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Abstract

Proteins constitute a key class of molecular components that perform essen-
tial biochemical reactions in living cells. Whether the aim is to extensively
characterize a given protein or to perform high-throughput qualitative and
quantitative analysis of the proteome content of a sample, liquid chromatog-
raphy coupled to tandem mass spectrometry has become the technology of
choice. In this review, we summarize the current state of mass spectrometry
applied to bottom-up proteomics, the approach that focuses on analyzing
peptides obtained from proteolytic digestion of proteins. With the recent
advances in instrumentation and methodology, we show that the field is mov-
ing away from providing qualitative identification of long lists of proteins
to delivering highly consistent and accurate quantification values for large
numbers of proteins across large numbers of samples. We believe that this
shift will have a profound impact for the field of proteomics and life science
research in general.
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Data-independent
acquisition (DIA):
LC-MS/MS mode of
acquisition in which a
user-predefined set of
mass ranges is
repeatedly selected by
the MS instrument for
fragmentation

1. INTRODUCTION

Proteomics aims at characterizing the entire protein content present in a cell, tissue, or bodily fluid
at a given point in time. Depending on the scope of the biological question, a proteomic analysis
may consist of one or a combination of the following steps: identification of the proteins, including
the nature and position of any posttranslational modifications (PTMs; e.g., phosphorylation or
glycosylation); measurement of proteins’ dynamic quantitative changes between conditions (e.g.,
normal versus disease, or control versus treated samples); and study of the protein conformations
or interactions within larger protein complexes or in the context of broader biological networks
or pathways. The overarching goal of these analyses is to acquire a better understanding of the
biological processes in play in cells or organs, identify new drug targets, advance the understanding
of mechanisms of drug actions, improve diagnosis and prognosis of diseases (through biomarker
discovery), or perform better patient stratification for therapeutic treatments.

For most of these analyses, liquid chromatography coupled to tandem mass spectrometry (LC-
MS/MS) has become an indispensable technology. Based on the method of protein/proteome
characterization, the proteomic field can be subdivided into two main analytical streams: the top-
down and the bottom-up approaches. The top-down approach relies on the analysis of intact
proteins by MS and their extensive characterization through the fragmentation of intact proteins
within the mass spectrometer, followed by the measurement of these fragment ions. In contrast,
the bottom-up approach proceeds through a peptide-to-protein inference logic. The proteins
present in a sample first undergo digestion into smaller peptides through the use of specific pro-
teolytic enzymes. The mass spectrometer is then used to identify the sequence of these peptides,
usually through the generation of a diagnostic fragment ion spectrum. The identified peptide
sequences must then be (re)assigned to the proteins they originate from, through a nontrivial
process called protein inference (1). Although a priori more convoluted than the top-down work-
flow, the bottom-up approach has been increasingly adopted by the community, because the mass
range and fragmentation characteristics of peptides match more closely the MS instrumentation
capabilities than that of large intact proteins. Over the past two decades, several implementations
of data acquisition and data query strategies have been developed to allow fast, high-throughput
qualitative and quantitative characterization of the protein content of cells or organs in a relatively
straightforward manner.

In this review, we focus mainly on summarizing the current state of bottom-up MS tech-
nology applied to proteomics. We show that even within the bottom-up proteomic field, an
already overwhelming set of MS acquisition modes and data query strategies is now available.
We summarize the principles and limitations of the three main acquisition modes used in the
field: data-dependent acquisition (DDA; frequently termed shotgun, or discovery, proteomics);
targeted data acquisition, carried out mostly by selected reaction monitoring (SRM; also referred
to as multiple reaction monitoring, or MRM); and data-independent acquisition (DIA). We dis-
cuss the dimensionality and properties of the data structure resulting from each acquisition mode
and describe the different data query strategies (spectrum-centric or peptide-centric) that can
be used to explore these data sets. We show that each combination of a particular acquisition
mode and data query strategy delivers qualitative and quantitative information that differs signif-
icantly in the quality and completeness of the resultant protein quantification matrices. Finally,
we show that a new trend in proteomics research is emerging that aims to use MS as a tool for
biological exploration by delivering highly consistent protein quantification matrices across large
sample cohorts rather than just generating long lists of identified proteins for a limited number of
samples.
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2. APPLICATIONS OF MS-BASED PROTEOMICS TO BIOLOGICAL
QUESTIONS AND EXPERIMENTAL DESIGN

2.1. MS-Based Proteomics in the Omics Era

The emergence of modern technologies for the comprehensive measurement of biomolecules,
also referred to as omics technologies, has been reshaping the scope and type of biological experi-
mentation. Whereas an array of well-established protocols and methods—including, for example,
site-directed mutagenesis, Western blotting, in vitro protein assays, and in vivo cell imaging—are
used in classical experimental biology to assess the presence, sequence, function, and biochemical
mode of action of one or a few specific proteins, omics technologies focus on producing large-
scale data sets at high throughput, providing broad insights into the molecular makeup of cells
and tissues. Omics approaches generally rely on gathering “big data,” for instance, from controls
and cases in large (clinical) sample cohorts or perturbation series in systems biology studies (2);
they rely on external resources such as databases for data mining, gene ontology maps for network
analyses, orthogonal data sets for association studies, and mathematical modeling to decipher a
posteriori the molecular foundations that explain biological or phenotypic observations. The rise
of these new methods has been provokingly presented by some as the end of classical hypothesis-
driven science whereby correlation would supersede causality (3), opening passionate discussions
regarding the future of science in the big data era (4, 5).

Both small-scale mechanistic studies and data-driven omics approaches have made extensive
use of MS technology. A first set of techniques has focused on the analysis of a small number
of proteins, with the aim of extensively characterizing them. This is exemplified by LC-MS/MS
top-down strategies that can distinguish different protein variants (6) by analyzing intact proteins
[see (7) and the review by Kelleher and colleagues (8) in this volume]. For the characterization of
secondary (protein domain folds) and tertiary (global folding) protein structures and identification
of interacting partners or interfaces of protein subunits in the context of protein complexes, a suite
of structural proteomics techniques has been developed (9). Dedicated workflows have also been
devised to provide insight into subcellular protein localization and turnover (10). The interaction
of proteins with other proteins or small molecules such as drugs can be revealed by various forms
of interaction proteomics, such as affinity purification coupled to MS (11, 12). Although very
valuable, these techniques require a high level of expertise and optimization on an almost per
protein level, and their detailed description falls beyond the scope of this review.

In contrast, a range of bottom-up proteomic techniques has been developed to perform rapid,
robust, large-scale, and high-throughput qualitative and quantitative analyses of the protein com-
position of complex samples, thereby producing large inventory lists of proteins for the respective
samples. Each of these techniques has different performance characteristics that optimally match
specific applications, as described in more detail below. Moreover, as discussed throughout this
review, high-throughput, bottom-up proteomics techniques are increasingly being used to gener-
ate highly reproducible quantitative measurements of specific proteins across large sample cohorts
via targeted acquisition schemes or peptide-centric data query strategies. Ultimately, MS-based
proteomics may now enable biologists to perform hypothesis testing on hundreds or thousands
of hypotheses concurrently from suitably acquired data sets.

2.2. Challenges Underlying Bottom-Up Proteomics Studies

As mentioned above, most proteomic studies are currently geared toward the discovery or vali-
dation of differential protein regulation on a large scale in response to biological perturbations.
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Experiment type Aim Analytical challenges Typical protein quantification matrix

Discovery project Identify proteins
up/downregulated
upon perturbation
or disease state

Sample complexity
proteome subfractionation

Use of incomplete genomic
databases

Identification of protein variants

Selection of quantotypic
peptides for protein
quantification 

Conditions (10s)

Pr
ot

ei
ns

 (1
,0

00
s)

Validation project Systematically monitor
biomarkers of
interest across large
sample cohorts 

Biological sampling
reproducibility

Sample preparation
reproducibility

LC-MS/MS condition control

Conditions (100s)

Pr
ot

ei
ns

 (1
00

s)

Systems biology

Pathway perturbation

Treatment time course 

Discover proteins
up/downregulated
upon perturbation

Understand/model the
proteomic changes on
a systemic level 

Combination of above

Going beyond assay
libraries for peptide
identification 

Pr
ot

ei
ns

 (1
,0

00
s)

Conditions (100s)

Figure 1
Biological experimental design, analytical challenges, and related protein quantification matrix considerations. The heatmap
representations have been generated and modified from in-house data and are shown here only for illustration purposes. Abbreviation:
LC-MS/MS, liquid chromatography–tandem mass spectrometry.

Regulation might be reflected by changes in global protein abundance, modifications of the pro-
tein PTM stoichiometry, or changes in protein activity. These types of biological questions are
best approached through large-scale, high-throughput characterization of the protein content
of biological samples using one or several implementations of the bottom-up proteomics MS
acquisition modes (DDA, SRM, DIA). The different MS acquisition strategies and the type of
information that can be generated thereby are described more extensively in the next sections.
Here, we focus more generally on the strategies and challenges underlying discovery/validation
proteomic analyses using the example of biomarker studies (Figure 1), which aim at identifying
diagnostic factors.

In biomarker studies, an initial discovery step usually involves the analysis of a relatively small
number of well-defined samples characteristic of a given disease state (e.g., tumor versus control,
invasive versus noninvasive tumor), and the analytical emphasis is usually put on identifying as
many significantly differentially abundant candidates as possible. The first analytical challenge at
this stage concerns the complexity of and the wide range of protein concentration in these types
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Quantotypic peptide:
an amino acid
sequence obtained
from proteolytic
digestion used as a
proxy for
quantification of its
protein of origin in a
biological sample

of samples. This challenge can be addressed by performing depletion of high-abundance proteins
and/or by using fractionation or enrichment techniques that target a specific subproteome (e.g., N-
glycosylated proteins expressed at the cell surface and/or shed into the extracellular environment).

A second challenge concerns the identification of the natural peptide variants. This is becoming
of particular relevance for biomarker projects that aim at analyzing samples from large, genetically
heterogeneous human populations. As discussed more extensively in Section 3.3, the prototypi-
cal protein identification strategy in bottom-up discovery proteomics relies on spectrum-centric
database searching to assign peptide sequences to the precursors ionized and fragmented in the
mass spectrometer. These protein sequence databases are usually derived from genomic sequenc-
ing information. With current genomic sequencing community efforts and the advent of new RNA
sequencing technology, we expect to see a vast improvement in the annotation of natural single
nucleotide polymorphism (SNP) variants in protein databases. However, genomic/transcriptomic
annotations will remain of little use for the identification of PTMs of proteins, and therefore
efforts in the analytical preparation, mass spectrometric analysis, and bioinformatic strategies to
identify these PTMs will remain important for the field.

A third challenge may concern the way protein quantification is inferred from peptide intensities
in bottom-up proteomic approaches. Until now, the selection of which peptides and how many
peptides per protein to use to infer the protein quantity has been mostly based on empirical rules.
This decision may be more rationally streamlined in the future by using the recently introduced
concept of quantotypic peptides (13), which can faithfully be used to infer protein quantification,
and by applying algorithms for the automated selection of sibling peptides originating from the
same protein and with highly correlated quantification profiles across sample sets (14, 15).

From a purely statistical perspective, though, the accuracy and consistency of protein quantifi-
cation at the discovery stage has remained a relatively minor concern. Because the small number
of samples involved in this phase does not allow the predictive power of the candidates for larger
populations to be assessed in a statistically sound manner, the resulting protein quantification
matrices may tolerate a relatively large number of missing values (Figure 1). The typical result of
such discovery projects is thus a list of putative candidates that require further validation through
the analysis of larger sample cohorts to assess their predictive prognostic power in an extended
population (16). All the challenges mentioned above are generic to bottom-up approaches and
are therefore common to all MS-based proteomics acquisition and data analysis strategies that
are presented in Section 3. Until now, for the purposes of primary biomarker discovery, DDA
acquisition coupled to spectrum-centric searching strategies remains the method of choice.

The validation phase of such a project aims at obtaining the most accurate and complete data
matrix possible in which the proteins of interest are accurately and reproducibly quantified across
a large number of samples (Figure 1). Therefore, emphasis needs to be put on the analytical
parameters that may affect the consistency and reproducibility of the measurements, including the
quality of the biological sampling, the reproducibility of the proteomic sample preparation, and
the overall consistency and reproducibility of LC-MS/MS measurements. The latter requirements
match more closely the performance characteristics of targeted data acquisition schemes or those
of DIA methods combined with peptide-centric data query strategies. With the improvement
in completeness and accuracy of these protein quantification matrices, biologically significant
discoveries will be achievable.

The considerations given here in the context of biomarker discovery studies are equally appli-
cable to other types of biological projects involving the systemic analysis of peptide and protein
responses to various types of cellular perturbations (Figure 1). Bottom-up proteomics thus offers
a rich array of methods that are particularly powerful when performance profiles are chosen to
match specific output and application requirements.
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3. TECHNICAL OVERVIEW OF EXPERIMENTAL STRATEGIES
IN MS-BASED PROTEOMICS

3.1. Peptide Preparation and Separation

As introduced above, most large-scale, high-throughput proteomic strategies use the bottom-up
approach, which is based on the mass spectrometric measurement of peptides. Proteins first un-
dergo digestion into peptides, usually with the help of a specific protease, most commonly trypsin
(17). Trypsin is favored because it is robust, cheap, and relatively specific, although special care
is necessary in quantitative workflows to ensure reproducibility. For the most part, trypsin also
generates peptides in a mass range of 500 to 3,000 Da, which is optimal for chromatographic
separation and yields peptides that ionize and fragment well due to the presence of a C-terminal
lysine or arginine residue that efficiently protonates under acidic conditions. Proteases with com-
plementary cleavage specificities can be used to increase proteome coverage (18). Regardless of
the enzymatic cleavage strategy, bottom-up proteomics increases sample complexity considerably
(each protein generates many peptides) and complicates data analysis. Also, as the species identi-
fied by MS are peptides and not proteins, the amino acid sequence of the identified peptides must
be (re)assigned to the proteins from which they originate (1, 19).

Following enzymatic digestion and purification, the resulting peptide mixtures are typically
separated according to their hydrophobicity by reversed-phase, high-performance liquid chro-
matography (LC), and peptides eluting from the column are directly ionized by electrospray
ionization before entering the mass spectrometer. Higher-efficiency peptide separation has been
increasingly achieved via higher LC operating pressures, longer columns, and reduced particle sizes
of the chromatographic material (20). However, even the most highly resolving single-dimension
separations hardly reach a chromatographic peak capacity of 1,000 (21) and are thus insufficient to
separate the tens to hundreds of thousands of different peptide species generated by the digestion
of a complex proteome. This means that many peptides will coelute from the column and coionize
simultaneously, which has profound implications on the performance characteristics of the MS
data acquisition strategies as discussed in Sections 4–6.

3.2. Mass Spectrometric Analysis

The (partially) separated and ionized peptides are finally analyzed in the mass spectrometer.
It determines the mass-to-charge (m/z) ratio of intact ions (precursors) or fragments thereof
using different analyzers or combinations of analyzers (Figure 2). In contemporary proteomics
research, different instrument configurations may be used depending on the primary operating
modes (DDA, SRM, DIA). These different acquisition modes differ fundamentally in the way
precursor and fragment m/z information is registered, and in the way the resulting data structure
is analyzed (Figure 3).

In DDA, or shotgun, mode (22) an instrument is operated in iterative acquisition cycles
of intact precursor-level spectra (MS, or MS1) and fragment ion spectra (MS/MS, or MS2)
(Figure 3a). Decisions about which precursors to select for fragmentation are made in real time
by the instrument software, according to predefined criteria. The strengths and weaknesses of
this acquisition mode are discussed in Section 4. Typical instrument configurations for DDA
workflows include different Orbitrap hybrids (23) or quadrupole time-of-flight (TOF) (24, 25)
designs (Figure 2). Peptide identity is usually derived from the combined information of the
precursor mass and the corresponding fragment ion masses recorded in the MS/MS spectra,
usually following untargeted, spectrum-centric searching strategies (26) (Section 3.3).
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Quadrupole linear ion trap–orbitrap layout (Fusion™) 
Triple quadrupole layout

Quadrupole linear ion trap (QTRAP®) layout 

Linear ion trap–orbitrap layout  Quadrupole–orbitrap layout (Q Exactive™) 

Quadrupole time-of-flight layout

Time-of-flight analyzer

Precursor isolation
Fragmentation
Detection Collision cell

Linear ion trap 
Electrospray
ionization source

Focusing/
routing devices

Quadrupole 

Orbitrap 

Figure 2
Schematic overview of different mass spectrometer designs used for contemporary proteomics research. Colored squares specify where
the three most important experimental steps are executed: precursor isolation (blue), fragmentation (red ), and detection ( yellow).

For SRM (27), the most widely used targeted proteomic acquisition method, no complete
MS/MS spectra are acquired. Rather, a set of discrete, predetermined fragment ion signals is re-
peatedly recorded for each predefined peptide over time (Figure 3b). The combinations of precur-
sor m/z and fragment ion m/z pairs (typically three to five per peptide) are termed transitions. The
lists of transitions are predefined in the acquisition method. Therefore, prior knowledge about the
identity of the targeted peptides and of their fragmentation characteristics is required. The tech-
nique is best applied for consistently quantifying or validating the presence of targeted peptides,
rather than discovering new peptides/proteins. Both qualitative and quantitative information is
directly derived from the resulting fragment ion chromatographic signals of individual transitions.
For SRM, different instrument types have been used. For optimal combination of sensitivity and
quantitative accuracy, this workflow is commonly carried out on triple quadrupole instruments
or quadrupole linear ion traps (QTRAP) operated as triple quadrupoles (Figure 2). Recently,
to improve resolution at the fragment ion level, instruments in which the third quadrupole is
replaced with a high-resolution accurate mass analyzer have also been used in peptide-targeted
acquisition. These methods, called parallel reaction monitoring (PRM) (28), or MS/MSALL, now
allow recording of time-resolved MS/MS signals of predefined sets of peptides at high resolution.

DIA methods (29) combine certain aspects of both DDA and SRM methods. As with the tar-
geted acquisition mode, the instrument performs continuous time-resolved acquisition of MS/MS
signals for each precursor mass region (Figure 3c). In contrast to DDA and SRM methods, how-
ever, the aim of the DIA mode is to exhaustively acquire MS/MS spectra for any possible precur-
sor mass, regardless of the actual detection (DDA) or the presumed presence (SRM) of peptides/
precursors. Because the current instrumentation is too slow to cover the complete tryptic peptide
m/z range (typically 300–1,200) with a small precursor isolation window in the time frame of
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a typical LC separation, the compromise of the DIA method is to use a much wider precursor
isolation mass window for precursor fragmentation as compared with the 1–3 Da used in SRM or
DDA. Thus, a mixture of several precursor (peptide) ions is deliberately isolated and fragmented,
creating multiplexed MS/MS spectra consisting of fragment ion signals from different peptides.
Given sufficient acquisition speed of the instrument and appropriate window sizes, it has become
possible to cover the entire informative m/z range of a peptide mixture and to generate exhaustive
maps of all observable peptide fragments with continuous MS/MS acquisition and sufficient time
resolution of the data points (Figure 3c).

3.3. MS/MS Data Structure and Analysis Strategies

Although quite different in their MS acquisition principles and performance characteristics
(Sections 4–6), the three main bottom-up proteomic acquisition methods presented above es-
sentially rely on the same type of information for peptide identification: the sequential recording
of fragment ion signals (MS/MS) for the fragmented peptides. However, because of the differ-
ence in periodicity of these MS/MS recordings per peptide precursor, each acquisition scheme
produces a significantly different type of MS/MS data structure (Figure 3).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Data structure of the LC-MS and LC-MS/MS signals acquired in the three main bottom-up proteomic acquisition strategies:
(a) data-dependent acquisition (DDA), (b) targeted selected reaction monitoring (SRM), and (c) data-independent acquisition (DIA).
Consecutive precursor MS spectra (m/z versus intensity, also referred to as MS1 scans) can be displayed side-by-side across the LC
separation (time), resulting in a three-dimensional MS1 map of the LC-MS data. At the left of each panel, an excerpt is depicted of 17
consecutive MS1 scans (e.g., spaced by 3.5 s) spanning approximately 1 min of LC separation and a mass range of 500–525 m/z. In this
limited time-and-mass space, four precursor ions are represented, with ion signals in gray, blue, red, and green, respectively, and
different color shading for the monoisotopic peak and the first two 13C isotopes of the precursors. Note that the chromatographic
elution profiles of the peptides span approximately 7–10 MS1 scans, which supports the reconstruction of the chromatographic elution
profiles of the precursors with sufficient resolution in the time dimension. The precursor isolation schemes are represented for each
species by colored “windows.” In DDA (panel a, left), all four peptides are selected for fragmentation with 1–3 Da isolation windows,
but only once and only when the precursor signal is detected above a certain threshold (i.e., at the beginning of the chromatographic
peak). In SRM (panel b, left), only the mass ranges of two peptides of interest (blue and red ) are selected for fragmentation with 0.7–1 Da
isolation, repeatedly and with a given periodicity during the elution. In DIA (panel c, left), the complete precursor mass range is selected
for fragmentation in consecutive and contiguous steps (e.g., of 25 Da as shown here for region 500–525 m/z and adjacent regions),
repeatedly during the LC separation, regardless of the detection or presumed presence of peptides in that mass-and-time space. Note
that two peptides (blue and gray) are represented with similar precursor masses (e.g., within less than 0.5-Da difference), which results in
acquisition of MS/MS spectra for the blue peptide that contain interfering fragment ion signals from the gray peptide upon typical
DDA (MS/MS spectrum 2), SRM (MS/MS series 1), and DIA precursor isolation schemes (MS/MS spectrum 1 and blue chromatogram
traces in the bottom panel). Other interfering signals are shown in a similar manner. The corresponding MS/MS signals recorded for
each acquisition mode are shown at the right of each panel. Only the monoisotopic peak of the fragment ions is depicted (again using
gray, blue, red, and green). For DDA, the time-discontinuous MS/MS spectra recordings (also referred to as MS2 scans) can only be
comprehended using the spectrum-based (mass-intensity) dimension. For SRM, the mass-discontinuous MS/MS recordings are most
easily visualized using the chromatogram-based (time-intensity) dimension. For DIA, the time-and-mass-continuous MS/MS
recordings can be displayed side-by-side across the LC separation (time), resulting in a three-dimensional MS2 map of the LC-MS/MS
data. The DIA MS/MS data structure can be visualized and explored either by the LC-MS/MS acquisition sequence in the spectrum-
based dimension or by compiling the fragment ions’ elution profiles in the chromatogram-based (time-intensity) dimension. Note that
the chromatographic elution profiles of the fragment ion recordings in SRM (panel b, right) and DIA (panel c, right) match exactly those
of their corresponding precursors shown at the left of the panels and span the same 7–10 MS2 scans, again allowing the reconstruction
of the chromatographic elution profiles for the fragment ions with sufficient resolution in the time dimension. The color shading is
representative of the ion intensities of the peptide fragments as reported in the assay library used for the data acquisition or extraction.
Abbreviations: LC-MS, liquid chromatography–mass spectrometry; LC-MS/MS, liquid chromatography–tandem mass spectrometry;
MS or MS1, precursor mass spectrum; MS/MS or MS2, fragment ion mass spectrum; SWATH, sequential windowed acquisition of all
theoretical fragment ion spectra.
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Table 1 A unified view of LC-MS/MS data acquisition schemes and data query strategiesa

Data query strategy (26)b

Data acquisition scheme Spectrum centric Peptide centric

Data-dependent acquisition Database searching (91)
Spectral library matching (40, 92)
De novo sequencing (93, 94)
Accurate mass and time (MS1) (34, 35)
Match between runs (MS1) (33)

SALSA (MS2) (46)

Targeted data acquisition
(SRM, PRM)

SRM: not applicable
PRM: database searching

LC-peak coelution scoring (75, 76)

Data-independent acquisition Blunt/raw MS2 searching (41–43, 80)
Demultiplexed MS2 searching (30, 37, 44)

FT-ARM (MS2) (47)
SWATH MS targeted extraction (38)

aAbbreviations: FT-ARM, Fourier transform-all reaction monitoring; LC-MS/MS, liquid chromatography-tandem mass spectrometry; MS1, precursor
mass spectrum; MS2, fragment ion mass spectrum; PRM, parallel reaction monitoring; SALSA, scoring algorithm for spectral analysis; SRM, selected
reaction monitoring.
bReference numbers are shown in parentheses.

For example, the very extensive but discontinuous-in-time nature of the MS/MS in DDA mode
results in data where the MS/MS spectra mainly serve as a central scoring dimension and query
unit for the peptide identifications (Figure 3a). Indeed, the vast majority of the community using
the DDA acquisition mode analyzes their data via untargeted spectrum-centric database searching
strategies. Alternatively, the continuous-in-time precursor isotopic patterns present in DDA MS1

data can also be used to infer the identity of precursors for which MS/MS spectra have not been
acquired or identified using database searching. This inference can be performed using accurate
mass and time (AMT) tags, coordinates of the precursor chromatographic traces to transfer the
peptide identification across LC-MS/MS runs upon MS1 map alignments (30–33), or extensive
AMT coordinate libraries (34, 35). It is important to note, however, that those strategies that solely
rely on retention time and precursor mass coordinates in MS1 maps may not provide the level
of identification confidence achievable by peptide-centric query strategies that score multiple,
independent coeluting MS/MS fragment ion traces from targeted SRM/PRM or DIA data, and
therefore require special care when handling false discovery rate (FDR) estimation (36).

Conversely, the continuous-in-time signal acquisition scheme of SRM that does not generate
complete MS/MS spectra can almost exclusively be analyzed using peptide-centric query strate-
gies in the chromatogram dimensionality (Figure 3b). DIA schemes that are continuous-in-time
and in the MS/MS dimension are equally amenable to spectrum- and peptide-centric query strate-
gies in any dimensionality (Figure 3c and Table 1). As a side note, it should be mentioned that
the MS/MS chromatogram dimensionality in SRM and DIA naturally also embeds MS-related
information such as the fragment ion intensity (in SRM) or the monoisotopic fragment ion mass
accuracy and fragment charge state (in DIA).

On top of the dimensionalities used to represent the data, it is important to distinguish two
different types of data query strategies that can be applied, depending on whether the data is
directly used as a source of query to identify peptides or whether biological hypotheses (i.e., the
existence of a given peptide species) are used for interrogating the data. In the literature, these
approaches were sometimes referred to as untargeted (37) or targeted data analysis (38) strategies.
However, to avoid confusion of the latter with the “targeted” MS data acquisition schemes (SRM
and PRM), we have adopted the terminology of peptide-centric used by MacCoss and colleagues
(26) for the rest of this review, whereby the peptide is the starting query unit used to interrogate
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MS/MS spectrum:
unit recording of the
mass spectrometer
acquiring fragments of
analyte (peptide)
precursors following a
fragmentation event
(e.g., collision-induced
dissociation); also
termed MS2, or
fragment ion,
spectrum

the data. In contrast, strategies that start from mass spectra as a query to infer peptide sequences
are referred to as spectrum-centric (26). With this formalism of data acquisition and data query
strategy, essentially all MS and MS/MS data analysis methods can be presented in a unified view
(Table 1).

In essence, the spectrum-centric data query strategy usually considers MS/MS signals to be the
central unit used to identify the peptide sequences uniquely associated with each spectrum. The
peptide identity can be inferred by (a) matching the experimental fragment ion signals against in
silico generated MS/MS spectra from peptide sequence databases (Figure 4a), (b) comparing the
experimental fragmentation patterns to those of spectral libraries containing MS/MS information
of previously identified peptides, or (c) trying to decipher de novo the experimental fragment ion
series without the help of databases or libraries—or by any combination of the three approaches.
In spectrum-centric strategies, MS/MS signals may be raw MS/MS spectra from DDA (39, 40) or
DIA (41–43) data sets used directly for querying databases, or heavily preprocessed MS/MS signals
originating from demultiplexed DIA MS/MS data spectra (37, 44, 45). Note that, in contrast to
DIA, the discontinuous-in-time nature of MS/MS spectra acquired in DDA mode does not allow
reconstitution of the chromatographic elution dimension of the MS/MS signals. In the absence of
orthogonal information, it is therefore almost impossible with DDA data to confidently determine
whether the fragment ion signals recorded in a MS/MS spectrum are indeed derived from the
intended peptide precursors or from interfering fragments from coisolated precursor species, or
whether they are just noise (Figures 3a and 4a).

Conversely, the peptide-centric query strategy constitutes a complete change of paradigm for
the data analysis. In essence, this strategy starts from a list of hypotheses (Is this peptide present
in my data?) and interrogates the acquired data sets for the presence of the peptides of interest.
Peptide-centric query strategies have been attempted on individual MS/MS spectra with DDA
(46) or DIA data sets (47) but are probably most clearly exemplified by the use of fragment
ion chromatographic traces extracted from MS/MS DIA maps (38) (Figures 3c and 4b). For
the latter method, the MS/MS signals have to be acquired repeatedly for each precursor, and
with a frequency that permits reconstitution of the chromatographic peak shape with sufficient
resolution (typically 8–10 MS/MS scans are acquired across a chromatographic peak). The peptide
identification can then be inferred by assessing whether a series of chromatographic traces of
fragment ions expected for a given peptide (e.g., known from prior experimental observations)
do indeed exactly coelute with the expected relative intensities and at the expected retention time
(Figure 4b). This scenario is very similar to the way that the presence of a peptide is confirmed
in SRM targeted data acquisition. This approach warrants intrinsically consistent identification
characteristics for the analysis, and in many ways a more biologically oriented manner of querying
LC-MS/MS data structures.

3.4. Quantitative Proteomics

Beyond identification, it is important in most biological studies to know the quantity of a protein
(and by proxy, a peptide) present in a sample. In bottom-up proteomics, peptide quantities are
typically assessed from the signals of the corresponding precursors, either in their intact form using
MS1 signals or from one or several of their fragments using MS/MS data. Unfortunately, equal
amounts of different peptides do not yield equal signals in the mass spectrometer as a result of
sequence-dependent differences in ionization efficiencies. Moreover, because multiple peptides are
concurrently ionized in LC-MS/MS measurements, peptides that enter the ion source at the same
time might mutually influence their ionization efficiencies through a process called ion suppres-
sion. To overcome or at least minimize these intrinsic limitations, different quantitative proteomic
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workflows have been established to compare peptide levels across samples of interest (48). In one
approach, samples are labeled either metabolically or chemically (49) with different stable isotopes
or spiked with differentially isotopically labeled forms of the peptides of interest. Because the var-
ious isotopomers have negligible differences in ionization and are subject to near-identical ion
suppression effects, these labeling strategies provide the highest accuracy for peptide quantifica-
tion. Assuming that the labeled references are present in the same amount in all the samples, en-
dogenous peptide abundances can be assessed as the ratios of endogenous peptides to their labeled
isotopomers. Alternatively, peptide amounts in different samples can also be compared in the ab-
sence of dedicated labeled references (label-free quantitation), by directly comparing their MS1 or
MS2 signals across samples. This requires more sophisticated normalization and chromatographic
alignment procedures to compensate for retention time shifts and to avoid mismatching peptide
abundances across runs but offers higher versatility when comparing large numbers of samples.

In addition to quantitative accuracy, quantification consistency and completeness are other
fundamental aspects to consider. Also, in this case, isotope-labeling strategies provide the highest
performance, but the number of isotopomers that can be mixed and measured in a single injection
is limited. For label-free approaches or when sample numbers are beyond the limit of multiplex-
ing, consistent peptide identification is the key to complete results, making the choice of data
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acquisition method and the query strategy across large sample sets particularly important. Both
quantification accuracy and quantification consistency must be taken into consideration depending
on the specific aim or stage of a biological project, with an emphasis on accuracy at the discovery
phase and consistency at the validation phase (Figure 1).

4. DATA-DEPENDENT ACQUISITION (SHOTGUN) WORKFLOWS

The DDA method continues to dominate the proteomics field as the best established strategy
to generate information about the composition of a complex (peptide) mixture in a relatively
straightforward manner, and on diverse instrument platforms. The motivation to develop such an
approach is clear: For a reasonably complex sample, a large number of compounds will be simulta-
neously ionized as they elute from the LC column, in many cases overwhelming the instrument’s
sequencing capabilities. Therefore, the capacity to select precursors for fragmentation and acquire
MS/MS spectra (Figure 3a) should be directed to the analytes that display the strongest signals
and thus have the highest chance to yield successful identification.

The foundations of the DDA method lie in the 1990s, when it became possible to program
mass spectrometers to execute specific selections in real time (50). Since then, the capabilities of
instrument control software have expanded substantially, most noticeably due to the possibility
of determining charge states of ions in real time in high-resolution instruments. Typically, the
instrument operator can now select ions for fragmentation based on the abundance rank in the
MS1 spectrum, the absolute signal intensity, and the charge state of the precursor.

Charge state preselection can be used to exclude singly charged ions that are frequently con-
taminants or, if they are peptides, are more difficult to fragment than their multiply charged
counterparts. Similarly, highly charged precursors that yield spectra that are difficult to interpret
are also frequently excluded. Furthermore, ions that have been selected for fragmentation can
be placed on a dynamic exclusion list to prevent immediate reselection of the same ion, or the
sequencing of ions with a particular m/z can be generally prevented by inclusion or exclusion

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
Spectrum-centric (untargeted) and peptide-centric (targeted) query modes of fragment ion (MS/MS) data and related decoy scoring
considerations. Two strategies of MS/MS data query are illustrated: (a) the spectrum-centric query strategy of data-dependent
acquisition and (b) the peptide-centric query strategy of data-independent acquisition, using the chromatogram-based dimensionality.
With the (a) spectrum-centric query approach, each spectrum is assessed independently against a subset of peptide sequences retrieved
from the database within the user-defined precursor mass tolerance (e.g., the MS2 spectrum 2 recorded for the blue peptide of Figure
3a will trigger a search at its illustrative precursor mass 505.555 ± 0.05 Da, retrieving the amino acid sequences PEPTID and
SREVER from the target database and the corresponding reversed amino acid sequences DITPEP and REVERS from the decoy
database). In general, only the highest-scoring match (e.g., PEPTID) is reported as peptide identification. With the (b) peptide-centric
query approach, each precursor of interest from the assay library triggers the extraction of an independent series of fragment ion
chromatograms within the expected peptide elution (time) window. The extraction of the fragment ion chromatograms of PEPTID
yields three possible peaks within the time window: one peak encompassing the coelution of the six fragment ion traces (�), and two
peaks having only one fragment ion trace each (� and�). Each instance of coeluting traces is scored as a potential identification
candidate. In general, only the highest scoring match (here, the six-member fragment ion peak group�) is reported as peptide
identification. To assess the likelihood that six random chromatographic ion traces would coelute by chance in that MS/MS-and-time
space, one decoy assay for each peptide assay is extracted. The reversed decoy amino acid sequence DITPEP yields four peak group
candidates (�–�); the one scoring highest (�) is reported as the assay identification. The distribution of the highest-scoring target
and decoy peak groups (b, right) then provides an estimate of the false discovery rate, after proper correction for multiple testing and
upon rescaling the decoy scoring distribution to that of the low-scoring (false) targets (red curve). PEPTID and SREVER are two
illustrative amino acid sequences that would be retrieved from the targeted database for a mass of 505.555 ± 0.05 Da; DITPEP and
REVERS are the corresponding reversed (decoy) amino acid sequences. Abbreviations: MS or MS1, precursor mass spectrum; MS/MS
or MS2, fragment ion mass spectrum.
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lists. The instrument is able to adjust fragmentation conditions (activation energy or even the
fragmentation method) as a function of these parameters (51).

Overall, the most decisive parameter that determines the information content of a shotgun
proteomics experiment is the abundance rank. It became apparent early on that the automated
precursor selection introduces an element of stochasticity (randomness), because the appearance
of a precursor ion spectrum at a given chromatographic retention time will never be absolutely
identical between each run, due to variability in the chromatographic separation (52). Therefore,
it cannot be guaranteed that the same precursors will be selected for fragmentation, even when
the same sample is analyzed repeatedly. The increasing acquisition or sequencing speed of new
instruments, now reaching up to 20 Hz in some cases (53, 54) has mitigated this undersampling
problem to some extent, but the overlap between replicates still does not reach 100%.

Simply increasing the sequencing speed of instruments alone will not solve the problem. As
pointed out several years ago (55), the seemingly straightforward step of precursor isolation causes
complications in complex peptide mixtures, such as unfractionated cell lysate, when more than
one peptide may frequently be isolated at the same time. Precursor isolation in modern mass
spectrometers used for proteomics is performed in either a quadrupole (or similar multipole)
device or a linear ion trap. Although the isolation window can be adjusted for both devices, it
cannot be set infinitely small, because of isolation efficiency and potential sensitivity issues. In a
typical DDA setup, isolation widths may range from 1 to 3 m/z, which results in the isolation
of the monoisotopic peak of the target ion and (some of ) its isotope peaks, but potentially other
coeluting peptides with a similar m/z (Figure 3a, blue and gray peptides) as well. If such coeluting
peptides are isolated and cofragmented, this results in a chimeric spectrum with contributions from
several precursors (Figure 3a, MS/MS spectra 1 and 2). This effect can be seen as an involuntary
multiplexing, in contrast to the deliberate multiplexing in the DIA methods discussed in Section 6.

The implications of this effect are twofold: First, the identification of peptides based on their
MS/MS spectra becomes more difficult because, for example, many database search engines use
the number of unassigned fragment ion peaks (which increases for chimeric spectra) for scoring.
In current DDA workflows, typically fewer than 50% of all acquired MS/MS spectra are assigned
to a peptide sequence. This attrition rate may be caused by such coisolation events but is, of
course, also the result of insufficient spectral quality due to low signal intensity and the presence
of unexpected modifications. Recently, some free (56, 57) and commercial [e.g., Mascot (58) since
version 2.5] search engines have introduced features to identify multiple peptides from a single
MS/MS spectrum, although this feature may have implications for error models. At a fundamental
level, it challenges the “one MS/MS spectrum = one peptide” dogma of conventional DDA and
will require further adaptation of computational workflows.

The second implication concerns quantification methods based on isobaric tags, such as iTRAQ
(isobaric tags for relative and absolute quantification) or TMT (tandem mass tags) (59), for which
reporter ions observed in the MS/MS spectra are used for relative quantification. In such a case,
coisolation of unrelated precursors may result in a distortion of the quantitative ratios because of the
contribution of more than one peptide to the reporter ion abundances (60). Because most protein
levels are expected to remain unchanged in a typical quantification project, cofragmentation of one
peptide that changes in abundance is likely to occur with another peptide that is unchanged under
the same conditions, which will result in a dynamic range compression, that is, larger changes
will be attenuated. Various approaches to overcome this problem have been proposed, such as
extended fractionation (61) or dedicated instrument acquisition modes (62–64), but they come
with the penalty of increased measurement times or losses in sensitivity.

Although identification of the same peptides in all runs is not necessarily a prerequisite for
protein-level quantitation, because quantitative information of many peptides is combined, the
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problem becomes more severe for peptides carrying PTMs or resulting from SNPs. In such cases,
the relevant information is obtained at the peptide level and variability cannot be compensated
for by the combination of sibling peptides originating from the same protein. For PTMs that
can occur on multiple residues within the same peptide, such as phosphorylation, the situation
becomes especially complicated because consistency on the level of the sequence identity and the
modification site localization (65) is required.

The abovementioned limitations of shotgun MS pose considerable challenges for proteomics
applications in medicine and systems biology, where large sample cohorts need to be analyzed
qualitatively and quantitatively in a robust manner. To achieve consistency in such large data
sets, a further refinement of data acquisition and, particularly, data analysis strategies is required.
The emergence of alternatives to the DDA method may provide a preferential solution to these
research questions, as discussed in Sections 5 and 6.

5. TARGETED-ACQUISITION WORKFLOWS

In 2012, targeted proteomics was named method of the year by the journal Nature Methods. This
recognizes several achievements of the technology, including the demonstration of unprecedented
quantification accuracy and reproducibility for proteomic samples analyzed by SRM in a cross-
laboratory study (66), a result that DDA has not managed to achieve so far (67). As such, targeted
data acquisition has indeed become the method of choice for the validation of protein candidates in
independent, potentially large sample cohorts that were originally detected by high-throughput,
discovery-type DDA analyses (68, 69). To achieve the required accuracy and reproducibility,
the mass spectrometer does not select precursors for MS/MS fragmentation in real time during
the chromatographic separation. Rather, the instrument is preprogrammed to acquire consis-
tently and repeatedly the same set of fragment ion signals for a predefined list of target peptides
(Figure 3b). This systematic acquisition of transitions over the whole peptide elution and the
resulting chromatogram-based data structure (Figure 3b) are the key concepts that underlie the
consistent peptide quantification across large sample sets in targeted proteomics. The fact that
relatively few predetermined peptides are targeted per analysis constitutes the biggest strength
(consistent quantification) but also the biggest limitation of the method. First, the design of tran-
sition lists requires extensive preliminary work in terms of assay generation before the SRM
measurement can even be started (70). Parameters to be optimized include selection of both the
most promising peptides per protein and the most intense transitions, optimization of instrument
parameters such as collision energy and transmission settings to yield maximum sensitivity, and
determination of the chromatographic retention time (71). The latter can be exploited in so-called
scheduled SRM methods in which transitions for particular peptides are only monitored close to
their expected elution time and not during the whole run, thereby maximizing the list of candi-
dates to be monitored in one analysis (72). The benefit of this elaborate optimization procedure
is the excellent sensitivity of SRM, which will likely continue to be the most sensitive acquisition
method in the coming years.

During assay generation, one of the most significant (and probably most widely overlooked)
problems arises upon deciding which peptides of a particular protein to select to obtain a faithful
representation of protein abundance. Although common to all other bottom-up proteomic ap-
proaches, this question is particularly critical for targeted acquisition strategies that can typically
only monitor a few peptides per LC-MS/MS run. In practice, most targeted acquisition proteomic
workflows therefore focus on monitoring only a few proteotypic peptides for the protein of inter-
est. These peptides are usually selected based on empirical rules such as being fully tryptic, doubly
charged precursors of medium length that do not contain amino acids prone to modification
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Proteotypic peptide:
an amino acid
sequence originating
from one unique
protein form during
proteolytic digestion
of a biological sample,
confirming the
protein’s existence and
identification

(e.g., oxidation) (73). These criteria, however, do not preclude the possibility that selected protein
regions will unexpectedly yield peptides with missed cleavage sites, peptides resulting from unspe-
cific cleavage events, or peptides with unanticipated natural or artifactual modifications. SRM of
all possible proteolytic forms of the peptides selected for a given protein has been used in specific
biological applications (74), but it simply remains impractical for targeted acquisition workflows
on a large scale. In such cases, targeted acquisition should select peptides based on quantotypic
criteria rather than proteotypicity alone (where quantotypic qualifies peptides that can faithfully
be used for reliable protein quantification purposes) (13).

The two-stage filtering operated on the precursor and fragment ion levels by the first and
third quadrupole, respectively (in the widely used triple quadrupole mass spectrometer), is often
presented as granting a very high level of specificity for the transition measurements in SRM acqui-
sition. However, in complex sample matrices, interfering transition signals may still be observed
at relatively high frequency (blue peptide in Figure 3b). As mentioned above, quadrupoles usually
cannot transmit ions with isolation widths below 0.7–1 Da without losing sensitivity. Recently,
new acquisition strategies have replaced the third quadrupole with a high-resolution accurate mass
analyzer (either Orbitrap or TOF) to improve mass resolution and accuracy for fragment ion de-
tection, while retaining the targeted acquisition concept. These methods (PRM or MS/MSALL)
also allow users to record time-resolved MS/MS signals of predefined sets of peptides. Contrary to
SRM, however, the methods record complete MS/MS spectra of the precursors that are monitored
consistently over the elution profile of the peptide. In practical terms, the width of the precursor
isolation window is the major difference between these new methods and the DIA acquisition
scheme presented in Section 6. However, even in recently published applications of PRM, inter-
ferences are still observed despite the high-resolution accurate mass detection of fragment ions.
Analogous to the MS/MS specificity frontier faced by DDA in complex sample matrices, the faster
and more sensitive instrumentation of SRM, PRM, and related methods will challenge the “one
assay = one peptide” dogma of targeted data acquisition by producing ultimately more and more
multiplexed MS/MS data signals.

For all these methods and in the large majority of cases, peptide identification is still carried out
by visual inspection of the SRM/PRM data using tools such as Skyline (75). Tools have also been
developed to automate chromatogram peak scoring of fragment ion groups in a high-throughput
manner when manual inspection becomes impractical, such as beyond dozens or hundreds of runs
(76). The high-throughput identification of the targeted peptides and their confidence assessment
using decoys and FDR estimation are discussed more extensively in the context of the peptide-
centric, chromatogram-based analysis of DIA data sets in Section 6.

In summary, although targeted acquisition strategies can now offer the peptide identification
and quantification consistency that the DDA mode was lacking, the relatively small number of pep-
tides that can be monitored per run has encouraged the development of other strategies that would
combine the consistency in quantification of SRM with the throughput of DDA identification.

6. DATA-INDEPENDENT ACQUISITION WORKFLOWS

By definition, DIA aims at acquiring the time-resolved complete MS/MS sequencing data for all
possible mass ranges, independently of the presumption or detection of precursors. Because of
the undersampling limitations of DDA discussed above and the limited number of peptides that
can be monitored by SRM, a vast majority of peptides from biological samples may still evade
MS/MS acquisition and identification, even on the fastest instrumentation in either mode. In that
sense, DIA is the only acquisition method that can be considered to generate permanent digital
maps or MS/MS records of all the analytes in a biological sample that are above the detection
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limit of the respective instrument. To achieve this performance, however, DIA requires opening
up the precursor isolation windows to yield a cycle time (the time required for the instrument to
cover the whole intended mass range with adjacent precursor ion selection windows) suitable to
provide sufficient MS/MS data points in the time domain (e.g., with eight sampling points per
chromatographic peak). Increasing the width of the precursor isolation window is a fundamental
violation of the “one MS/MS spectrum = one peptide” dogma of DDA and SRM. Therefore,
to ensure the meaningful analysis of DIA data sets, many concepts originally endorsed by the
proteomics community needed to be reconsidered.

Early implementations of DIA were proposed several years ago (41, 42, 77–79) when fast-
scanning instruments capable of delivering fragment ion data with high mass accuracy were not
readily available. High-accuracy fragment ion data are important for DIA methods because they
greatly improve the specificity for deconvoluting highly multiplexed fragment ion spectra (38,
47). Another equally instrumental factor for the successful implementation of the method was
the introduction of rectangular precursor isolation windows (38). In DDA and SRM, a Gaussian
isolation function centered on the precursor is beneficial for improving the specificity of the
precursor selection, but box-shaped isolation windows are preferred in DIA to limit the quantitative
attrition in precursor filtering at the edges of the isolation windows.

Compared with DDA and targeted methods, improvements in instrumentation regarding scan
speed (to cycle faster through smaller isolation windows) and dynamic range (to detect signals of
cofragmenting peptides of vastly different intensity) will likely have the highest impact for DIA. It
is foreseeable that at some point, DIA isolation widths may become as small as a few daltons, which
will bring DIA in the same precursor selection and fragment ion specificity range as DDA, SRM,
or PRM, but without missed precursors. Eventually, this will result in the ultimate convergence of
the DDA, targeted, and DIA acquisition modes, and eventually only the data dimensionality and
the data query strategy that is applied (spectrum-centric or peptide-centric) will make a difference,
because all MS/MS spectra will have to be considered as chimeric or multiplexed at some level
anyway. And, because complex samples will generate a high fraction of multiplexed peptides even at
that stage of instrument performance, it can be expected that such data sets will be most efficiently
analyzed by peptide-centric querying strategies.

Despite the highly convoluted multiplexed nature of the MS/MS spectra acquired in DIA mode,
the data sets were initially analyzed via spectrum-centric approaches using database searching or
spectral library matching strategies (41–43, 80) (Table 1). Taking advantage of the continuous-
in-time dimensionality of these MS/MS data sets and clustering fragment and precursor ion
signals based on their chromatographic peak shapes, the first breakthrough in DIA analysis was
achieved (44, 45) (Table 1). Although producing highly preprocessed, demultiplexed pseudo-
MS/MS spectra, the analysis was still performed in a spectrum-centric manner using database
searching. In 2012, the Aebersold group (38) introduced targeted data extraction as a prototypic
peptide–centric, chromatogram-based strategy to analyze DIA data sets [sequential windowed
acquisition of all theoretical mass spectra (SWATH) MS] (Table 1). In short, the approach relies
on libraries of assays based on bona fide MS/MS spectra that uniquely identify the query peptide
(81) to extract fragment ion traces for precursors of interest in the DIA data sets, and on assessing
the quality of their coelution to infer the peptide identification. This reduces the highly convoluted
DIA MS/MS maps to a SRM-like data structure (Figure 3c) with essentially the same specificity
and reproducibility characteristics (38), but with the added advantage that basically any peptide
of interest can be queried in a peptide-centric manner ad libitum from the DIA data sets after the
data have been acquired.

It is important to emphasize that the SWATH MS peptide-centric approach differs significantly
from the DDA spectrum-centric query strategies in several aspects (26). First, the knowledge of
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the accurate mass of the precursor becomes almost irrelevant for the method and is only used to
determine the swath of isolation windows from which fragments are extracted. Second, the peptide
identification does not rely on MS/MS-database matches but is solely achieved by assessing the
chromatographic characteristics of the extracted fragment ion signals (coelution, peak shape,
relative intensity correlation with the assay library or spiked-in isotopically labeled standard), as
in SRM, plus a few other fragment ion scores exclusive to the MS/MS-continuous nature of DIA
(monoisotopic fragment m/z, charge state, mass accuracy). In other words, it does not matter
if several precursors coelute and cofragment in a large isolation window into chimeric MS/MS
spectra. As long as each query precursor has a unique set of fragment ions near that retention time,
the qualitative assessment of their coeluting fragment ion chromatographic profiles is sufficient
for their identification.

Although visual inspection can still be used for peptide identification upon SWATH MS
peptide-centric extraction, the large numbers of assays that can be queried from a single data
file (several tens of thousands at present) are best analyzed using automated algorithms that per-
form fragment ion chromatogram peak scoring and assess the confidence of the identification
in an objective and high-throughput manner. Retrospectively, the mProphet algorithm devel-
oped for the high-throughput analysis of large SRM data sets (76) can be seen as the first purely
chromatogram-based, peptide-centric identification tool to have paved the way for the DIA tar-
geted extraction strategy. Since then, other automated tools have been developed (37, 82, 83)
that show impressive levels of agreement in terms of peptide identification and quantification (P.
Navarro, J. Kuharev, L.C. Gillet, O.M. Bernhardt, B. MacLean, H.L. Röst, S.A. Tate, C. Tsou, L.
Reiter, G. Rosenberger, Y. Perez-Riverol, A.I. Nesvizhskii, R. Aebersold, S. Tenzer, manuscript
submitted).

As high-throughput, peptide-centric data query strategies are relatively new, we reemphasize
here some key differences as compared with shotgun database search strategies, especially regard-
ing the use of decoys for FDR estimation in SWATH MS DIA peptide-centric extraction mode
(Figure 4). In essence, decoys are nonnatural peptides generated, for example, by reversing the
amino acid sequence of all entries in a sequence database. During the identification step, the search
tools are agnostic about whether they are testing a true or a decoy peptide sequence. Decoys were
originally introduced in bottom-up proteomics because the raw scores of peptide-spectra matches
to genuine (target) protein sequences alone were not sufficient to control confidence in peptide
identification during database searches (84).

In spectrum-centric approaches, the peptide confidence is derived from scoring the quality of
the match between a measured MS/MS spectrum (experimental data) and individual correspond-
ing, theoretically computed target or decoy spectra (Figure 4a). Because the search engines are
agnostic, whether they match the experimental spectrum using an actual target or a computed
decoy spectrum, the frequency with which a decoy spectrum is assigned under specific search
conditions is used to calculate the FDR of a particular data set. Importantly, with the spectrum-
centric strategy, the number of retrieved forward and reverse database sequences for a MS/MS
spectrum match is always equal for each precursor-MS/MS spectrum searched and increases with
the size of the database and the search space (affected by the choice of search parameters such as
variable modifications or precursor mass tolerance), but not with the number of MS/MS spectra
that are searched. The decoys thus typically provide an estimate of the quality of a spectrum or the
chance of a random match between a measured MS/MS spectrum and an in silico database-derived
spectrum within the defined search space (Figure 4a).

In contrast, the peptide-centric approach assesses the likelihood that a particular peptide is
present in the sample, for example, by identifying and scoring the chromatographic peak that
is most representative of the peptide fragment assay used for the targeted extraction. As with
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spectrum-centric strategies, the score of the raw chromatogram peak group is not sufficient to
define a threshold to assign a given FDR to peptide identifications. To achieve this, nonnatural
decoy assays are generated (e.g., by reversing the amino acid sequence of natural peptides) and
processed, in our case, by targeted extraction and chromatographic peak group scoring exactly like
the target assays in the same data file (Figure 4b). Because it is not expected that all transitions
of a decoy assay coexist in an actual sample, the decoys provide an estimate of the local sample
background complexity, that is, of the likelihood of getting coeluting fragment ion traces by
chance in a given matrix. Importantly, with this approach the number of decoys increases with the
number of tests/targets queried. Therefore, with peptide-centric approaches, it is not statistically
correct to estimate the FDR in targeted extraction approaches by naive counting of decoys as in
the spectrum-centric strategy, unless appropriate corrections for multiple testing or proper decoy
distribution scaling are made (Figure 4). This can be done by using the Storey & Tibshirani (85)
approach, as was suggested in the original mProphet paper (76), or by correcting for the fraction
of false targets, similar to correcting for the percentage of incorrect targets as described by Käll
et al. (86) for DDA data (Figure 4b).

From the quantification perspective, peptide-centric chromatographic extraction of DIA
data sets was shown to achieve peptide quantification consistency and accuracy similar to that
of SRM, intermediary sensitivity between SRM and MS1 label-free quantification, and 4 logs
of intrascan dynamic range (38). This enables the consistent identification and quantification of
several thousands of proteins in complex samples (87, 88). Because it does not suffer from the
undersampling issues of DDA or SRM, the method enables production of quantification matrices
for a large number of proteins and across a large number of samples with minimal missing values
(Figure 1), enabling experimental biology to interrogate big data by testing relevant hypotheses
with unprecedented accuracy.

Lastly, it should be noted that the large-scale, peptide-centric query of DIA data is a quite
recent strategy compared with DDA spectrum-centric database searching, which has evolved over
more than 20 years. The strategy is now facilitated by optimized protocols for spectral library
generation (81), the availability of extensive organism-specific assay libraries (87, 89, 90), and
automated data extraction and scoring tools (37, 82, 83).

7. CONCLUDING REMARKS

The past few years have seen several transitioning phases for MS-based proteomics. First, with im-
proved sequencing speed and mass accuracy of recent instrument generations, DDA has emerged
as a rapid and relatively straightforward method to generate large lists of protein identifications.
Second, with the advent of SRM targeted acquisition, proteomics has gained visibility with regard
to quantification consistency and reproducibility. Now, with the combination of near-complete
MS/MS maps acquired by DIA methods together with peptide-centric data query strategies, the
field has the opportunity to bridge the gap between the number of protein identifications and
the consistency and accuracy of those quantifications. By producing highly consistent and near-
complete protein quantification matrices, the technology can now enable experimental biology to
explore the depth of the proteome with unprecedented consistency. As commented above, it is
probably in DIA mode that improvements in instrumentation will have the highest immediate im-
pact, and in the foreseeable future, it is likely that high-resolution accurate mass MS/MS maps will
be acquired with small precursor isolation windows in DIA mode. The time- and mass-continuous
data structure of the MS/MS maps from DIA data sets will then offer unprecedented opportunities
to query the data in ways that were just not possible before. For example, moving away from the
spectrum-centric and database-searching dogma, the biologist can now query for the existence
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of pretty much any possible peptide of interest (including splice forms, SNP variants, or those
carrying a PTM) in DIA maps. In the context of personalized medicine where protein database
information will remain de facto incomplete, this opportunity will potentially expand the identi-
fication of new personalized markers beyond what was possible using current standard methods.
Combined with the quantification consistency offered by the DIA peptide-centric strategy, this
will hopefully open MS-based proteomics to a new era and may ultimately reconcile big data and
hypothesis-testing biology.
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