’s on the rat CNS data set.
The raw data set published by Wenet al. consists of 112 genes and 9 time points. As suggested in
[14], the raw data is normalized by the maximum expression level for each gene. The data set is then
augmented with slopes (differences between consecutive time points) to capture parallel trajectories
of the time course data. This results in a data set with 112 genes and 17 conditions. The correlation
coefficient is used to compute pairwise similarities of genes. All three clustering algorithms (iter-
ative, k-means and CAST) achieve lower aggregate figures of merit than random clustering in the
2-norm, 1-norm, range and ratio FOM’s. Since the iterative, the k-means and the random clustering
algorithms are randomized, each of them is run multiple times to obtain reliableFOM(e, k)’s. In
the following figures, the solid lines for the iterative, k-means and random algorithms represent the
sum of the averageFOM(e, k) over all the conditionse. We also show the 80% and 20% error bars
in Figure 4. The 80% error bars for the randomized algorithms are obtained by computing the 80
percentile of theFOM(e, k) from the multiple runs of the algorithms, and then summing over all the
conditions to obtain the aggregate FOM. Similarly, the 20% error bars are obtained by computing the
20 percentile from the multiple runs. We have chosen to present the 20% and 80% error bars instead
of the maximum and minimum because the maximum and minimum are very sensitive to outliers.
From Figure 4, we can see that the spread of the FOM of the iterative algorithm is much smaller than
that of the k-means and the random clustering algorithms. The error bars of the 1-norm and range
FOM show similar behavior and are not be presented here.

The behavior of the clustering algorithms on the aggregate 1-norm FOM (Figure 5) is very similar
to that of the 2-norm (Figure 4). When the number of clusters is small (below 25), the CAST and
k-means clustering algorithms have comparable aggregate 1-norm and 2-norm FOM’s, which are
lower than those of the iterative algorithm. When the number of clusters is large (above 30), all three
clustering algorithms have comparable aggregate 2-norm and 1-norm FOM’s.

In Figure 6, the minimum FOM corresponds to the aggregate minimum achievable range FOM.
FOMmin

R (e, k) can be computed with Theorem 1. The iterative algorithm has lower aggregate range
FOM’s than the CAST and k-means algorithms when the number of clusters is small (below 20).
When the number of clusters is large (above 20), all three clustering algorithms have similar aggregate
range FOM’s. Moreover, all three algorithms produce aggregate range FOM’s lying roughly halfway
between that of random clustering and the aggregate minimum achievable range FOM.

The 2-norm, 1-norm and range FOM’s are expected to be monotonically decreasing as the number
of clusters increases. This is not the case for the ratio FOM since it measures the ratio of the within-
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cluster dispersion to between-cluster dispersion. Small ratio FOM’s are desirable. However, the
ratio FOM may not be monotonic. Jainet al. [8] applied the bootstrap technique to determine the
optimal number of clusters. They defined a similar ratio of within-cluster dispersion to between-
cluster separation, plotted the ratio against the number of clusters, and argued that a “significant”
knee in the graph corresponds to the optimal number of clusters. As a matter of fact, plotting an
evaluation index against the number of clusters is a standard technique [7]. In Figure 7, there is a
knee around four to six clusters for all of the iterative, k-means and CAST clustering algorithms.
The ratio of within-cluster dispersion to between-cluster separation is a minimum around four to
six clusters in the rat CNS data set. In [14], the genes in the rat CNS data set are classified into
four categories using biological knowledge. The ratio FOM may give us an estimate of the optimal
number of clusters inherent in the data.

2-norm FOM on the rat CNS data
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Figure 4: Aggregate 2-norm FOM’s of clustering algorithms on the rat CNS data set.

Wen et al. [14] categorized genes in the rat CNS data set into four families using biological
knowledge. Table 1 shows that the aggregate 2-norm and 1-norm FOM’s of the four clusters iden-
tified in [14] are comparable to those of the iterative, k-means and CAST algorithms. The k-means
algorithm achieves the lowest aggregate 2-norm and 1-norm FOM’s for four clusters in our results.
It is interesting to observe that the aggregate range FOM from the iterative algorithm is significantly
lower than that from the clusters identified by Wenet al.. In fact, the aggregate range FOM from
Wen’s clusters are only slightly lower than that from random clustering. Since our definition of the
range FOM depends only on the maximum and minimum expression levels in each cluster, the range
FOM is expected to be very sensitive to outliers.

Wen et al. [14] found six clusters on this data set with the FITCH software [6]. The CAST
algorithm achieves the lowest aggregate 2-norm and 1-norm FOM’s for six clusters in our results.
The aggregate 2-norm and 1-norm FOM’s (data not shown here) of the six clusters found in [14] are
slightly lower than those from the CAST algorithm.

Overall, we take the fact that the figures of merit for the clusters chosen by Wenet al. are similar
to those found algorithmically to be a good indication that our methodology is providing a meaningful
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1-norm FOM on the rat CNS data
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Figure 5: Aggregate 1-norm FOM’s of clustering algorithms on the rat CNS data set.

Range FOM on the rat CNS data

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45 50 55 60 65
number of clusters

F
O

M

avg iterative
avg k-means
CAST
avg random

Figure 6: Aggregate range FOM’s of clustering algorithms on the rat CNS data set.
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ratio FOM on the rat CNS data
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Figure 7: Aggregate ratio FOM’s of clustering algorithms on the rat CNS data set.

FOM definition Wen’s clustering iterative k-means CAST random
2-norm 4.39 4.43 4.12 4.27 4.61
1-norm 3.43 3.54 3.14 3.40 3.72
range 16.93 5.64 14.97 12.58 17.24

Table 1: Aggregate FOM’s from Wen’s clusters and from clustering algorithms.

estimate of cluster quality.
In addition to the above FOM calculation, we also evaluated the similarity of our clustering results

to the four functional categories of the genes on the rat CNS data set according to Wenet al. [14]
using the methodology in Section 6.

Figure 8 and Figure 9 show the Jaccard index againstFOM2(0, 4) and the HurbertΓ statistic
againstFOM2(0, 4) respectively. The iterative, k-means, CAST and random algorithms are applied
to 16 conditions (the first condition is left out) of the 112 genes in the rat CNS data set to produce
four clusters. The FOM is computed using the gene expression levels in the left-out condition. The
iterative and random algorithms are run 10 and 30 times respectively. The CAST algorithm is run
exactly once since it is deterministic. The k-means algorithm is run 10 times, and we show the
intermediate results of k-means and CAST in successive iterations in Figure 8, Figure 9 and Figure 10.

In Figure 8, Figure 9 and Figure 10, the FOM’s of the random algorithm are a few standard
deviations higher than the other clustering algorithms, and its Jaccard or HurbertΓ statistics are a
few standard deviations lower than the other clustering algorithms. Moreover, there is an obvious
downward negative slope trend in all three figures, showing that clustering results with low FOM’s
tend to have high correspondence with the given functional categorization.

Figure 10 shows the results of five runs of k-means and one run of the CAST algorithm. Each
run of k-means is represented by the same color. The points with the same color represent succes-
sive iterations of the same run. Successive iterations of an algorithm show how the FOM’s and the
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Jaccard index against FOM(0,4) on rat data
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Figure 8: The Jaccard index againstFOM2(0, 4) on the rat CNS data set.
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Figure 9: The Hurbert index againstFOM2(0, 4) on the rat CNS data set.



7.1 The Rat CNS Data Set 13

Successive iterations of k-means and CAST on rat data 
(e=0)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.2 0.25 0.3 0.35 0.4
FOM

H
ur

be
rt

k-means
run#1
k-means
run#2
k-means
run#3
k-means
run#4
k-means
run#5
CAST

Figure 10: The Hurbert index againstFOM2(0, 4) of successive iterations of k-means and CAST on
the rat CNS data set.

statistics change as the algorithm proceed to a more desirable clustering result. For most runs of the
k-means and CAST, as the algorithm proceed to the next iteration, we can see a trend of lower FOM
and a higher correspondence to the given functional categorization.

We also investigated the effect of leaving out other conditions, and found that the shown figures
for leaving out the first condition (e = 0) are typical results. Furthermore, we computed the average
Jaccard and HurbertΓ statistics when all 17 conditions in the data set are used in clustering algorithms
(shown in Table 3) over multiple runs of the algorithms. The iterative and random algorithms are run
10 times, while the k-means algorithm is run 30 times for the results in Table 3. The Jaccard and
HurbertΓ statistics when all 17 conditions are applied are comparable to those when one condition is
left out. This shows that leaving out one condition does not have any significant effect on the quality
of clustering results.

algorithm Jaccard Hurbert
iterative 0.25 -0.012
k-means 0.24 0.17
CAST 0.28 0.18
random 0.15 -0.001

Table 3: Average Jaccard and HurbertΓ statistics for all 17 conditions and four clusters on the rat
CNS data set.

Hence, we conclude that clustering results with low FOM’s tend to have high correspondence to
the functional categorization in Wenet al. on the rat CNS data set.
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7.2 The Yeast Cell Cycle Data Set

The yeast cell cycle data set of Choet al. [2] consists of approximately 6000 genes and 17 conditions.
Choet al. [2] identified 420 genes by visual inspection of the raw data. The data set is normalized
as in [13]. The 17 conditions are divided into two panels (which correspond to two cell cycles) and
are normalized to have mean 0 and variance 1 within each panel. The correlation coefficient is used
to compute the similarity matrix.

Figure 11 shows the performance of the clustering algorithms on the processed yeast cell cycle
data set. When the number of clusters is large (above 50), the iterative and CAST algorithms have
lower aggregate 2-norm FOM’s than the k-means algorithm.

2-norm FOM on the yeast cell cycle data

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400 450
Number of clusters

F
O

M

avg iterative
avg k-means
CAST
avg random

Figure 11: Aggregate 2-norm FOM’s of clustering algorithms on the yeast cell cycle data set.

Choet al. categorized approximately 380 genes into five phases of cell cycle on their web site.
Since the 420 genes are identified by visual inspection of gene expression data according to the peak
times of genes, we expect clustering results to correspond to the five known categories of genes. The
methodology of Section 6 is used to validate the use of FOM as an estimate of the predictive power of
clustering algorithms. The results for leaving out the first time point (e = 0) are shown in Figure 12,
Figure 13 and Figure 14. We also studied the effects of leaving out other time points in the data set
and found that the shown figures are typical results (not shown here). The randomized algorithms
are run 10 times, and the intermediate results of successive iterations of k-means and CAST are also
shown.

There is an obvious downward negative slope Figure 12, Figure 13 and Figure 14. The iterative,
k-means and CAST algorithms show significantly lower FOM’s and higher Jaccard and Hurbert
Γ statistics than the random algorithm. Figure 14 shows the FOM’s and HurbertΓ statistics of
successive iterations of the k-means and CAST algorithms. Successive iterations of the same run are
represented by the same color. In each iteration of k-means and CAST, the FOM’s tend to be lower
and have higher correspondence to the five functional categories.

We have also computed the average Jaccard and HurbertΓ statistics when all 17 time points are
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Jaccard index against FOM(0,5) on cell cycle data
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Figure 12: The Jaccard index againstFOM2(0, 5) on the yeast cell cycle data set.
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Figure 13: The Hurbert index againstFOM2(0, 5) on the yeast cell cycle data set.
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Successive iterations of k-means and CAST on cell cycle 
data (e=0)
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Figure 14: The Hurbert index againstFOM2(0, 5) of successive iterations of k-means on the yeast
cell cycle data set.

used in clustering algorithms over multiple runs of the algorithms as shown in Table 4. The average
Jaccard and HurbertΓ statistics when all 17 time points are used are comparable to those when
one time point is left out. This is evidence that leaving out one condition does not seriously affect
clustering quality on this data set.

algorithm Jaccard Hurbert
iterative 0.42 0.45
k-means 0.43 0.48
CAST 0.45 0.50
random 0.12 0.001

Table 4: Average Jaccard and HurbertΓ statistics for all 17 conditions and five clusters on the yeast
cell cycle data set.

Cho et al. [2] also looked up functional categorizations of the 420 genes from the MIPS [10]
database. Approximately 180 genes are divided into nine categories. Since the 420 genes are not
chosen due to the functional categories in MIPS, and the MIPS database is annotated based on more
than just gene expression data, we expect clustering results on the gene expression data to have lower
Jaccard and HurbertΓ statistics with the MIPS functional categories than with the five stages of cell
cycle. A typical result is shown in Figure 15. As expected the statistics have lower values than in
Figure 13. Note that there is also an obvious downward negative slope in the graph, showing that low
FOM’s correspond to high correspondence to the MIPS functional categories.

7.3 The Human Hematopoietic Data Set

The aggregate 2-norm FOM’s of the clustering algorithms on the human hematopoietic differentia-
tion data set [13] are shown in Figure 16. The variation filter in the GENECLUSTER software [13] is
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Figure 15: The Hurbert index againstFOM2(0, 9) on the yeast cell cycle data set.

2-norm FOM on the human hematopoietic data
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Figure 16: Aggregate 2-norm FOM’s of clustering algorithms on the human hematopoietic differen-
tiation data set.
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applied to the raw data, and 1033 genes pass through the filter. The data is then normalized across
each of the four cell lines making up the 17 conditions as suggested in [13]. The correlation coeffi-
cient is used to compute the similarity matrix. A close inspection shows that CAST achieves lower
aggregate 2-norm FOM’s than the other two algorithms when the number of clusters is small (be-
low 30). When the number of clusters is large (above 50), the k-means algorithm achieves lower
aggregate 2-norm FOM’s than the iterative and CAST algorithms.

7.4 Analysis

With isolated exceptions, all the data sets we have considered exhibit declining figures of merit under
all algorithms as the number of clusters increases. Two factors contribute to this. First, the algorithms
may be finding higher quality clusterings, as they subdivide large, coarse clusters into smaller, more
homogeneous ones. Second, simply increasing the number of clusters will tend to decrease the
FOM. The following simple analysis estimates the effect of the second factor. Suppose the measured
expression levelsx1, . . . , xs of thes genes in some clusterC are independent, identically distributed
normal random variables with varianceσ2. Let x̄ =

∑s
i=1 xi/s. ThenC ’s expected contribution

to the FOM2 is the expected value of
∑s

i=1(xi − x̄)2, which is (s − 1)σ2. SubdividingC into
k smaller nonempty sub-clusters would reduce these genes’ expected contribution to theFOM2 to
(s − k)σ2, and hence the aggregate 2-norm FOM for a collection ofk such homogeneous clusters
would bem

√
(n − k)/nσ. In fact, on the rat CNS data set, this formula agrees with the measured

2-normFOMtot(k) of random clustering to within a fraction of one percent (despite the fact that
the real data sets violate key assumptions in the analysis). Presumably, then, the relatively steep
decline in the 2-normFOMtot(k) achieved by all three clustering algorithms on the rat CNS data set
for k up to 20 or so reflect genuine progress in producing more homogeneous clusters, whereas the
more gradual declines for largerk, roughly paralleling the random curves, largely reflect the purely
statistical effect of increasingk. Although Wenet al. only identified 4 to 6 clusters in the rat CNS
data set, this analysis suggests that the data may support a more refined sub-clustering.

7.5 Effect of Similarity Metrics

Our approach can also be used to evaluate the effect of similarity metrics on clustering results. There
are no general guidelines in the literature for the choice of similarity metrics [12]. Figure 8 shows
the aggregate 2-norm FOM’s of the CAST and iterative algorithms on the rat CNS data set using the
correlation coefficient, Euclidean distance and information entropy as similarity metrics.

Michaelset al. [11] proposed to use information entropy as a similarity metric, and they com-
pared their biological knowledge to the clustering results using information entropy and Euclidean
distance as similarity metrics with the FITCH software [6]. In their paper [11], they showed that
clustering results using Euclidean distance and information entropy have a high degree of corre-
spondence. In order to compute the information entropy of each gene expression sequence, the
expression levels are discretized into three equidistant bins. LetI andJ be two gene expression
series. The information entropy,H(I),H(J), and mutual information,M(I, J), can be computed
from the probabilities,P (i), of the occurrence of one of the three discretized expression levels:
H(I) = −∑

[P (i)∗ log P (i)], andM(I, J) = H(I)+H(J)−H(I, J). The normalized mutual in-
formation,Mnorm, is defined asMnorm(I, J) = M(I, J)/max{H(I),H(J)}. Mnorm is a measure
of pairwise similarity between two gene expression series.
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The CAST algorithm with different similarity metrics
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Figure 8: Aggregate 2-norm FOM’s of the CAST and iterative algorithms using different similarity
metrics.

In Figure 8, when the number of clusters is large (above 30), the aggregate 2-norm FOM’s of both
algorithms using the correlation coefficient and the Euclidean distance are very similar, and are lower
than those of the information entropy. None of the similarity metrics give clearly superior FOM’s,
especially when the number of clusters is small. The CAST algorithm with the correlation coefficient
gives the lowest aggregate 2-norm FOM’s for five to eight clusters.

In other experiments (data not shown here), we observed that there is no significant difference
in the aggregate 2-norm FOM’s of the iterative and CAST algorithms when ten bins are used in the
discretization of the expression levels for the information entropy computation in the rat CNS data
set.

8 Conclusions

In this paper, we provide a simple and quantitative methodology to compare the predictive power
of any clustering algorithms and similarity metrics on any data set. We demonstrated our technique
using the iterative, k-means and CAST [1] algorithms on the rat CNS data set [14], the yeast cell
cycle data set [2], and the human hematopoietic differentiation data set [13]. We showed that the
performance of clustering algorithms depends on the specific data set, the number of clusters, and
the definition of FOM. On the rat CNS data set and the yeast cell cycle data set, we showed that low
FOM(e, k)’s tend to correspond to a high similarities to known partial functional categorizations of
genes. This is a good indication that our definitions of figures of merit provide a good estimate of
cluster quality. We found that the 1-norm and 2-norm FOM’s have very similar performance on all
three data sets. Since the range FOM is very sensitive to outliers and the aggregate range FOM’s from
the iterative algorithm tend to be significantly lower than the other algorithms (especially when the
number of clusters is small), this suggests that the iterative algorithm may be more suited to handle
data with a lot of outliers.

Our methodology can also be used to verify the existence of clusters in a given data set. If we plot
the FOM against the number of clusters for the simulation data set in Section 1, the diagram shows
a different trend than data sets with intrinsic patterns (diagram not shown here). For the simulation
data with no intrinsic pattern, the trend of all clustering algorithms follow more closely to the random
clustering algorithm.
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No clustering algorithm emerged as a clear-cut winner in this work, and we suggest that flexibil-
ity, speed, reliability and ease of implementation may be equally important in differentiating cluster-
ing algorithms. In our implementation, k-means is substantially faster than the iterative and CAST
algorithms. It takes under two seconds on a Pentium II 400 to run k-means once on the human
hematopoietic data set (1033 genes and 17 conditions). The average running times of the iterative
and CAST algorithms are over 50 seconds on the same data set. In terms of reliability, CAST is
implemented as a deterministic algorithm, but the iterative and k-means algorithms are randomized
algorithms. The error bars in Figure 4 showed that the standard deviations of the iterative algorithm
tend to be much smaller than those of the k-means algorithm.

More work needs to be done to confirm the apparent small effect of the predictive power on the
similarity metric used to measure similarity of gene expression levels. There are many directions of
future work, one of which is to compare the similarity of clustering results of different algorithms.
For example, given two genesx andy that are in the same cluster obtained by algorithm A, it would
be interesting to compute the probability thatx andy are in the same cluster if algorithm B is applied.
Another important pre-clustering step is the standardization of variables in the data set. The effect of
different variable standardization methods on the predictive power of clustering algorithms would be
another interesting direction of future work.

To summarize, clustering is a difficult problem. It would be nice if there were a single universally
superior clustering method. However, given the observed variability in the solutions produced by the
different algorithms on different data sets and under varying similarity metrics, no such solution is
in sight. Lacking that, we feel that the simple methodology introduced in this paper for quantitative
comparison of the predictive power of clustering algorithms will prove to be a valuable ingredient in
future clustering studies.
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