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In real tasks, it is usually the case that a better classification performance can be obtained when a good
distance metric is used; therefore, distance metric learning has attracted significant attention in the past
few years. Typical studies of distance metric learning concern about how to construct an appropriate dis-
tance metric that is able to separate training data points from different classes or satisfy a set of constraints
(e.g., must-links and/or cannot-links). It is noteworthy that this task becomes challenging when there are
only limited labeled training data points and no constraints are given explicitly. Moreover, most existing
approaches aim to construct a global distance metric that is applicable to all data points. However, different
data points may have different properties and may require different distance metrics. We notice that data
points in real tasks are often connected by physical links (e.g., people are linked with each other in social
networks; personal webpages are often connected to other webpages including non-personal webpages), but
these link information has not been exploited in distance metric learning. In this paper, we develop the
pairwised specific distance (PSD) approach that exploits the structure of physical linkages and in partic-
ular captures the key observations that non-metric and clique linkages imply the appearance of different
or unique semantics, respectively. It is noteworthy that rather than generating a global distance, PSD will
generate different distances for different pairs of data points; this property is desired in applications in-
volving complicated data semantics. We mainly present PSD for multi-class learning and further extend it
for multi-label learning. Experimental results validate the effectiveness of PSD, especially in the scenarios
where there are very limited labeled training data points and no explicit constraints are given.
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1. INTRODUCTION
In real tasks, it is usually the case that a good classification performance can be ob-
tained when the distances between instances are appropriately estimated. For exam-
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Fig. 1. An example of multi-class problem with linkages: (a)(b)(c) and (e)(f)(g) form two cliques, whereas
(c)(d)(e) form a non-metric linkage (Images are from USPS dataset1).

ple, in content-based image retrieval (CBIR), the retrieval quality is highly dependen-
t on the similarities or distances measured between images. Besides, some popular
distance based classifiers such as the k-nearest-neighbor (kNN), usually conduct clas-
sification based on the calculated distances between the given test instance and all
labeled instances. The instance relationship is usually constructed based on the data
attributes; however, it is important to note that such relationships may be insufficient
for classification in many applications. For example, pattern (d) from USPS data set1

in Fig. 1 could not be easily distinguished because it is almost equally close to both
the class ’2’ and class ’7’. Moreover, the relationship between patterns (c), (d), and (e)
shown in Fig. 1 is non-metric (i.e., (c) is similar to (d), (d) is similar to (e), but (c) is not
similar to (e)); as indicated in the study [Zhang and Zhou 2009], such non-metric prop-
erties may lead to inappropriate conclusions. Distance metric learning [Yang and Jin
2006], which attempts to learn an appropriate distance metric to reflect the underly-
ing class relationship between instances, has attracted significant attention during the
past few years, and many studies [Weinberger et al. 2005; Frome et al. 2007b; Xiang
et al. 2008; Tan et al. 2009; Zhan et al. 2009] have shown that appropriately learned
distance metrics can significantly improve classification performance compared to the
classic Euclidean distance.

Current distance metric learning approaches [Yang and Jin 2006; Frome et al.
2007b; Kumar and Kummamuru 2007; Yeung and Chang 2007; Xiang et al. 2008; Zhan
et al. 2009] usually aim to construct a distance metric guided by some side information
such as pairwise constraints (e.g., must-links and/or cannot-links) specified by users or
induced from labeled data. Such information has been successfully exploited either
globally [Xing et al. 2003] or locally [Weinberger et al. 2005]. As the advances of data
collection and storage technologies, it has become much easier to collect a huge amount
of data in many real tasks. However, gathering data label information is not only time-
consuming but also expensive because it often requires human efforts and expertise.
For example, in computer-aided medical diagnosis, a large number of X-ray images can
be obtained from routine examination, yet it is difficult to request physicians to mark
all focuses in all images. In other words, although there are a lot of instances, the
amount of labeled data is usually limited. Therefore, side information induced from
the limited labeled data is often insufficient for learning a good distance metric.

Many real data involve physical link information, e.g., people linked by friendship
in social networks, webpages linked by hyperlinks, publications connected by citation-
s. These physical linkages can be easily obtained without many human efforts, and
the linkage structure may provide a new source of information. For example, one data
mining paper usually cites other publications within the data mining area. The cita-
tions, i.e., the physical linkages of papers, provide a potential hint that two connected
papers could be about the same topic. However, information contained in such physical
linkages were totally ignored in previous distance metric learning studies.

1http://www.cs.nyu.edu/~roweis/data.html
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(a) non-metric (b) clique

Fig. 2. Illustration of non-metric and clique linkages and their corresponding latent semantic meanings
(Images are from the 1st version of MSRA-MM [Meng et al. 2009] dataset).

In this paper, physical linkages are exploited in distance metric learning, when there
are limited labeled data and no additional constraints are explicitly given. It is note-
worthy that the exploitation of physical linkages is non-trivial, and improper under-
standing will seriously mislead the learning process. This is because that the existence
of different physical linkages may owe to different reasons. For an instance, image (1)
in Fig. 2(a) is linked to image (2) because of the content “dog”, whereas it is linked to
image (3) because of “grass”. The different subsets of meanings possessed by the link-
ages may lead to non-metric linkages, e.g., image (1) in Fig. 2(a) is related to both (2)
and (3), but there is no linkage between (2) and (3). Such non-metric property seriously
challenges traditional distance metric learning approaches [Wu et al. 2005; Yang and
Jin 2006; Frome et al. 2007b; Tan et al. 2006; 2009; Zhan et al. 2009].

In fact, the appearance of a non-metric linkage within an open triplet delivers a
strong implication that different semantics are possessed, e.g., “dog” and “grass” in
Fig. 2(a), whereas linkages within a clique may pass same subset of semantics, e.g.,
“grass” in Fig. 2(b). Based on these observations, we propose a new distance metric
named pairwised specific distance (PSD), aiming to exploit the latent semantics passed
through different linkages.

PSD is proposed mainly under the scenario of multi-class learning. We then extend
it to the multi-label learning scenario, denoted as PSDmc and PSDml, respectively. For
each scenario, we formulate the distance learning problem into an optimization frame-
work. To effectively solve the optimization problem, the PSD approach is conducted in
two stages: 1) learning the pairwised distance metrics for labeled data; 2) propagating
the learned metrics to unlabeled data through non-metric linkages or cliques. To the
best of our knowledge, this is the first study that exploits the information hidden in
physical linkages for distance metric learning. Experiments on a board range of tasks
validate the effectiveness of PSD.

The rest of this paper is organized as follows. Section 2 reviews some related work.
Section 3 presents our proposed PSD learning approach. Section 4 shows our empirical
studies, which is followed by the conclusions in Section 5.

2. RELATED WORK
Distance metric learning [Yang and Jin 2006] attempts to learn a good distance metric
that reflects the underlying class relationship between instances. Traditional distance
metric learning is usually guided by some constraints (or called “side information”)
given by users or induced from the labeled training data. Most previous distance metric
learning studies focused on generating a uniform distance function for all instances
by exploiting such information globally [Xing et al. 2003; Kwok and Tsang 2003] or
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locally [Goldberger et al. 2005; Weinberger et al. 2005]. A recent study [Jin et al. 2009]
even tried to learn a distance metric from multi-instance multi-label data.

It is noteworthy that different instances may hold different properties, and different
instance pairs may have different semantic relationships that are salient in differ-
ent feature subsets. Several studies [Frome et al. 2007a; Frome et al. 2007b; Zhan
et al. 2009] tried to learn different distance functions for different instances. Frome et
al. [2007a] constructed distance functions {Di(xj)} for each concerned labeled instance
xi to any other instance xj . Such distance functions are then optimized separately
under the constraints that the concerned instance has larger distances from other
instances with different labels than that from instances with the same label. Later,
they [Frome et al. 2007b] extended the method by specifying some “inversed” con-
straints, i.e., the distance from any other instance to the concerned instance with the
same label should be smaller than that from the instances with a different label. Giv-
en a test instance or a large number of unlabeled data, however, it is difficult to get
their instance specific distances by using these two methods. This is because they can
only generate instance specific distances for labeled instances and the instance specific
distance metric for unlabeled data is left untouched. Zhan et al. [2009] addressed this
issue by proposing the ISD (Instance Specific Distance) method in the transductive
setting. The key of ISD is metric propagation, which propagates and adapts metrics
learned for individual labeled instances to individual unlabeled instances. Thus, ISD
can learn instance specific distances for labeled as well as unlabeled instances. ISD
performs the metric propagation on the whole instance space, by assuming that there
is a unique explanation to the affinity of instance pairs. In this paper, we consider a
more challenging but practical situation, where different instance pairs may be related
due to different semantics, and thus the propagations through different instance pairs
have to be considered separately.

Label propagation has been widely used in graph-based semi-supervised learning
(GSSL) approaches [Zhu et al. 2003; Zhou et al. 2004; Belkin et al. 2006; Wang et al.
2009]. Given a dataset, a graph G = {V,E} can be derived, where V contains all la-
beled and unlabeled data points and edges in E indicate the similarities between ver-
tices. The labels are then propagated from labeled instances to unlabeled ones over the
graph. Besides labels, other properties can also be propagated across the given graph,
e.g., Li et al. [2008] propagated pairwise constraints, Zhan et al. [2009] propagated
the instance specific distance, and recently Kong et al. [2013] studied the problem of
transductive multi-label learning and proposed label set propagation. In this paper,
we extend the metric propagation technique to propagate semantics shared by labeled
instance pairs to unlabeled ones.

GSSL and link-based classification are two typical classification models that have
used the pairwise relationship between instances to facilitate the classification. GSSL
is a direct way to consider the pairwise relations over the graph. Many approaches
in this category have been developed, e.g., Blum and Chawla [2001] tried to use graph
mincuts to separate instances from different classes; Zhu and Ghahramani [2002] used
the label propagation approach; Kang et al. [2006] presented the correlated label prop-
agation (CLP) approach for multi-label problems. Particularly, Zhang and Zhou [2009]
proposed the non-metric label propagation (NMLP) approach, which is the first study
of label propagation on graphs induced from non-metric distances. They converted non-
metric distances into two metrics by applying spectrum transformation, so as to per-
form a joint label propagation on those two derived graphs.

Link-based classification [Sen and Getoor 2007] is a popular technique for mining
knowledge from physical linkages. It mainly aims to classify samples using the rela-
tions or links present among them, by assuming that the labels of related objects tend
to be correlated. It has received considerable attention recently and a number of ap-
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proximate collective classification algorithms (ACCA) in this area have been proposed,
e.g., approaches based on iterative classification (ICA) [Neville and Jensen 2000], Gibb-
s sampling (GS) [McEliece et al. 2007], loopy belief propagation (LBP) [Namata et al.
2009], and mean-field relaxation labeling (MF) [Namata et al. 2009]. All these tech-
niques can be viewed as message passing algorithms that proceed in rounds, where
each round consists of a set of messages being passed. In particular, each node refines
its classification from label messages of its neighbors in every round in ICA, whereas
messages in MF are probability distributions over class labels. These studies, however,
did not consider the nature of non-metric or specifically different semantics propagat-
ed through linkages. Moreover, most pieces of these work consider only the supervised
classification scenario and they treat training and testing as two separate steps with
two disjoint graphs, whereas in this paper, we consider the transductive setting with
only one linkage graph, as well as limited data points are labeled within the graph.

3. THE PROPOSED APPROACH
In this section, we try to exploit the different semantics possessed by different phys-
ical linkages, under the scenario that there are only limited labeled data whereas no
additional constraints are explicitly given. To obtain the semantic meanings passed
between unlabeled data points, we present the PSD approach to propagate the pair-
wised distance metrics learned from pairs of labeled data to that of unlabeled data.
These learned metrics can be further used to facilitate classification.

3.1. Notations
Table I summarizes all notations that are used in this section. Concretely, we restrict
our discussion in the transductive configuration and focus on the multi-class learning
problem at first. Suppose there are ℓ labeled instances T = {xi, yi}ℓi=1 and u unlabeled
instances U = {xi}ℓ+u

i=ℓ+1, where xi ∈ Rd and yi ∈ Z. The total number of instances
is n = ℓ + u. The available linkage graph for the whole data set is denoted as L.
This transductive multi-class classification task is to assign class labels to all those
unlabeled instances.

Instead of using pairwised constraints provided by the user or induced from the
labeled data as in traditional distance metric learning approaches, we extract the con-
straint information from the physical linkages in this work. For simplicity, if there is
a physical linkage between xi and xj , we denote it as ij ∈ L. It is obvious that a single
linkage ij ∈ L captures the relationship between two instances, i.e., a 2-order linkage
information captured by a single linkage. In order to capture and exploit different se-
mantic meanings for different linkages, however, higher-order linkage information is
required. In this paper, we mainly consider clique with three points, and it is sufficient
enough for higher order cliques since all 3-order cliques within a higher order clique
will be considered. We denote each 3-order clique as Clique(ijm), where ij ∈ L, im ∈ L,
and jm ∈ L. Similarly, NonM(ijk) denotes the open triplet formed by three data points
xi, xj , and xk, where ij ∈ L, ik ∈ L, but jk ̸∈ L. For example, in Fig. 1 we may observe
Clique(abc) and NonM(dce). We denote by ij ∈ S the condition that xi and xj are with
the same class label, and ij ∈ D otherwise. The distance between two instances xi and
xj is usually calculated by the Euclidean distance based on their attributes as

dij = ((xi − xj)
⊤(xi − xj))

1
2 (1)

In this paper, we assign a distance metric wij ∈ Rd for each physically linked pair
ij ∈ L, and the pairwised specific distance (PSD) between them is defined as

d′ij = (w⊤
ijδxi,xj )

1
2 (2)
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Table I. Notation Summarization

ℓ The number of labeled data
u The number of unlabeled data
d The feature dimension
xi ∈ Rd The i-th instance
yi ∈ Z The label of the i-th instance
T = {xi, yi}ℓi=1 The labeled training data
U = {xi}ℓ+u

i=ℓ+1 The unlabeled training data
n = ℓ+ u The total number of training data
L ∈ {0, 1}n×n The physical linkage graph
ij ∈ L There is a link between data points xi and xj

Clique(ijm) A 3-order clique formed by ij ∈ L, im ∈ L, and jm ∈ L
NonM(ijk) A non-metric open triplet formed by ij ∈ L, ik ∈ L, but jk ̸∈ L
ij ∈ S xi and xj are with the same class or share some labels in multi-label problems
ij ∈ D xi and xj are with different classes
dij The Euclidean distance between xi and xj

wij ∈ Rd The distance metric for xi and xj

d′ij The pairwised specific distance (PSD) between xi and xj

sij The similarity between xi and xj based on the Euclidean distance dij
wijp The p-th entity of pairwised distance metric wij

τ The tradeoff parameter for non-metric linkages
η The tradeoff parameter for cliques
i ∈ T The instance xi is labeled
i ∈ U The instance xi is unlabeled
cij cij = 1 if ij ∈ S, otherwise, -1
T The maximum iteration limit of Alternating Optimization algorithm
t The t-th iteration
δ The termination threshold for AO algorithm
D ∈ [0, 1]n×n The distances calculated for the whole data
c The total number of labels of the multi-label problem
yi ∈ {0, 1}c The label vector for the i-th mulit-label instance
ϵij The number of labels shared by xi and xj in multi-label problem
N The number of linkages between labeled data
|L| The number of linkages for the whole data

where δxi,xj = (xi − xj) ⊙ (xi − xj), ⊙ is the element-wise product on two vectors. It
can be easily verified that when all elements of wij are set to 1, PSD is equivalent to
the Euclidean distance. Following the study [Zhu et al. 2003], the similarity between
xi and xj is defined as

sij = exp (−d2ij/σ2) (3)

where σ = θ·d̄, d̄ is the average distance among the whole data set, and θ is a parameter
set to 1 in this paper.

3.2. The Formulation
PSD considers the distances between different instance pairs separately, owing to d-
ifferent semantic meanings passed through different physical linkages. As aforemen-
tioned, we introduce a pairwised distance metric wij ∈ Rd for each linkage, i.e., each
pair of physically associated points ij ∈ L. Each element of wij corresponds to one
feature. The larger the value of the p-th entity of wij , i.e. wijp, the more important the
p-th feature for the linkage. Therefore, features with relatively larger weights in wij ,
to some extent, indicate the latent semantic meanings passed through the linkage.
Note that the physical linkages only exist between partial pairs of instances (i.e. non-
complete graph), whereas distances between all instance pairs should be measured
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during the classification. Therefore, we set the pairwised distance metric wij = 1 for
non physically linked instance pairs, which equals to the Euclidean distance in fact.

3.2.1. Supervision information. In this section, we focus on the PSD learning for multi-
class problems, where one instance belongs to one single class, denoted as PSDmc. A
physical linkage usually occurs when two instances are related; however, the reason
for them to be linked may vary for different instance pairs. Taking webpages as an
example, a “faculty” webpage can be linked to a “course” webpage because the faculty
teaches this course, and at the same time, a “project” webpage distributed from this
course makes a linkage between the “course” and “project” webpages; these three web-
pages, however, are from totally different classes, i.e., “faculty”, “course”, and “project”.
It is evident that linkages are formed by various reasons, which may even bring about
linkages for two instances that are from different classes, and these linkages will mis-
lead the classification task. To address this problem, we use the pairwised distance
metric wij to shrink instances within the same class closer, whereas separating in-
stances from different classes far away, following the idea of supervised global distance
metric learning [Yang and Jin 2006]. In common distance metric learning, e.g. in the
study [Xing et al. 2003], the distance between instances from different classes is con-
strained to be larger than 1. In this paper, we simply constrain the distance between
instances from the same class to be smaller than their Euclidean distance, and the
distance between instances from different classes larger than their Euclidean distance
by using the following constraints.

d′ij < dij , ij ∈ S

d′ij > dij , ij ∈ D

This setting has been confirmed to be able to improve classification performance in the
study [Geng et al. 2005]. The information that if two instances are from the same class
can then be incorporated into the pairwised distance metrics for pairs of labeled data
through these two constraints, so as to be propagated to the pairs of unlabeled data.

3.2.2. Non-metric linkage. Similar to the non-metric example shown in Fig. 1, naturally
existing physical linkages or linkages indicated by users in most real tasks may be
based on mono-specific semantic meanings, which will lead to non-metric linkages. For
an instance, one database paper cites another database publication because they tack-
le the same data management problem, while the paper also cites a machine learning
publication because of the adoption of the learning technique developed in that ma-
chine learning paper. However, there is no citation between these two cited ones, which
represents a non-metric linkage. In other words, a non-metric linkage implies that the
two linkages within it are carrying totally different semantic meanings. Formally, the
two linkages ij ∈ L and ik ∈ L within the non-metric linkage NonM(ijk) should possess
different semantic meanings, and thus their pairwised distance metrics wij and wik

should be different. We use w⊤
ikwij to indicate the difference between two metrics. It is

obvious that the smaller the product is, the larger the difference. Intuitively, the larger
the difference between instances xj and xk, the less the chance that ij ∈ L and ik ∈ L
pass some similar semantic meanings. Therefore, to capture the extent of difference
between wij and wik for each non-metric linkage NonM(ijk), it is natural to minimize

djkw
⊤
ikwij (4)

where djk, the Euclidean distance between xj and xk, reflects their attribute difference.

3.2.3. Clique. Consider the two cliques Clique(abc) and Clique(efg) as examples in
Fig. 1, it is obvious that three linkages within each clique share a subset of semantic
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meanings. It implies that the pairwised distance metrics for each two linkages within
this clique could be similar on a subset of features, which in other words means their
pairwised distance metrics should be similar to some extent. Formally in Clique(ijm),
the smaller the value of ∥wim −wjm∥22 is kept, the more similar the pairwised distane
metrics for the two linkages im ∈ L and jm ∈ L is constrained. Besides in intuition,
the larger the similarity between xi and xj on their attributes, the more semantic
meanings should be shared by im ∈ L and jm ∈ L, and thus, the larger the extent
that wim and wjm are similar. Thereafter, for each Clique(ijm), we minimize Eq. 5 to
capture the similarity level for each pair of distance metrics.

sij∥wim −wjm∥22 + sjm∥wij −wim∥22 + sim∥wij −wjm∥22 (5)

where sij , sim and sjm reflect the attribute similarities between each two instances.

3.2.4. Optimization framework. In order to infer the pairwised distance metric for each
physically linked instance pair, we formulate the problem into the following optimiza-
tion framework

argmin
w

∑
ij∈L

∥wij∥22 + τΩ+ ηΞ (6)

s.t.
∑
p

wijp = d (7)

d′ij < dij , if ij ∈ S (8)
d′ij > dij , if ij ∈ D (9)

where τ and η are two tradeoff parameters. In Eq. 7 we fairly constrain the sum of ele-
ments for each metric wij to be the feature dimensionality d as the Euclidean distance.
The supervision information from limited labeled data are used in the Eqs. 8 and 9.
The regularization term Ω takes the property of non-metric linkage into account as

Ω :
∑

k,NonM(ijk)

djkw
⊤
ikwij (10)

where all non-metric linkages containing ij ∈ L are included. Ξ is another regulariza-
tion term used to consider the hidden semantic meanings shared within cliques as

Ξ :
∑

m,Clique(ijm)

sij∥wim −wjm∥22 + sjm∥wij −wim∥22 + sim∥wij −wjm∥22 (11)

which considers all cliques containing ij ∈ L. It should be noted that since djk in Ω
estimated by Eq. 1 can be naturally much larger than sij estimated by Eq. 3 in Ξ, we
normalize the Euclidean distances used in Ω into [0, 1] in our experiment.

3.3. The Solution
It is computationally expensive to solve the PSDmc learning problem in Eq. 6 directly
because the number of physical linkages could be large. Besides, the bilinear problem
induced in Eq. 10 makes the whole optimization problem non-convex. To address this
problem, we decompose the optimization problem into two stages by considering the
labeled data and unlabeled data separately. The main idea is inspired by label propa-
gation [Zhu and Ghahramani 2002], where the label information given by labeled data
are firstly propagated to those unlabeled data points that are directly linked to the
labeled data, and then to other unlabeled data points further and further. Concretely,
in the first stage, we obtain the pairwised distance metrics for all pairs of labeled da-
ta that are also physically linked. Then in the second stage, the learned metrics from
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labeled pairs are propagated to those pairs containing both labeled and unlabeled da-
ta at first, and to other unlabeled pairs further and further. Unlink label propagation
that propagates label information through graph edges, the pairwised distance met-
rics are propagated through non-metric linkages and 3-order cliques. This process is
named pairwised metric propagation in this paper, and the details are described in the
following two stages.

3.3.1. Stage one: Obtaining semantic meanings possessed by linkages between labeled data. In
this first stage, we consider only the pairwised distance metrics for labeled data that
are also physically linked. By subtracting all relevant parts for labeled data in Eq. 6,
we have the following objective function

argmin
w

∑
ij∈L,i,j∈T

∥wij∥22 + τΩ+ ηΞ (12)

s.t.
∑
p

wijp = d

cijd
′
ij < cijdij

where we define cij ∈ {−1, 1} with cij = 1 indicating ij ∈ S and cij = −1 indicating
ij ∈ D. By replacing the two regularization terms defined in Eq. 10 and Eq. 11, the
objective function in Eq. 12 can be rewritten to

argmin
w

∑
ij∈L,i,j∈T

[(1 + η
∑
m

(sjm + sim))∥wij∥22 + (τ
∑
k

djkw
⊤
ik

−2η
∑
m

(sjmw⊤
im + simw⊤

jm))wij + η
∑
m

((sij + sjm)∥wim∥22

+(sij + sim)∥wjm∥22 − 2sijw
⊤
imwjm)]

s.t.
∑
p

wijp = d

cijd
′
ij < cijdij (13)

Now let f(w) be the objective function in Eq. 13, this problem can be solved by the
well known Alternating Optimization (AO) algorithm [Bezdek and Hathaway 2003]
through the following steps.

(1) Naturally partition w as w = (w1,w2, · · · ,wN )⊤, where each wi represents a pair-
wised distance metric and N is the total number of linkages that belong to L with
its two nodes labeled.

(2) Initialize w(0) = (w
(0)
1 , · · · ,w(0)

N )⊤ where w
(0)
i = 1, termination threshold δ, maxi-

mum iteration limit T , and iteration counter t = 0.
(3) For each i = 1, · · · , N , compute

w
(t+1)
i = argmin f(w

(t+1)
1 , · · · ,w(t+1)

i−1 ,wi,w
(t)
i+1, · · · ,w

(t)
N )

(4) If ∥w(t+1) −w(t)∥ ≤ δ or t ≥ T , quit; otherwise, set t = t+ 1 and go to Step 3.

Obviously, computing w
(t+1)
i is a quadratic programming problem, and thus has the

global minimizer. More importantly, we restrict not to increase the objective function
value at each step, and thus local convergence of this AO algorithm can be guaran-
teed. In the experiment, we only set the maximum iteration limit T = 20 and superb
performance is obtained, which empirically verifies the fast convergence rate.
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We can easily observe that the space complexity of this stage is O(Nd). From the
AO steps, we can find that in the worst case, we need to run alternating for T itera-
tions. In each iteration, the quadratic programming should be calculated for N times.
Since quadratic programming is linear in d with the best implementation. The com-
putational cost of this stage is O(NdT ). Therefore, the space and time complexity is
highly dependent on the total number of linkages involved (i.e., linkages with both n-
odes labeled) and the feature dimension d. Since there are limited labeled data, N is
also limited in this stage. Although it could be time-consuming for very dense graphs,
it is scalable for sparse graphs, which are more often in real tasks.

3.3.2. Stage two: Inferring the latent semantic meanings possessed by linkages between unla-
beled data by propagation. In this second stage, the pairwised distance metrics learned
from the first stage are firstly propagated to the linkages that directly connect labeled
and unlabeled data, and then to farther unlabeled data pairs. For each concerned in-
stance pair xi and xj , we have the following optimization problem subtracted from
Eq. 6

argmin
w

∑
ij∈L

∥wij∥22 + τΩ+ ηΞ (14)

s.t.
∑
p

wijp = d

Similar to the first stage, we can solve this optimization problem by the AO algorithm,
which requires the similar space and time complexity. Since the number of linkages
between unlabeled data is much larger, this stage requires longer time than the first
stage. By dividing the problem into two stages, we also distribute the computational
cost into two stages, which is much less than solving the whole problem in one stage.
Since the number of linkages between unlabeled data is usually much larger than
that of labeled data, the time complexity is dominated by the second stage, which is
O((|L| −N)dT ).

Based on the learned pairwised distance metrics, the PSDs for the whole data can
be calculated by Eq. 2, and Euclidean distances are computed for non physically linked
pairs. Then, we can use the updated distances to facilitate the classification on unla-
beled data. The pseudo-code of PSDmc is summarized in Algorithm 1.

3.4. Extension to Multi-Label Learning
Unlike multi-class learning where each instance belongs to one single class, in multi-
label problem, one instance is associated with multiple labels, i.e. each instance is
compound with multiple different semantic meanings, as those images shown in Fig. 2.
Obviously, the phenomenon that different linkages possess different semantic mean-
ings is much more significant than multi-class problems. Blindly propagating label
information through existing physical linkages will seriously lead to incorrect results,
because some linkages may pass only one specific label information, whereas others
may possess more than one label information, e.g. Fig. 2(b). Therefore, distinguishing
different semantics shared by different instance pairs is a key challenge for distance
metric learning in multi-label problems.

In real-world problems such as image or video annotation [Hua and Qi 2008], it is of-
ten the case that only limited labels are annotated. In other words, not all instances are
labeled, and more seriously, not all labels for one instance are given [Sun et al. 2010;
Zhang et al. 2011; Wang et al. 2011; Yang et al. 2013], which is called the weak label
problem. Consequently, given labels positively indicate the current instance contain-
ing the corresponding semantic. However, this instance may contain more semantics,

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.



Pairwised Specific Distance Learning from Physical Linkages A:11

ALGORITHM 1: PSDmc

Input: T = {xi, yi}ℓi=1: ℓ labeled instances;
U = {xi}ℓ+u

i=ℓ+1: u unlabeled instances;
L: physical linkages for the whole data set;
T : maximum iteration limit;
δ: termination threshold.

Output: D ∈ [0, 1]n×n.
Process:
Initialize w(0) = 1;
for t = 1, · · · , T do

for ij ∈ L ∧ i, j ∈ T do
Learn wij by solving Eq. 13 with other w′s fixed;

end
if ∥w(t) −w(t−1)∥ ≤ δ then

Break;
end

end
w(0) = w;
for t = 1, · · · , T do

for ij ∈ L ∧ (i ∈ U , j ∈ T ∨ i, j ∈ U) do
Propagate learned metrics to wij by solving Eq. 14 with other w′s fixed;

end
if ∥w(t) −w(t−1)∥ ≤ δ then

Break;
end

end
Calculate PSDs by Eq. 2 into D;
Calculate Euclidean distances for remaining pairs by Eq. 1 into D;

although the label is currently not annotated. Based on the naturally existing linkages
as shown in Fig. 2, our pairwised distance metric can be used to explore the semantic
meanings passed through different physical linkages, so as to propagate the corre-
sponding specific label information to its neighborhoods. Social network community
partition [Wu et al. 2011] is another realistic application scenario, where people are
usually associated due to different reasons, e.g., “classmates”, “colleges”, or “hobbies”
and so on, which may form different communities. One person may belong to multiple
communities because he/she plays different roles in different situations. One possible
way to address this community partition problem is to figure out the semantic mean-
ings passed through those friendships, and all people involved within each semantic
can form a community.

We confine this multi-label extension within the transductive scenario, let {xi,yi}ni=1

denote the training data, with xi ∈ Rd, and yi ∈ {0, 1}c, where 1 indicates that xi has
the corresponding label, whereas 0 indicates that we do not know if this instance has
this specific label. The physical linkages between these instances are also given in L.
The task is to label all instances completely by exploiting L. To facilitate the label-
ing, we still use the pairwised distance metric wij with different weighting values on
different features to imply the hidden semantic meanings possessed by each physical
linkages ij ∈ L. The properties of non-metric linkages and cliques can be included sim-
ilarly. However, unlike multi-class learning, where each instance is related to only one
class and thus it is easy to figure out if two labeled instances are from the same class to
have Constraints 8 and 9, it is impossible to determine if two instances are with totally
different labels in multi-label learning. It is because that each instance is associated
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with multiple labels, but not all its labels are given in weak label problems. In other
words, from those given labels, we can only determine how many labels are currently
shared by an instance pair. We use the number of shared labels between instances xi

and xj to describe the extent that they are related, denoted by ϵij . By changing the
way of using supervision information in the objective function in Eq. 6, we have the
following optimization framework for weak label problems.

argmin
w

∑
ij∈L

∥wij∥22 + τΩ+ ηΞ (15)

s.t.
∑
p

wijp = d

d′ij < dij − ϵij , if ij ∈ S (16)

where the new constraint 16 tries to shrink those instance pairs that share more labels
closer, and the regularization term Ω and Ξ are defined similarly as in Eqs. 10 and 11,
respectively. To distinguish with PSDmc, this extension is named PSDml.

Although there is no way to separate labeled and unlabeled data explicitly for the
weak label problem in Eq. 15, we in the first stage learn the pairwised distance metrics
between instance pairs with label information. Then in the second stage, those learned
distance metrics are propagated over the whole linkage graph (including instances
with or without label information) through the non-metric linkages and cliques. Simi-
larly, we divide the PSDml learning problem into the following two stages, Eq. 17 and
Eq. 18, respectively.

argmin
w

∑
ij∈L∧ij∈S

∥wij∥22 + τΩ+ ηΞ (17)

s.t.
∑
p

wijp = d

d′ij < dij − ϵij

argmin
w

∑
ij∈L

∥wij∥22 + τΩ+ ηΞ (18)

s.t.
∑
p

wijp = d.

It can be easily observed that in the second stage in Eq. 18, the number of pairwised
distance metrics that we need to learn is the total number of linkages in L. We cannot
distribute the computational cost into two stage for the weak label problem. To solve
this problem similarly using the AO algorithm as the multi-class scenario, the time
complexity is O(|L|dT ), where |L| is the total number of linkages for the whole data.
The pseudo-code of PSDml is summarized in Algorithm 2.

4. EXPERIMENTS
To evaluate the effectiveness of PSD, we conduct the empirical study for both scenarios
discussed as well, i.e., multi-class learning and multi-label learning. We focus on the
multi-class scenario with detailed empirical evaluations, and conduct a small exten-
sion on the multi-label scenario to visualize semantic meanings distinguished through
different linkages.
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ALGORITHM 2: PSDml

Input: {xi,yi}ni=1,xi ∈ Rd,yi ∈ {0, 1}c: n instances with their label vectors;
L: physical linkages for the whole data set;
T : maximum iteration limit;
δ: termination threshold.

Output: D ∈ [0, 1]n×n.
Process:
Initialize w(0) = 1;
for t = 1, · · · , T do

for ij ∈ L ∧ ij ∈ S do
Learn wij by solving Eq. 17 with other w′s fixed;

end
if ∥w(t) −w(t−1)∥ ≤ δ then

Break;
end

end
w(0) = w;
for t = 1, · · · , T do

for ij ∈ L do
Propagate learned metrics to wij by solving Eq. 18 with other w′s fixed;

end
if ∥w(t) −w(t−1)∥ ≤ δ then

Break;
end

end
Calculate PSDs by Eq. 2 into D;
Calculate Euclidean distances for remaining pairs by Eq. 1 into D;

4.1. Multi-Class Scenario
In this section, we focus on the multi-class scenario, and thus on the evaluation of
PSDmc.

4.1.1. Configuration. We evaluate PSDmc on four datasets with both physical linkages
and label information [Sen et al. 2008], including two bibliographic datasets, i.e. cora
and citeseer, with publications connected by citations, one webpage dataset WebKB
containing webpages linked by hyperlinks from four isolated universities, i.e. cornell,
texas, washington, and wisconsin, and one social network dataset Terrorist Attacks
which is composed by different types of attacks and contains two different linkage
types. One is for attacks invoked in the same location and the other is for attacks not
only invoked in the same location but also organized by the same organization, denoted
as ta-loc and ta-loc-org, respectively.

After removing all self-linkages and isolated nodes, the statistics of each dataset
are summarized in Table II. To study the effect of the number of labeled data, we
randomly sample {5%, 10%, 20%, 40%, 80%} of data as labeled data and the rest as
unlabeled data for each dataset. Each process is repeated for 30 trials and the average
prediction performance on unlabeled data is reported.

To evaluate how PSDmcs can help for classification, we execute the following three
GSSL approaches over the graphs induced from the new distances. They all have the
parameter k, which indicates the number of nearest neighbors considered. We con-
duct the experiments with different k values from {1,3,5,7} to study the effect of the
different k’s.

— LapSVM: Laplacian support vector machine [Melacci and Belkin 2011].
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Table II. Dataset Summarization.

#links per node #nodes with k links

Data set #inst. #class #feat. #links min max mean± std k = 1 k = 2 k ≥ 3

cora 2, 708 7 1, 433 5, 278 1 164 3.90± 5.23 485 583 1, 640
citeseer 3, 264 6 3, 703 4, 536 1 99 2.78± 3.40 1, 321 796 1, 147
ta-loc 645 6 106 3, 172 1 49 9.84± 12.6 151 63 431
ta-loc-org 260 5 106 571 1 15 4.39± 4.52 95 35 130
cornell 195 5 1, 703 283 1 94 2.90± 6.83 88 40 67
texas 185 5 1, 703 280 1 104 3.03± 7.79 72 53 60
washington 217 5 1, 703 366 1 122 3.37± 8.33 58 64 95
wisconsin 262 5 1, 703 459 1 122 3.50± 7.79 72 71 119

Table III. Effects of tradeoff parameters τ and η on prediction accuracy by applying LapSVM
(The label ratio is set to 20%, k = 3, η is from {1, 5, 10}, and τ is from {1, 5, 10, 100}. For each
η, the average over all τ ’s is reported).

η ta-loc ta-loc-org cornell texas washington wisconsin

1 .803±.002 .816±.000 .515±.008 .615±.002 .688±.002 .676±.013
5 .800±.004 .817±.000 .527±.000 .613±.000 .707±.012 .657±.000
10 .796±.006 .814±.004 .526±.013 .613±.003 .707±.004 .653±.004
Ave. .800±.004 .816±.003 .523±.007 .614±.002 .701±.007 .662±.008

— LP: label propagation [Zhu et al. 2003].
— NNP: k-nearest-neighbor propagation. Each unlabeled instance will receive the la-

bel information from its k nearest neighbors, and then its class label is decided by
majority voting; this process will be repeated until convergence.

In the experiment, we set the maximum iteration limit for the AO algorithm to be
T = 20 and the termination threshold as δ = 0 that means stopping when no metric is
updated. Although the tradeoff parameters τ and η for non-metric linkages and cliques
could be tuned by cross validation for large data sets cora and citeseer, cross validation
is not reliable or even cannot be conducted on other small data sets, since the number
of labeled data is too small. We fix both of them to be τ = η = 10 for all experiments,
because in our experience they will not affect the performance too much. For example,
when the label ratio is set to 20% and k = 3, by using different settings of τ (1,5,10,100)
and η (1,5,10), we apply the LapSVM over the graphs induced from the PSDs. Table III
shows the average prediction accuracy and the corresponding standard deviation for
all τ ’s when η is fixed, and the average accuracy of all settings for each data set. It
can be observed from the standard deviations that they do not affect the prediction
performance much in most cases.

To verify the superbness of PSDmc, we also apply the three GSSL approaches over
the graphs induced by the following four ways.

— Cont: It is constructed solely based on the data attributes by using the Euclidean
distance

— L: It directly uses the linkage graph L with elements 0 or 1.
— CC: For each instance pair xi and xj from the labeled training data T , we generate

a new instance by |xi − xj |. Each new instance has a new class label y′ ∈ {0, 1},
where 1 indicates xi and xj are from the same class and 0 otherwise. A soft classifier
can be learned from the generated data, and be used to get the probability that two
instances share the same label, which is called the common confidence in this paper.

— CC’: We treat linked instance pairs separately from unlinked pairs. For each set,
we train a soft classifier to get the common confidences as CC. Then, we combine
the common confidences from two sets together to get CC’.
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Table IV. CPU time comparison (in minutes; label ratio is
set to 20% for each dataset).

Data CC CC’ ISD PSD

cora N/A N/A 349.05 53.81
citeseer N/A N/A 1914.33 94.73
ta-loc 532.13 214.42 7.04 3.83
ta-loc-org 15.94 7.16 2.44 0.50
cornell 70.86 31.55 13.84 5.21
texas 59.37 24.88 12.10 4.67
washington 84.33 48.62 15.15 6.73
wisconsin 214.27 101.90 15.57 7.61

In addition, the following two methods with special focuses are also compared with
the LapSVM applied on the graph induced by PSDmc. We only compare with LapSVM
because it is both more effective and efficient than LP and NNP.

— ISD: Instance specific distance is proposed in [Zhan et al. 2009] that compute the
distances based on each instance’s specification.

— NMLP: Non-metric label propagation [Zhang and Zhou 2009] can do label propaga-
tion over graphs induced from non-metric distances. Considering that the physical
linkages are with non-metric phenomenon, NMLP is applied directly on the linkage
graph. Note that the original NMLP is for binary classification, in our experiments
we extend it to multi-class problems by using the one-vs-all strategy, and choose the
class with the highest confidence as the final prediction.

All experiments are performed on a machine with 12 Intel Xeon processors/cores
(1.6GHz) with 12GB RAM. Since CC, CC’, ISD, and PSD require additional time to
learn new distances or similarity matrices, their average time cost of 30 trials are
compared in Table IV when the label ratio is set to 20%. Due to the relatively larger
size for datasets cora and citeseer, learning CC or CC’ suffers from heavy time cost and
even memory problem because O(

(
n
2

)
) new instances are generated. Surprisingly, the

time cost of learning PSDmc is much lower than CC, CC’ and ISD.
To study the effect of parameter k, the percentage of labeled data for each data set

is firstly fixed to 20%, and k changes from set {1, 3, 5, 7}. Further to evaluate PSDmc

with different amount of labeled data, we conduct experiments when k = 3 and the
percentage of labeled data varies from 5% to 80%.

4.1.2. Publication Categorization. In this section, we apply our PSDmc method on the t-
wo bibliographic datasets cora and citeseer. Papers in the cora are from the machine
learning field and each is categorized into one of seven possible topics, i.e., case based,
genetic algorithms, neural networks, probabilistic methods, reinforcement learning,
rule learning, and theory. The citeseer dataset includes papers from six categories, i.e.,
agents, artificial intelligence, database, human computer interaction, machine learn-
ing, and information retrieval.

For each dataset, three GSSL approaches (i.e., LapSVM, LP, NNP) are applied over
three different graphs induced from Cont, L and PSD, since CC and CC’ are not avail-
able for these two datasets. First to verify that PSD can provide more appropriate dis-
tance measures than others, no matter how many nearest neighbors are considered,
the label ratio is fixed to 20% and k changes from {1, 3, 5, 7} . Table V shows the average
prediction accuracy on unlabeled data of 30 trials for each setting with the best perfor-
mance in bolded fonts. It can be easily observed that PSD achieves significantly better
performance, no matter what kind of GSSL approach is applied or how many nearest
neighbors are considered. Besides, PSD with LapSVM applied achieves significantly
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Table V. Accuracy comparison on cora and citeseer with fixed label ratio 20%. The best
performance and its comparable performances are bolded (statistical significance examined
via pairwise t-tests at 95% confidence level).

Data Method Metric k = 1 k = 3 k = 5 k = 7

Cont .460±.022 .447±.013 .405±.011 .382±.019
LapSVM L .610±.018 .596±.012 .537±.012 .502±.019

PSD .783±.008 .808±.006 .808±.005 .808±.005

Cont .427±.020 .429±.037 .397±.044 .393±.044
LP L .571±.018 .584±.035 .543±.040 .530±.040

cora PSD .761±.012 .790±.010 .792±.010 .792±.010

Cont .282±.045 .232±.060 .229±.080 .233±.095
NNP L .456±.035 .370±.054 .335±.078 .333±.089

PSD .544±.060 .531±.071 .421±.114 .308±.109

NMLP - .739±.020 .759±.021 .702±.041 .620±.065
ISD - .355±.050 .326±.058 .322±.075 .316±.079

LapSVM PSD .783±.008 .808±.006 .808±.005 .808±.005

Cont .391±.011 .353±.006 .310±.006 .283±.006
LapSVM L .494±.013 .454±.044 .410±.046 .384±.049

PSD .624±.011 .641±.006 .642±.006 .641±.006

Cont .358±.011 .334±.043 .303±.046 .277±.043
LP L .482±.012 .462±.042 .421±.046 .391±.043

citeseer PSD .572±.011 .595±.008 .599±.007 .598±.006

Cont .290±.024 .227±.032 .197±.035 .174±.050
NNP L .334±.018 .246±.010 .228±.034 .177±.050

PSD .439±.032 .266±.039 .233±.078 .191±.054

NMLP - .576±.014 .606±.015 .577±.018 .532±.022
ISD - .322±.037 .307±.057 .341±.061 .354±.067

LapSVM PSD .624±.011 .641±.006 .642±.006 .641±.006

higher prediction accuracy on unlabeled data compared to ISD and NMLP no matter
how many nearest neighbors are considered.

The advantage of PSD, when there are different amount of labeled data, is further
shown in Fig. 3 with two measures, prediction accuracy and F1 measure. It should be
pointed out that we rule ISD’s performance out in this respect, because ISD not only
takes more than 5 hours for each trial as indicated in Table IV but also performs worse
than any other method as shown in Table V. Fig. 3 shows that PSD provides better
prediction performance in terms of both accuracy and F1 measure in most cases, no
matter what kind of GSSL approach is applied or how many data points are labeled.
Moreover, it can be easily seen that the helpfulness of PSD is more significant when
there are less labeled instances.

Besides, we find that directly using physical linkages surprisingly leads to better
performance than Euclidean distance on these two datasets. This suggests that physi-
cal linkages provide helpful category information, and the data attributes themselves
are insufficient for classification for these two data sets. This phenomenon leads to bet-
ter prediction performance of NMLP which directly utilizes the link graph, and worse
prediction performance of ISD which totally relies on the data attributes. It is not d-
ifficult to understand: citations often occur between papers about similar topics, and
this link information can give valuable classification information. Since publications in
cora are all from the machine learning field and those in citeseer are all from computer
science, there would be big attribute similarity between publications within the same
field although they are from different topics. This makes the data attributes insuffi-
cient for distance measure between instances. In this case, PSD is further helpful by
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Fig. 3. Prediction accuracy and F1 measure comparison on cora and citeseer when k = 3 (each row for one
GSSL approach; left two columns for cora and right two columns for citeseer).

figuring out those important features that are more reasonable for distance measure
between different instance pairs.

4.1.3. Attack Classification. Each attack in this dataset is classified into one of six possi-
ble classes, i.e., arson, bombing, kidnapping, NBCR, weapon attack, and other attack.
These attacks are linked either because they occurred in the same location or they
were organized by the same terrorist organization. Two different subsets of this data
set are derived due to different linkage type as aforementioned.

GSSL approaches are applied over different graphs induced from Cont, L, CC, CC’,
and PSD. Similarly, Table VI shows the average prediction accuracy when the label
ratio is fixed to 20% and k varies from {1, 3, 5, 7}, and Fig. 4 depicts the performance
comparisons when there are different numbers of labeled data. It should be noted that
Fig. 4 rules the performance of L, CC, CC’ and NMLP out, due to their relatively worse
accuracy in Table VI. The advantage of PSD can be observed from both Table VI and
Fig. 4, no matter what kind of GSSL approach is applied, how many nearest neighbors
are considered or how much the labeled data are used.

In addition, it can be easily observed from the performance of NMLP and those GSS-
L approaches applied directly over L, physical linkages for these two datasets are noisy
for classification. In fact, different kinds of terrorist attacks may occur in the same lo-
cation and one terrorist organization may organize different kinds of attacks. However,
by introducing different distance metrics for different instance pairs, PSD can extract
useful information from these noisy physical linkages to facilitate classification.

Furthermore, from Table VI, we can find that CC can provide better prediction per-
formance than L. However, it is not as good as Cont which is only based on the data
attributes. One possible reason is that the total number of labeled data is too small,
since the dataset size is small and only 20% data are labeled. The learning of CC is
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Table VI. Accuracy comparison on ta-loc and ta-loc-org with fixed label ratio 20%. The best
performance and its comparable performances are bolded (statistical significance examined
via pairwise t-tests at 95% confidence level).

Data Method Metric k = 1 k = 3 k = 5 k = 7

Cont .767±.016 .793±.015 .790±.015 .795±.015
L .561±.033 .571±.034 .583±.035 .587±.034

LapSVM CC .682±.101 .678±.102 .661±.106 .653±.105
CC′ .592±.043 .591±.047 .580±.042 .572±.031
PSD .777±.015 .805±.016 .801±.015 .805±.014

Cont .759±.018 .780±.017 .791±.013 .800±.016
L .385±.022 .392±.023 .401±.024 .403±.026

LP CC .684±.101 .684±.103 .673±.110 .667±.107
CC′ .583±.036 .570±.024 .567±.022 .562±.018

ta-loc PSD .768±.017 .791±.015 .803±.014 .811±.015

Cont .482±.082 .695±.049 .719±.049 .739±.039
L .242±.022 .245±.029 .166±.024 .120±.027

NNP CC .295±.127 .581±.095 .548±.099 .531±.098
CC′ .544±.023 .579±.052 .560±.015 .558±.014
PSD .516±.068 .709±.035 .735±.041 .756±.030

NMLP - .337±.049 .321±.047 .321±.045 .301±.061
ISD - .711±.026 .757±.022 .780±.023 .795±.019

LapSVM PSD .777±.015 .805±.016 .801±.015 .805±.014

Cont .722±.045 .805±.022 .814±.024 .811±.026
L .649±.035 .663±.029 .666±.029 .664±.028

LapSVM CC .547±.090 .614±.110 .611±.106 .612±.109
CC′ .541±.105 .610±.074 .612±.084 .614±.085
PSD .743±.039 .817±.021 .826±.023 .821±.024

Cont .554±.036 .776±.032 .790±.024 .808±.021
L .353±.042 .366±.042 .366±.042 .366±.042

LP CC .353±.079 .618±.086 .628±.100 .622±.115
CC′ .271±.103 .581±.064 .597±.069 .602±.079

ta-loc-org PSD .572±.037 .788±.030 .800±.023 .819±.021

Cont .731±.048 .770±.039 .787±.041 .763±.049
L .357±.044 .480±.022 .515±.002 .515±.000

NNP CC .596±.067 .568±.069 .546±.084 .534±.068
CC′ .620±.071 .591±.060 .600±.101 .576±.113
PSD .751±.045 .781±.041 .798±.038 .774±.048

NMLP - .560±.050 .495±.064 .430±.073 .379±.083
ISD - .764±.032 .793±.032 .805±.025 .807±.028

LapSVM PSD .743±.039 .817±.021 .826±.023 .821±.024

probably unreliable due to limited training instances and class-imbalance problem be-
tween y′ = 1 (with the same class) and y′ = 0 (from different classes). Moreover, we
expect that by treating linked and unlinked instances separately, CC’ could be more
appropriate. However, it should be noticed that if we further separate labeled data, the
learning could be more unreliable. Therefore, as shown in Table VI, CC’ is not helpful
in most cases compared to CC.

4.1.4. Webpage Categorization. The WebKB dataset contains webpages from four iso-
lated computer science departments, categorized into topics as course, faculty, studen-
t, project and staff. Similarly, Table VII shows the average prediction accuracy when
the label ratio is fixed to 20% while k changes, and Fig. 5 depicts the performance
comparisons when there are different numbers of labeled data. Note that for report
convenience, we rule out the results with k = 1. Although Fig. 5 shows that PSD can
improve the prediction performance when k = 3, no matter how much the number
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Fig. 4. Prediction accuracy and F1 measure comparison on ta-loc and ta-loc-org when k = 3 (each row for
one GSSL approach; left two columns for ta-loc and right two columns for ta-loc-org).

of labeled data is, results in Table VII with different k’s show that ISD and GSSL
approaches over CC or CC’ sometimes can provide better learning performance.

Compared to the performance on Terrorist Attack, CC and CC’ are sometimes help-
ful. The possible reason is that the comparatively higher feature dimension as indicat-
ed in Table II makes the learning of CC and CC’ reliable. However, contradict results
on different data sets indicate that CC and CC’ are not reliable or practically useful,
not to mention their high time cost as summarized in Table IV.

From the performance of NMLP and GSSL approaches over L, we can easily find
that physical linkages for these four datasets are very noisy, which is reasonable be-
cause webpages from totally different classes may be linked by the hyperlinks as men-
tioned previously. However, GSSL approaches over PSD can still provide better predic-
tion performance than over Cont or L, and other approaches NMLP and ISD in almost
all cases.

Overall, empirical evaluations on all used datasets confirm not only the usefulness
of hidden information within existing physical linkages, but also our PSD proposal.
By distinguishing different semantic meanings passed through different physical link-
ages, a more appropriate distance metric can be obtained and further help improve the
classification performance. Besides, different extent of advantages on different num-
ber of labeled data as in Fig. 3, confirm our concern that if labeled data themselves are
sufficient enough for learning, considering additional information as physical linkages
is not necessary, although it can be helpful. Moreover, significantly better prediction
performance on cora and citeseer tells that the helpfulness of PSD is more significant
when data attributes are insufficient to distinguish instances from different classes.

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January 2014.



A:20 J. Hu et al.

Table VII. Accuracy comparison on WebKB (i.e., cornell, texas, washington and wisconsin) with fixed label ratio
20%. The best performance and its comparable performances are bolded (statistical significance examined via
pairwise t-tests at 95% confidence level).

Method Metric k = 3 k = 5 k = 7 k = 3 k = 5 k = 7

cornell texas

Cont .536±.043 .498±.026 .473±.021 .607±.028 .573±.009 .563±.003
L .348±.067 .349±.069 .349±.069 .456±.117 .459±.114 .459±.113

LapSVM CC .500±.055 .534±.050 .536±.051 .534±.030 .560±.003 562±.000
CC′ .429±.000 .428±.001 .429±.000 .562±.000 .562±.000 .562±.000
PSD .546±.030 .509±.021 .483±.017 .615±.023 .573±.009 .563±.002

Cont .557±.049 .523±.047 .499±.042 .601±.042 .594±.043 .565±.021
L .320±.078 .322±.076 .322±.076 .401±.138 .398±.136 .397±.135

LP CC .486±.053 .526±.053 .531±.053 .532±.030 .561±.003 .562±.000
CC′ .429±.000 .429±.000 .429±.000 .562±.000 .562±.000 .562±.000
PSD .567±.049 .533±.041 .509±.033 .609±.042 .603±.044 .566±.021

Cont .383±.101 .400±.092 .423±.040 .423±.185 .451±.182 .562±.000
L .213±.018 .213±.006 .213±.003 .252±.140 .424±.187 .549±.070

NNP CC .420±.105 .472±.105 .517±.067 .348±.138 .546±.072 .562±.000
CC′ .348±.100 .370±.090 .406±.061 .562±.000 .562±.000 .562±.000
PSD .403±.098 .414±.091 .434±.040 424±.175 .458±.176 .562±.000

NMLP - .371±.050 .369±.059 .360±.077 .512±.048 .473±.083 .351±.118
ISD - .513±.049 .505±.044 .491±.046 .547±.117 .580±.081 .584±.031
LapSVM PSD .546±.030 .509±.021 .483±.017 .615±.023 .573±.009 .563±.002

washington wisconsin

Cont .700±.033 .696±.035 .659±.045 .649±.024 .634±.016 .619±.019
L .446±.082 .452±.080 .450±.083 .407±.058 .407±.055 .410±.053

LapSVM CC .627±.062 .700±.031 .716±.024 .391±.035 .422±.031 .440±.026
CC′ .488±.009 .488±.009 .488±.009 .469±.011 .467±.009 .467±.010
PSD .710±.034 .707±.032 671±.040 .659±.025 .643±.017 .629±.020

Cont .708±.037 .670±.053 .665±.068 .644±.031 .620±.027 .604±.033
L .385±.107 .381±.105 .380±.105 .379±.071 .374±.070 .376±.071

LP CC .603±.063 .687±.027 .705±.021 .388±.043 .418±.038 .437±.026
CC′ .477±.000 .477±.000 .477±.000 .461±.007 .458±.003 .457±.001
PSD .717±.037 .679±.053 .676±.067 .653±.030 .629±.028 .613±.034

Cont .477±.167 .475±.137 .456±.087 .562±.096 .528±.031 .554±.036
L .274±.015 .280±.003 .279±.000 .302±.059 .247±.106 .249±.118

NNP CC .434±.085 .507±.127 .584±.119 .313±.038 .415±.051 .365±.067
CC′ .478±.037 .470±.036 .477±.000 .402±.078 .450±.032 .446±.052
PSD .490±.161 .487±.126 .472±.084 .562±.096 .538±.030 .563±.036

NMLP - .455±.036 .455±.055 .381±.082 .447±.029 .453±.032 .418±.056
ISD - .554±.120 .580±.092 .585±.070 .609±.053 .576±.047 .580±.044
LapSVM PSD .710±.034 .707±.032 .671±.040 .659±.025 .643±.017 .629±.020

4.2. Extension to Multi-Label Scenario
In this section, we conduct an extension to the image annotation dataset of MSRA-
MM [Li et al. 2009] database. MSRA-MM database is collected by Microsoft Research
Asia (MSRA) using Microsoft Live Search and all the labels are annotated by human-
s. In this paper, we use the 1st version which is collected in March 2009. Images in
this dataset are collected from very different sources, e.g., logos for web sites, cartoons,
movies, real scene images, etc. In this paper, we select all real scene images, and an
image annotation data set of size 1,605 is finally obtained with thirty-eight labels, i.e.,
airplane, animal, baby, beach, bike, bird, boat, building, bus, candle, car, cat, cattle,
cloud, desert, dog, dolphin, elephant, fire, fireworks, horse, ice, jungle, landscape, leaf,
lightning, mountains, penguin, people, rock, sea, ship, sky, sun, swimming, water, wa-
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Fig. 5. Prediction accuracy and F1 measure comparison on WebKB when k = 3 (each column for one sub
dataset from left to right: cornell, texas, washington, wisconsin).

terfall, woman. Around 92% of these images are with more than one label and there are
at most 11 labels annotated to one image. The average number of labels for each image
is 3.85 ± 1.75. The physical linkages are manually added if two images have the same
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label. In this case, 916,364 linkages are gathered. It is common in social networks that
two persons knowing each other may have not added each other as friends online. As
a simulation, we conduct random sampling to select 10,000 linkages from them, and
each node is constrained to be within at least one linkage for empirical study. As a
result, the average number of linkages for each node becomes 12.46±4.87.

To visualize the distinguished semantic meanings passed through different linkages,
we conduct image segmentation following the techniques used in the study [Wang et al.
2001]. Then, each image is represented by a bag of at most sixteen 6-dimensional in-
stances, denoted as Bi = {xij |j = 1, · · · , Ni} where Ni is the total number of seg-
mentations of this image. After clustering on all images’ instances by k-means clus-
tering with k set to 2,000, we get 1,897 instance prototypes for the whole data set
as {p1, · · · ,p1897}. Finally, we map each image bag onto these prototypes by finding
the minimum Euclidean distance from all instances of this bag to each prototype as
ϕq(Bi) = minj=1,··· ,Ni((xij−pq)

⊤(xij−pq))
1
2 , respectively. A similar technique has been

used in studies [Zhou and Zhang 2007; Zhou et al. 2012; Li et al. 2012]. Now, each im-
age is represented by the vector as [ψ1, · · · , ψ1897], where ψq = exp (−ϕq(Bi)

2/σ2) and
σ is the mean distance. As a result, a multi-label dataset with 1,605 images, each of
which has 1,897 features, is obtained. More importantly, we can track the semantic
meaning for each feature according to its corresponding prototype.

First, we randomly conduct 10 trials with the widely used multi-label approach ML-
kNN [Zhang and Zhou 2007] applied over graphs induced by Cont, L, and PSD. The
parameter k is set from {1, 3, 5}, while other parameters are set as default. With the
label ratio changing from the set {5%, 10%, 20%, 40%, 80%}, the performance is evaluat-
ed with five popular multi-label measurements, i.e., average precision (a.p.), coverage
(co.), hamming loss (h.l.), one error (o.e.), and ranking loss (r.l.). For detailed descrip-
tions about these measurements, refer to the study [Schapire and Singer 2000]. As
shown in Table VIII, the prediction performance with our PSD is significantly better
than others when there are fewer labeled data. It is reasonable that when there are
80% labeled data, the performance with PSD and Cont are comparable, since training
data themselves are sufficient to learn a good classifier. Besides, it can be easily seen
that directly using linkages L may lead to inappropriate conclusions about the data.

We also compare the prediction performance of ML-kNN with our PSD to WELL

approach, which was proposed in study [Sun et al. 2010] to handle the weak-label
problem. We find that WELL could not handle this multi-label problem when there
are only 5%, 10% and 20% labeled data due to some optimization errors. Therefore, as
summarized in Table IX, the prediction performance with 40% and 80% labeled data
is compared. In addition to those five popular multi-label measurements, we employ
the measurements Macro-F1 (ma.) and Micro-F1 (mi.) as in the work [Sun et al. 2010].
Results show that ML-kNN with PSD is a little bit higher on hamming loss and one
error, whereas it is significantly better than WELL on all other measurements.

It is noteworthy that the time cost of learning PSD for the multi-label scenario may
be much higher than that of the multi-class scenario due to the propagation over the
whole graph in the second stage. In fact, we find that the average time for learning
PSD per trial is 151.13 minutes, which is still acceptable.

Then we randomly choose five images as shown in Fig. 6(a) to visualize the semantic
meanings distinguished through different linkages during the PSDml learning, where
images (1), (2) and (3) form a clique and images (3), (4) and (5) compose a non-metric
linkage, which can also be observed by their true labels.

First, for the Clique(123), intuitively those linkages (1)(2), (2)(3) and (1)(3) should
share the semantic meanings: cloud, sky, and leaf. From the learned pairwised distance
metrics, i.e., w12, w23 and w13, we match the two largest weighted prototypes for each
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Table VIII. ML-kNN performance comparison with different metrics. ↑ indicates “the larger, the better”;
↓ indicates “the smaller, the better”. The best performance and its comparable performances are bolded
(statistical significance examined via pairwise t-tests at 95% confidence level).

k Ratio Metric a.p.↑ co.↓ h.l.↓ o.e.↓ r.l.↓

Cont .605±.005 10.538±.057 .100±.000 .457±.011 .113±.001
5% L .576±.009 11.189±.217 .102±.002 .539±.030 .113±.003

PSD .614±.006 10.527±.058 .100±.000 .447±.012 .104±.001

Cont .635±.004 10.135±.048 .095±.000 .374±.006 .101±.001
10% L .594±.005 10.677±.087 .101±.000 .480±.020 .105±.001

PSD .644±.004 10.126±.051 .095±.000 .365±.005 .101±.001

Cont .690±.004 9.513±.036 .084±.000 .248±.013 .086±.000
k = 1 20% L .623±.006 10.456±.095 .101±.000 .372±.019 .099±.001

PSD .699±.005 9.504±.035 .083±.000 .239±.013 .086±.000

Cont .783±.003 8.186±.051 .063±.000 .111±.006 .061±.000
40% L .646±.005 10.241±.079 .101±.000 .323±.010 .093±.001

PSD .793±.004 8.176±.051 .062±.000 .102±.006 .061±.000

Cont .934±.002 4.864±.028 .021±.000 .017±.003 .019±.000
80% L .662±.004 9.843±.038 .084±.000 .286±.010 .085±.000

PSD .934±.002 4.864±.028 .021±.000 .017±.003 .019±.000

Cont .567±.006 10.624±.123 .099±.000 .461±.026 .110±.002
5% L .536±.016 11.808±.489 .100±.000 .479±.025 .129±.010

PSD .576±.006 10.622±.124 .098±.000 .452±.029 .100±.001

Cont .588±.007 10.194±.076 .097±.000 .429±.020 .101±.002
10% L .581±.006 11.038±.094 .101±.000 .401±.017 .112±.002

PSD .600±.005 10.185±.078 .096±.000 .413±.016 .091±.001

Cont .632±.007 9.588±.053 .094±.000 .355±.021 .090±.001
k = 3 20% L .620±.004 10.359±.079 .100±.000 .334±.016 .099±.000

PSD .643±.007 9.573±.057 .093±.000 .343±.019 .089±.001

Cont .695±.007 8.396±.068 .085±.000 .272±.012 .071±.001
40% L .669±.003 9.805±.064 .099±.000 .277±.008 .086±.001

PSD .705±.006 8.385±.068 .084±.000 .261±.011 .070±.001

Cont .808±.003 5.704±.045 .060±.000 .150±.006 .036±.000
80% L .717±.003 9.043±.050 .078±.000 .193±.010 .072±.000

PSD .817±.004 5.707±.059 .061±.000 .138±.005 .035±.000

Cont .569±.010 10.745±.111 .100±.000 .412±.029 .112±.002
5% L .530±.019 11.522±.478 .100±.001 .446±.024 .129±.009

PSD .579±.011 10.736±.123 .099±.000 .402±.026 .111±.002

Cont .588±.009 10.265±.077 .099±.001 .391±.014 .103±.002
10% L .572±.008 11.012±.229 .100±.000 .399±.023 .115±.004

PSD .600±.007 10.256±.077 .098±.001 .386±.015 .102±.002

Cont .627±.005 9.629±.087 .097±.000 .339±.009 .092±.002
k = 5 20% L .621±.003 10.357±.110 .099±.000 .339±.010 .100±.001

PSD .638±.007 9.612±.077 .096±.000 .340±.012 .091±.002

Cont .679±.004 8.529±.066 .089±.000 .276±.005 .075±.001
40% L .680±.005 9.538±.060 .097±.001 .254±.009 .082±.001

PSD .691±.003 8.510±.078 .088±.000 .274±.009 .074±.001

Cont .778±.002 6.208±.044 .066±.000 .172±.006 .043±.000
80% L .745±.004 8.589±.048 .074±.000 .146±.008 .066±.000

PSD .789±.002 6.201±.055 .065±.000 .170±.004 .042±.000

distance metric to these three images, respectively. As shown in Fig. 6(b), we find that
these three linkages share the semantic meanings cloud, sky completely with each
other. Although the semantic meaning leaf should be shared by these three linkages,
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Table IX. Performance comparison with WELL, ↑ indicates “the larger, the better”;
↓ indicates “the smaller, the better”. The best performance and its comparable per-
formances are bolded (statistical significance examined via pairwise t-tests at 95%
confidence level).

Ratio 40% 80%

Method WELL ML-kNNPSD WELL ML-kNNPSD

a.p.↑ .542±.004 .793±.004 .854±.002 .934±.002
co.↓ 21.983±.137 8.176±.051 11.580±.080 4.864±.028
h.l.↓ .061±.000 .062±.000 .020±.000 .021±.000
o.e.↓ .000±.000 .101±.006 .000±.000 .017±.003
r.l.↓ .597±.004 .061±.000 .198±.002 .019±.000
ma.↑ .514±.004 .574±.004 .866±.002 .883±.002
mi.↑ .574±.000 .592±.002 .891±.000 .896±.000

PSDml empirically finds different regions shared between different pairs. Actually, this
is the purpose of PSD that distinguishes different linking reasons for different instance
pairs.

As depicted in Fig. 6(c) for NonM(345), we also match the two largest weighted pro-
totypes for each linkage to these images according to the pairwised distance metrics
w34 and w35, respectively. It can be easily observed that linkages (3)(4) and (3)(5) pass
totally different semantic meanings as we expected. It should be noted that since im-
age (3) and image (5) only share the content car, it is reasonable that the two largest
weighted prototypes for linkage (3)(5) are different parts of the car.

5. CONCLUSIONS
Distance metric learning has received much attention during the past decade. Al-
though many effective algorithms have been developed, few tried to exploit physical
link information naturally existing in many real tasks. Moreover, when there are only
limited labeled data or no additional constraints are available, current distance metric
learning techniques can hardly lead to good performance.

By noting that data points in real tasks are often connected by physical links, in
this paper we propose the PSD approach which tries to distinguish different seman-
tic meanings passed through different linkages. PSD is able to work even when there
are very limited labeled training data points and no explicit constraints given; this
owes to its exploitation of the structure of physical linkages, particularly the key ob-
servations that non-metric and clique linkages imply the appearance of different or
unique semantic meanings, respectively. We formulate the PSD learning process into
an optimization problem that can be solved effectively. The usefulness of PSD is empir-
ically verified in both multi-class learning and multi-label learning on a broad range
of datasets.

One interesting future work is to improve our PSD approach for even larger real
world applications, particularly in multi-label scenario. In our current experimental
setting, the physical linkages are simulated by considering the shared labels between
different multi-label instances. In fact, linkage information can also be obtained by
considering information such as images taken by the same person, at the same date or
at the same place; such considerations lead to more experimental data sets for future
studies. Another insight direction is to categorize the relationships between nodes by
exploiting the edge label information.
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(a) Images with ground-truth labels and physical linkages

(b) Semantic patterns shared by three linkages within Clique(123)

(c) Different semantic patterns passed through different linkages within NonM(345)

Fig. 6. Examples of semantic patterns possessed by different linkages (Images are from MSRA-MM data
set; Patterns are circled by red line).
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