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Abstract

Motivation: Many clustering algorithms have been proposed
for the analysis of gene expression data, but little guidance is
available to help choose among them. We provide a system-
atic framework for assessing the results of clustering algo-
rithms. Clustering algorithms attempt to partition the genes
into groups exhibiting similar patterns of variation in expres-
sion level. Our methodology is to apply a clustering algo-
rithm to the data from all but one experimental condition. The
remaining condition is used to assess the predictive power of
the resulting clusters—meaningful clusters should exhibit less
variation in the remaining condition than clusters formed by
chance.
Results: We successfully applied our methodology to com-
pare six clustering algorithms on four gene expression data
sets. We found our quantitative measures of cluster quality
to be positively correlated with external standards of cluster
quality.
Availability: The software is under development.
Contact: kayee

�
cs.washington.edu

Supplementary information:
http://www.cs.washington.edu/homes/kayee/cluster or

http://www.cs.washington.edu/homes/ruzzo/cluster

1 Introduction

In an attempt to understand complicated biological systems,
large amounts of gene expression data have been generated
by researchers (for example, (DeRisi et al., 1997), (Wen
et al., 1998)). Because of the large number of genes and
the complexity of biological networks, clustering is a useful
exploratory technique for analysis of gene expression data.
Many clustering algorithms have been proposed for gene ex-
pression data. For example, (Eisen et al., 1998) applied a
variant of the hierarchical average-link clustering algorithm
to identify groups of co-regulated yeast genes. (Ben-Dor and
Yakhini, 1999) reported success with their CAST algorithm.
(Tamayo et al., 1999) used self-organizing maps to identify
clusters in the yeast cell cycle and human hematopoietic dif-
ferentiation data sets.

Assessing the clustering results and interpreting the clus-
ters found are as important as generating the clusters (Jain
and Dubes, 1988). Given the same data set, different cluster-
ing algorithms can potentially generate very different clusters.
A biologist with a gene expression data set is faced with the
problem of choosing an appropriate clustering algorithm for
his or her data set. In much of the published clustering work
on gene expression, the success of clustering algorithms is
assessed by visual inspection using biological knowledge (for
example, (Michaels et al., 1998) and (Eisen et al., 1998)).
Our paper provides a quantitative data-driven framework to
compare different clustering algorithms.

As a specific example, consider the Barrett’s esophagus
data set (Barrett et al., 2000), discussed in more detail in Sec-
tions 4 and 6. This data set contains samples of four tissue
types, one neoplastic and three normal. We applied three
clustering algorithms to this data, producing the same num-
ber of clusters with each. One goal was to identify clusters
of genes having tissue specific profiles. Biologists previously
had identified about twenty such genes. Two of the clustering
algorithms assigned these genes to appropriate clusters, while
the third separated them into different clusters, seemingly ar-
bitrarily. Therefore, the biologists had little confidence in the
third clustering. Unfortunately, this sort of prior biological
knowledge is not always available. Hence, there is a great
need for a systematic data-driven approach to compare the
performance of different clustering algorithms. This paper
offers such an approach. In the above example, our method-
ology favors the same clusterings as the biologists, a determi-
nation made based solely on the expression array data itself,
without reliance on additional biological information.

2 Our Approach

Our method for assessing the quality of clustering results is
motivated by the jackknife approach (Efron, 1982). We apply
a clustering algorithm to all but one experimental condition
in a data set, and use the left-out condition to assess the pre-
dictive power of the clustering algorithm. We define a scalar
quantity called the figure of merit (FOM), which is an esti-
mate of the predictive power of a clustering algorithm.

Figure of merit: Intuitively, a clustering has possible bio-
logical significance if genes in the same cluster tend to have
similar expression levels in additional experiments that were
not used to form the clusters. We estimate this predictive
power by removing one experiment, � , from the data set,
clustering genes based on the remaining data, and then mea-
suring the within-cluster similarity of expression values in
experiment � . Our figure of merit is the root mean square
deviation in the left-out condition � of the individual gene
expression levels relative to their cluster means. Each condi-
tion can be used as the validation condition, so we compare
clustering algorithms using the sum of FOM’s over all the
conditions. The adjusted figure of merit is the figure of merit
divided by a factor that compensates for a statistical bias with
many clusters. The figure of merit and adjusted figure of merit
are formally defined in Section 3.

A small figure of merit indicates a clustering algorithm hav-
ing high predictive power. We compare clustering algorithms
with the same number of clusters, and over a range of number
of clusters.

An artificial example with 5 clusters: In Figure 1,
three clustering algorithms – hierarchical single-link, k-
means (with random initialization), and CAST (Ben-Dor and
Yakhini, 1999) – are compared on a simulated data set. As a
control, we also include the “random” algorithm, which sim-
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Figure 1: Adjusted FOM’s of clustering algorithms on a sim-
ulated data set with 5 clusters.

ply places genes into random clusters. The algorithms are de-
scribed in Section 5. The simulated data set has 420 genes and
17 conditions, and contains 5 clusters (Yeung et al., 2000a).
Figure 1 shows that all three “real” clustering algorithms ex-
hibit FOM’s that are much better than random placement of
genes into clusters. Additionally, CAST and single-link show
markedly better FOM’s than k-means for 5 to 10 clusters.
This is no accident. Examination of the cluster results with
5 clusters reveals that the CAST and single-link algorithms
have perfectly separated the data into its five underlying clus-
ters, whereas k-means tended to split the largest cluster into
two parts, while incorrectly merging two of the smaller clus-
ters. (K-means is a randomized algorithm; 7 of 10 runs ex-
hibited this error.) Overall, we see that our figure of merit is
correctly discriminating among these algorithms on this data
set.
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Figure 2: Adjusted FOM’s of clustering algorithms on Cho et
al.’s yeast cell cycle data set.

A real data set: Figure 2 shows the adjusted FOM’s of the
same clustering algorithms on a yeast cell cycle data set (Cho
et al., 1998). Two facts are evident. First, although the decline
in FOM is not as dramatic as that shown on the (low noise)
synthetic data in Figure 1, there is none the less a signifi-

cant decline, strongly suggesting that this data does contain
intrinsic patterns. Second, as in Figure 1, the graph reveals
distinct differences among the algorithms, although different
ones than in Figure 1. Namely, k-means (with random initial-
ization) and CAST are nearly indistinguishable, but both are
decisively better than single-link, which performs no better
than random placement into clusters. It turns out that single-
link tends to perform poorly over many different gene expres-
sion data sets as shown in Section 6. Our methodology shows
that single-link has poor performance in real data, but not in
our synthetic data.

How many clusters are really present? Ideally, we would
like to be able to compare proposed clusterings having dif-
ferent numbers of clusters. Unfortunately, determining the
“right” number of clusters in real data is a long-standing and
very difficult problem (Jain and Moreau, 1987). (Milligan
and Cooper, 1985) evaluates the performance of 30 proce-
dures for estimating the number of clusters on several artifi-
cial data sets. The gap statistic of (Tibshirani et al., 2000) is
an appealing recent attempt to estimate the number of clus-
ters by comparing within-cluster dispersion to that of a ref-
erence null distribution. However, on purely philosophical
grounds, it seems impossible to determine the “right” number
of clusters, or even to define the concept, in the absence of a
well-grounded statistical model (Banfield and Raftery, 1993),
which is not yet available for gene expression data. Although
our method may give some hints as to how many clusters the
data support, and although our adjusted figure of merit will be
neutral to number of clusters under appropriate assumptions
(see Theorem 1 in Section 3), it still seems safest to compare
the adjusted figures of merit of two algorithms only when they
are generating the same number of clusters.

Clustering algorithms typically have parameters that di-
rectly (for example, k-means) or indirectly (for example,
CAST’s similarity threshold) determine the number of clus-
ters. To compare the figures of merit of clusters produced by
two different algorithms, we adjust the parameters so that the
number of clusters is the same in both cases. Plots of adjusted
FOM versus number of clusters, as shown above, then give
an overall picture of the behavior of the clustering algorithm.
Figure 2 is fairly typical. The relatively steep decline in the
adjusted FOM’s when the number of clusters is small prob-
ably reflects genuine progress in producing more homoge-
neous clusters, whereas, the more gradual declines for larger
number of clusters probably reflect purely statistical effects
of increasing the number of clusters, for example, isolating
outliers in singleton sets.

Related work: Our approach has some similarity to leave-
one-out cross validation in machine learning. In leave-one-
out cross validation, the objective is to estimate the accuracy
of a classifier, an algorithm that maps an unlabeled instance
to a label, by supervised learning (Kohavi, 1995). The labels
of the objects to be classified are assumed to be known. The
idea is to hide the label of each object in turn, and to estimate
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the label of the object using a classifier. This is in contrast to
our approach in which we do not assume any prior informa-
tion of the genes to evaluate the quality of clustering results.
Instead, we define figures of merit, which are estimators of
the predictive power of clustering algorithms, to assess the
quality of clustering results.

Validating clustering results is a well-studied problem in
statistics. (Jain and Dubes, 1988) divides cluster validation
procedures into two main categories: external and internal cri-
terion analysis. External criterion analysis validates a cluster-
ing result by comparing it to a given “gold standard” which
is another partition of the objects. The gold standard must
be obtained by an independent process based on information
other than the given data set. There are many statistical mea-
sures that assess the agreement between an external criterion
and a clustering result. For example, (Milligan et al., 1983)
and (Milligan and Cooper, 1986) evaluated the performance
of different clustering algorithms and different statistical mea-
sures of agreement on both synthetic and real data. We use ex-
ternal criteria to validate our FOM methodology in Section 7,
but reliable external criteria are rarely available when ana-
lyzing gene expression data. Internal criterion analysis uses
information from within the given data set to represent the
goodness of fit between the input data set and the clustering
results. For example, compactness and isolation of clusters
are possible measures of goodness of fit.

For validation of clustering results, external criterion anal-
ysis has the strong benefit of providing an independent, hope-
fully unbiased assessment of cluster quality. On the other
hand, external criterion analysis has the strong disadvantage
that an external gold standard is rarely available. Internal cri-
terion analysis avoids the need for such a standard, but has
the alternative problem that clusters are validated using the
same information from which clusters are derived. Differ-
ent clustering algorithms optimize different objective func-
tions or criteria. Assessing the goodness of fit between the
input data set and the resulting clusters is equivalent to eval-
uating the clusters under a different objective function. Our
approach compromises these two extremes: no external stan-
dard is required, and the clustering results are evaluated based
on homogeneity of the hidden data that are not available to the
clustering algorithms. A fictitious example, which illustrates
possible merits of our approach, is shown in the Appendix.

3 Figure of Merit

A figure of merit is an estimate of the predictive power of a
clustering algorithm. A typical gene expression data set con-
tains measurements of expression levels of � genes measured
under � experimental conditions. Suppose a clustering al-
gorithm is applied to the data from conditions

�������������
	��������
	��������������� � , and condition
	

is used to estimate the
predictive power of the algorithm. Suppose there are � clus-
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ters using condition

	
as validation provides an estimate of

the mean error of predicting the expression levels from the
average expression levels of the clusters in condition

	
. The

2-norm FOM is essentially the root mean square deviation in
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of the individual gene expression lev-

els relative to their cluster means:
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Each of the � conditions can be used as the left-out experi-
mental condition. The aggregate figure of merit, ')(+* � � >/?A@B 79� ')(+* �,	.� �  , is an estimate of the total predictive
power of the algorithm over all the conditions for � clusters
in a data set.

We have also evaluated other definitions of figure of merit;
see (Yeung et al., 2000b) for details.

Adjusted Figure of Merit

With isolated exceptions, all the data sets (both real and syn-
thetic) we have considered exhibit declining figures of merit
under all algorithms, including the random algorithm, as the
number of clusters increases. Two factors contribute to this.
First, the algorithms may be finding higher quality cluster-
ings, as they subdivide large, coarse clusters into smaller,
more homogeneous ones. Second, simply increasing the
number of clusters will tend to decrease the FOM.

The analysis in this section partially quantifies the behavior
of the figure of merit, and formally defines the adjusted figure
of merit, which corrects for the second effect.

We assume the following idealized model. Suppose that
the � genes fall into C true classes, with the D th class con-
taining E#& � genes, where FAGHE#&IG �

and
?KJ&L7M� EM& /N�

.
Further assume that the expression levels of genes in class D
under condition

	
are independent normally distributed ran-

dom variables with mean ! &PO B and variance Q �&�O B .
Suppose we apply a clustering algorithm to the � genes to

obtain � clusters, where �5RSC . We assume that the cluster-
ing algorithm is perfect, in the sense that each cluster con-
tains genes from only one class. Assume there are E0&,� clus-
ters containing class D genes. (This assumption is valid if the
clustering algorithm favors equal-sized clusters. However, the
analysis is otherwise independent of the sizes of the clusters
within each class.)

Theorem 1 With the above assumptions, the expected ag-

gregate 2-norm FOM, ')(+* � �  , is T UWV �UYXQ , where XQ is a
weighted average of the Q &�O B , independent of � . Specifically,

XQ / ? @ B 79� T ? J&L7M� E & Q �&PO B .
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Proof Outline: Suppose the measured expression lev-
els of the E#& � genes in true class D , condition

	
are< ��O B ����������< � $ U O B . Let X< B / ? � $ U&879� < &PO B�� E#& � . Then the

expected value of
? � $ U&879� �P< &�O B � X< B  � is

� EM& � � �  Q �&�O B .
Subdividing this cluster into E &
� smaller nonempty
sub-clusters would reduce these genes’ expected contri-
bution to the ')(+* �
	.� �  to

� E & � � E & �  Q �&PO B . Hence,')(+* � �  / ? @ B 79� T �U 4 ? J&879� � E#& � � EM&,�  Q �&�O B /
T UWV �U ? @ B 7M� T ? J&879� E#&
Q �&�O B . �

If the assumptions in Theorem 1 are satisfied and round-
off errors ( E#&
� is assumed to be an integer) are ignored, the
rate of decline of 2-norm figures of merit as � , the number

of clusters, increases should be T UWV �U . Define the adjusted

figure of merit of � clusters to be ')(+* �
	.� �  � T UWV �U . The
figures in Section 2 were shown using the adjusted figure of
merit. In our results on real data (for example, Figure 2), the
adjusted FOM of the random algorithm is very close to con-
stant with respect to the number of clusters, despite the fact
that the yeast cell cycle data set and the clustering algorithms
probably violate key assumptions in the foregoing analysis.

4 Data Sets

The Barrett’s Esophagus Data Set

Barrett’s esophagus (BE) is a condition in which the nor-
mal squamous esophageal mucosa is replaced by a metaplas-
tic columnar epithelium. It develops as a complication of
chronic gastroesophageal reflux disease (GERD) and predis-
poses to the development of adenocarcinomas of the esopha-
gus and cardia. Patients with Barrett’s esophagus frequently
have symptoms of GERD, such as heartburn and indigestion,
and frequently seek medical attention before the development
of cancer. The standard care for many patients is periodic en-
doscopic surveillance with surgery reserved for the subset of
patients who develop esophageal adenocarcinoma. Thus en-
doscopic biopsies from patients with BE can be acquired from
all stages of disease and provide highly favorable material for
studying human neoplasia in vivo.

The Barrett’s data set (Barrett et al., 2000) consists of 7306
genes and 10 conditions. Fresh biopsies of each tissue from
2 to 3 patients were pooled prior to RNA extraction. The 10
conditions consist of 4 pools of esophageal squamous biop-
sies, 4 pools of Barrett’s esophagus biopsies, one pool of duo-
denal biopsies, and one pool of gastric biopsies. The data
set was filtered using the GENECLUSTER software (Tamayo
et al., 1999), and 795 genes passed the filter of absolute
change 300 and relative change 4. The data set was then nor-
malized to have mean 0 and variance 1.

The Rat CNS Data Set

The rat CNS data set was obtained by reverse transcription-
coupled PCR to study the expression levels of 112 genes dur-
ing rat central nervous system development (Wen et al., 1998)
over 9 time points. As suggested in (Wen et al., 1998), the
raw data was normalized by the maximum expression level
for each gene. The data set was then augmented with slopes
(differences between consecutive time points) to capture par-
allel trajectories of the time course data. This results in a data
set with 112 genes and 17 conditions.

The Yeast Cell Cycle Data Set

The yeast cell cycle data set (Cho et al., 1998) shows the fluc-
tuation of expression levels of approximately 6000 genes over
approximately two cell cycles (17 time points). By visual in-
spection of the raw data, (Cho et al., 1998) identified 420
genes showing significant variation over the course of the ex-
periment. The data set was normalized as in (Tamayo et al.,
1999): the 17 conditions were divided into two panels (which
correspond to two cell cycles) and were normalized to have
mean 0 and variance 1 within each panel.

The Ovary Data Set

A subset of the ovary data set ((Schummer et al., 1999),
(Schummer, 2000)) is used. The ovary data set was generated
by hybridizing randomly selected cDNAs from normal and
neoplastic ovarian tissues to membrane arrays. The subset of
ovary data set we used contains 233 clones and 24 samples, 7
of which are derived from normal tissues, 4 from blood sam-
ples, and the remaining 13 from ovarian cancers in various
stages of malignancy. The 233 clones were sequenced, and
they correspond to 4 different genes.

5 Clustering Algorithms

We implemented two partitional clustering algorithms: the
Cluster Affinity Search Technique (CAST) (Ben-Dor and
Yakhini, 1999) and the k-means algorithm (Jain and Dubes,
1988). Three hierarchical clustering algorithms were also im-
plemented: single-link, average-link and complete-link (Jain
and Dubes, 1988). A dendrogram is built bottom-up in each
of the hierarchical algorithms until � subtrees were obtained.� clusters were obtained from the dendrogram by assuming
that each of the � subtrees corresponds to a cluster. The de-
tails of the implementation can be found in (Yeung et al.,
2000a).

We also investigated the effect of initialization methods for
the k-means algorithm. One implementation initializes the
algorithm with randomly selected genes as centroids. Another
implementation uses the results from average-link as initial
centroids.
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We also implemented random clustering as a benchmark
for evaluating the performance of a clustering algorithm. A
random clustering with � clusters is obtained by placing �
randomly selected genes into separate bins, then placing the
remaining genes into the same bins uniformly at random. An
algorithm whose figure of merit is little better than that of a
random clustering is probably producing poor clusters.

6 Results and Discussion

In this section, we compared the performance of various clus-
tering algorithms on the data sets described in Section 4.
The results using another data set (Tamayo et al., 1999) (not
shown here) can be found in (Yeung et al., 2000b) and (Ye-
ung et al., 2000a). We did not show the results from all the
clustering algorithms we implemented for clarity of figures.
For details, please refer to (Yeung et al., 2000a). The cor-
relation coefficient was used to compute pairwise similarities
of genes. In our experiments, the random clustering algo-
rithm was repeated 1000 times, and the k-means algorithm
with random initialization was run 30 times to obtain reliable
FOM’s. We also studied the variation in FOM reported by
the randomized algorithms. The standard deviations of the
FOM of k-means (with random initialization) and the random
clustering algorithms are under 10% of the average FOM.

The Barrett’s Esophagus Data Set

Figure 3 shows the adjusted FOM’s on the Barrett’s esopha-
gus data set. When the number of clusters is above 30 (data
not shown), the decline in the adjusted FOM’s is very gentle,
so only 1 to 30 clusters are shown. The FOM’s of CAST and
k-means with average-link initialization are comparable and
are the best when the number of clusters is at least 8. Figure 3
also shows a sharp decline in FOM up to 10 clusters, thus
suggesting the number of clusters of interest is around 10.

With our FOM analysis in mind, we produced clustering
results on the full data set (all 10 conditions) with 10 clusters
using CAST, average-link and k-means with average-link ini-
tialization. Then, we compared the clusters in light of prior
biological knowledge about the data. Cytokeratins have a tis-
sue specific profile and can be used to distinguish and purify
tissues of interest in flow cytometry assays. Probe sets for
twenty members of the cytokeratin genes passed the initial
filtering criteria. The ten clusters generated by CAST and k-
means with average-link initialization correctly placed each
of the cytokeratins in their respective clusters. In contrast,
average-link with 10 clusters had a higher FOM, generated
two small clusters that include only two and three members
and did not correctly assign the cytokeratins to tissue specific
clusters. Therefore, manual inspection and clusterings of cy-
tokeratins suggest that CAST and k-means with average-link
initialization produce more robust clusters than average-link,
which confirm our FOM analysis.

The Rat CNS Data Set

Figure 4 and Figure 5 show the adjusted FOM’s for 1 to 15
clusters, which is expected to be the range of interest. ((Wen
et al., 1998) categorized genes in the rat CNS data set into
four families using biological knowledge.)

In Figure 5, hierarchical complete-link and average-link
achieve lower adjusted FOM’s than single-link. Single-link
tends to produce “chained” clusters in which genes at op-
posite ends of a cluster can be very dissimilar (Anderberg,
1973). Our results are consistent with the general belief
that single-link is less desirable than complete- and average-
link. Average-link clustering may be more tolerant of outliers
than complete-link clustering, which may explain the reduced
FOM’s obtained by complete-link on this data.

Figure 4 shows that both initialization methods (random
and average-link) of k-means achieve comparable FOM’s to
CAST. Figure 5 shows that k-means initialized with average-
link results achieve lower FOM’s than average-link alone.
Therefore, the iterative k-means step after average-link im-
proves the quality of clusters. Note that k-means with
average-link initialization is a deterministic algorithm, which
is more suited for further analysis.

The Yeast Cell Cycle Data Set

Figure 2 on page 2 shows the adjusted FOM’s of four clus-
tering algorithms for 1 to 50 clusters on the 420 gene yeast
cell cycle data set. We computed the adjusted FOM’s over
all possible number of clusters (i.e., from 1 to 420 clusters).
We find that the rate of decline of the adjusted FOM’s with
respect to the number of clusters is relatively gentle above 50.
So, we believe that the range of interest is between 1 to 50
clusters. Below 25 clusters, k-means with random initializa-
tion and CAST have comparable FOM’s. Above 35 clusters,
CAST achieves a slightly lower FOM, but both algorithms are
close.

We also compared other clustering algorithms on the
yeast cell cycle data set (data not shown). Again, average-
link and complete-link outperform the single-link. The
average-link and complete-link algorithms have slightly
higher FOM’s than CAST and k-means. The k-means algo-
rithm with average-link initialization achieves lower FOM’s
than average-link.

The Ovary Data Set

Figure 6 shows the adjusted FOM’s on the ovary data set from
1 to 30 clusters. The CAST and k-means algorithms (with
both random and average-link initializations) achieve the low-
est FOM’s on this data. Both algorithms show a steep decline
of FOM’s up to around 4 to 6 clusters. The 233 clones in this
data set correspond to 4 genes. Therefore, our result suggests
the “correct” number of clusters.
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Our FOM methodology suggests that CAST and k-means
algorithms achieve higher quality clusters than other algo-
rithms. We applied CAST, average-link and k-means (with
average-link initializations) to the full ovary data set (with
all 24 conditions) to obtain four clusters. Each of the clus-
ters from CAST and k-means contains mostly clones from
one gene only, while average-link combined clones from two
genes into one cluster. This is evidence that clustering algo-
rithms with lower FOM’s produce higher quality clusters.

7 External Validation of FOM

In addition to the comments from Section 6, we will describe
experiments, based on real data, to validate the use of our fig-
ure of merit as a measure of the predictive power of clustering
algorithms. Two possible concerns about our FOM methodol-
ogy are (a) that the particular FOM chosen, while intuitively
appealing, may be a poor indicator of cluster quality, and (b)
that holding out data from one condition will result in signifi-
cant degradation in the quality of clusters found by any algo-
rithm. Success of the method on artificial data, as illustrated
in Figure 1, is useful evidence to the contrary, but such data
may only weakly reflect the complexities of real data sets.

For the rat CNS and yeast cell cycle data sets, functional
categorizations of a subset of the genes in the given data set
are known. These functional categorizations were derived
from information other than gene expression data, but the ex-
pression data sets are expected to reflect the functional cat-
egories to a certain degree. We compare clustering results
to these known functional categories and evaluate the degree
to which FOM reflects this external standard of cluster qual-
ity. Note that our cluster validation methodology is applicable
whether or not an external standard is available.

Agreement Between Two Partitions

The adjusted Rand index (Hubert and Arabie, 1985) assesses
the degree of agreement between two partitions of the same
set of objects. (Milligan and Cooper, 1986) recommended the
adjusted Rand index as the measure of agreement even when
comparing clusters across different hierarchy levels (i.e., dif-
ferent numbers of clusters). The adjusted Rand index has
the maximum value of 1, which means perfect agreement be-
tween the external criterion and the clustering result. The ex-
pected value of the adjusted Rand index in the case of ran-
dom clusters is 0. A higher adjusted Rand index means a
higher correspondence to the gold standard. In this paper we
will present results using the adjusted Rand index. Similar re-
sults were also obtained for other external indices; see (Yeung
et al., 2000b) for details.

External Validation Methodology

Given a functional categorization of genes into � classes, we
apply a clustering algorithm to all conditions except condition	

to produce � clusters. We then compute ')(+* �,	-� �  and the
adjusted Rand index of the clustering result compared against
the given functional categorization. This process is repeated
for different clustering algorithms, and (for randomized al-
gorithms) for different random trials of the same algorithm.
Finally, we plot the adjusted Rand index against ')(+* �
	.� � 
for these experiments. Recall that a high adjusted Rand in-
dex indicates high similarity of a clustering result to the given
functional categorization, and that a low figure of merit in-
dicates high predictive power. Thus, we take a downward
trend in the data as evidence for the predictive power of FOM
for comparing clustering algorithms—rising FOM tends to in-
dicate declining correlation of the clustering to the external
standard. This is exactly the behavior observed in the exper-
iments described below. In the following sections, results of
leaving out one particular experiment are shown. We investi-
gated the effect of leaving out other experimental conditions,
and found that the figures shown are typical.

External validation results on rat data

(Wen et al., 1998) categorized genes in the rat CNS data
set into four families using biological knowledge. The k-
means (with random and average-link initializations), CAST
and random algorithms were applied to 16 conditions (con-
dition F omitted) of the 112 genes in the rat CNS data set to
produce four clusters. Figure 7 shows the result of plotting
the adjusted Rand index against ')(+* � F ��  . Three trials of
k-means with random initializations are shown in Figure 7.
The intermediate results of successive iterations of CAST and
k-means are also shown. The random algorithm was repeated
30 times. Successive iterations of k-means and CAST tend to
show lower FOM’s and higher adjusted Rand indices.

As shown in Figure 7, the adjusted Rand index for random
partitions reveals the expected lack of correlation to (Wen
et al., 1998)’s categorization, whereas the most of the points
resulting from runs of the other clustering algorithms show
significantly stronger correlations. Furthermore, there is an
obvious trend in the data, with lower (better) FOM associ-
ated with higher (better) adjusted Rand index—i.e., cluster-
ings having better FOM also tend to have higher correlation
to (Wen et al., 1998)’s biologically informed categorization.
Although the adjusted Rand indices are not high in abso-
lute terms, the points plotting the adjusted Rand index ver-
sus FOM scores for random partitions are tightly clustered;
the majority of the other points lie several standard deviations
away from the mean of this control group, showing that clus-
terings of this quality in either metric are very unlikely to have
arisen by chance. Hence, we conclude that clustering results
with low FOM’s tend to have a relatively high correspondence
with the functional categorization in Wen et al. on the rat CNS
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data set.

External validation results on yeast data

Cho et al. categorized approximately 380 genes into five
phases of cell cycle. Since the 420 genes were identified
by visual inspection of gene expression data according to the
peak times of genes, we expect clustering results to corre-
spond to the five known categories of genes. The results (with
intermediate results of successive iterations of CAST and k-
means) for leaving out the first time point (

	 / F ) are shown
in Figure 8.

The general picture is the same as seen in the rat CNS
data. There is a downward trend in Figure 8. The k-means
(with random and average-link initializations) and CAST al-
gorithms show significantly lower FOM’s and higher adjusted
Rand indices than random. Again, successive iterations of k-
means and CAST tend to show lower FOM’s and higher ad-
justed Rand indices, and all are significantly better than the
random controls.

Effect of Omitting One Condition

On both the rat CNS and yeast cell cycle data sets, the ad-
justed Rand indices of clustering results using all 17 condi-
tions are comparable to those when one condition was left
out. This shows that leaving out one condition does not have
a significant effect on the quality of clustering results.

8 Conclusions and Future Work

Our Contributions: Our main contribution is not the com-
parison of specific algorithms on specific data sets, but rather
the development of a simple, quantitative data-driven method-
ology allowing such comparisons to be made between any
clustering algorithms on any data set. We present experi-
mental evidence that our methodology produces results that
are well correlated with biologically relevant external stan-
dards on real data sets. Additionally, we present prelimi-
nary but interesting comparisons of several important cluster-
ing algorithms. Our experience with the Barrett’s esophagus
and ovary data sets shows that clustering algorithms recom-
mended by our FOM methodology actually produce relatively
high quality clusters.

Summary of Comparisons: Although comparison be-
tween specific clustering algorithms is not our primary focus,
our results lead to some conclusions on the relative perfor-
mance of clustering algorithms used in this study. Our re-
sults in Section 6 confirm the general belief that average-link
and complete-link algorithms tend to be more desirable than
single-link. We also show that CAST tends to have relatively
high predictive power. We also investigated the effect of dif-
ferent initialization methods for the k-means algorithm, and
found that k-means with average-link initialization achieve

comparable FOM’s to k-means with random initialization and
CAST. Furthermore, we show that the iterative k-means step
after average-link improves cluster quality. Since CAST and
k-means with average-link initialization are deterministic al-
gorithms, the clustering results are reproducible in every run.
Based on our results, we would recommend using CAST or
k-means with average-link initialization for analysis of gene
expression data, and would recommend against using single-
link.

Limitations: Our methodology takes a predictive ap-
proach, i.e., our model assumes that the left-out experimen-
tal condition contains information from the experiments that
are used to produce clusters. In other words, our approach
compares the relative strength in predictive power of cluster-
ing algorithms given the related information in the conditions
used to produce clusters. Our approach is not applicable to all
situations: if all the experimental conditions contain indepen-
dent information, no predictive approach is possible. Despite
the limitations, we believe that our method is applicable to
many gene expression data sets. We successfully applied our
method to data sets with varying degree of dependence in-
cluding time series data (the yeast cell cycle data (Cho et al.,
1998) and the rat data (Wen et al., 1998)) and data sets with
different types of tissue samples (the Barrett’s esophagus data
(Barrett et al., 2000) and the ovary data (Schummer, 2000)).

Another limitation of our approach is that with our defini-
tion of FOM, it is not safe to compare clustering results with
different numbers of clusters or different similarity metrics.

Future Work: An interesting direction of further research
would be definitions of figures of merit that depend on the
similarity metrics used in clustering algorithms. For exam-
ple, if the goal is to capture anti-correlated genes and the ab-
solute value of the correlation coefficient is used to compute
pairwise similarities between genes, our current definition of
FOM to measure within-cluster variation is not appropriate.
Another interesting direction is to design FOM’s that depend
on the normalization methods of the data.

The nature of our methodology to leave out each experi-
ment in turn and repeat clustering makes it computationally
intensive for large data sets with lots of experiments. A direc-
tion of future work is to leave out groups of experiments at a
time for large data sets.

Another direction of future work is to compare our pre-
dictive approach to other measures of cluster validation (for
example, the within-cluster variance of all the experiments).

We compared the performance of three hierarchical and
two partitional clustering algorithms. We would be inter-
ested to compare the performance of other clustering algo-
rithms, for example, the self-organizing map (SOM) algo-
rithm (Tamayo et al., 1999). However, SOM has many tun-
able parameters in addition to the number of clusters. We
would like to investigate the stability and performance of
SOM with respect to different parameters in the future.

To summarize, clustering is a difficult problem. We believe
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that the methodology introduced in this paper for quantitative
comparison of the predictive power of clustering algorithms
will prove to be a valuable ingredient in future clustering stud-
ies.
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Appendix
Figure 9 illustrates a fictitious data set in 2 dimensional

space in which the data points are on the perimeters of three
circles. The average pairwise Euclidean distance is a possible
measure of compactness of clusters. In this example, there
are two reasonable 2-cluster results: either circles 1 and 2 or
circles 1 and 3 can be combined into one cluster. Intuitively,
combining circles 1 and 3 is appealing because they overlap.
For the clustering result with circles 1 and 3 combined, the
FOM is lower but the average Euclidean distance is higher
than the other clustering result. Even though this example is
highly contrived and does not reflect the complexities of gene
expression data, it illustrates a situation in which one might
want to consider predictive power when assessing clustering
results in addition to or instead of using measures of compact-
ness.
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Figure 9: Example illustrating merits of our FOM approach.
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