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Abstract—Datasets from Electronic Health Records (EHRs) are
increasingly large and complex, creating challenges in their use
for predictive modeling. The two major challenges are large-scale
and high-dimensionality. One of the common way to address
the large-scale challenge is through use of data phenotypes:
clinically relevant characteristic groupings that can be expressed
as logical queries (e.g., “senior patients with diabetes”). With the
increasing use of machine learning across the continuum of care,
phenotypes play an important role in modeling for population
management, clinical trials, observational and interventional
research, and quality measures. Yet, phenotype interpretation
can often be difficult and require post-hoc clarifications from
experienced clinicians. For example, detailed analysis may be
needed to find that all patients in a a phenotype are diabetic
seniors with complications from previous surgery. Moreover, the
high-dimensionality problem is often addressed either separately
or simultaneously with phenotyping by dimension reduction
methods that may further hinder interpretability. In this pa-
per, we introduce the notion of interpretable data phenotypes
generated by an unsupervised learning technique. Methods are
designed to disambiguate relative feature memberships, thus
facilitating general clinical validation, and alleviating the problem
of high-dimensionality. The empirical study applies the proposed
unsupervised interpretable phenotyping method to a real world
healthcare dataset (MIMIC), then uses hospital length of stay
as a reference prediction task. The results demonstrate that
the proposed method produces phenotypes with improved in-
terpretability and without diminishing the quality of prediction
results.

Index Terms—EHRs, High-Dimensionality, Data Phenotyping,
Unsupervised Learning, Interpretable Phenotyping.

I. INTRODUCTION

Machine Learning (ML) problems in the healthcare space
are often impeded by the curse of dimensionality: there can be
tens of thousands of potentially influential features for a given
prediction, many or most of which are largely missing. In col-
laboration with medical experts, standard feature engineering
methods are typically able to identify the salient features for
a given problem. However, through that approach it is easy
to eliminate sparse features for which certain values happen
to be critical for evaluating special cases, and particularly so
when those cases involve complex interactions which are not
yet well understood. Moreover, reliance on manual feature
curation and medical experience can slow model development,
particularly for outsourced analyses or other high-throughput
model types. For these reasons, unsupervised ML has become
an increasingly popular solution to automatically extract clin-
ically relevant data patterns to enhance predictions.

However, predictive healthcare problems often require
model transparency and interpretability. Let length of stay
in hospital (LOS) prediction serve as one example of such
an application. If a prolonged LOS is predicted, it may
indicate that a patient is likely to suffer from complications
due to existing comorbidities, which would require medical
intervention. On the other hand, it may otherwise indicate
operational delays due to either insufficient staffing or week-
end delays [1]–[3], which might conversely require operational
changes, or possibly no intervention at all. Hence, transparency
(i.e., the linkage of individual predictions to data inputs)
and interpretability (i.e., the ability to explain why a model
made a given prediction) are critical components of predictive
healthcare models. This need for semantic interpretability is
not limited to the LOS use-case. Rather, interpretability is
becoming increasingly important across the continuum of care
for hundreds of predictive modeling use-cases.

Considering that typical deployments of EHR systems
across the world capture tens of thousands of raw features
(e.g., diagnosis codes and procedure codes) for millions of
encounters every year, the curse of dimensionality becomes
a major obstacle in developing highly effective and inter-
pretable ML models [4]. Data phenotyping (a.k.a., electronic
phenotyping) has emerged to describe data groupings that are
associated with clinically relevant concepts which can capture
semantics for interpretation. For example, when evaluating
a prediction, comparing a large set of independent features
such as {“excess growth”, “low blood sugar”, etc.} requires
time and significant medical understanding to interpret. In
contrast, a single summarizing phenotype like “complications
resulting from diabetes” is quickly understandable even to a
layperson [5].

Unsupervised ML approaches like clustering [6], [7] and
matrix/tensor factorization [5], [8] have been applied to gen-
erate data phenotypes with demonstrable success. However,
existing investigations of these approaches typically focus
either on uncovering novel health states [9] or on highly
accurate detection of specific, well-known diseases [10], for
which the ease of interpretability is not addressed. Because
of this, phenotypes generated through these approaches often
have nebulous feature memberships: each feature is associated
with each phenotype via continuous values that are difficult to
translate in real world terms (as shown in Fig. I). Take non-
negative matrix factorization (NMF) [8] as an example. This



Fig. 1. An example of NMF feature assignment.

unsupervised method is very powerful in addressing both the
large-scale and high-dimensionality problems. NMF can be
used to represent each patient in a reduced feature space (e.g.,
Phenotype 1 to 3 in Fig. I) instead of the original feature
space (e.g., Feature A to F in Fig. I). However, for interpretable
modeling, the relationship between each phenotype and the set
of original features with semantic meanings can be unintuitive.
This is especially true when the raw features are binary-valued
or categorical. For example in Fig. I, if Feature A represents a
diagnosis code such as, “has unspecified anemia”, it is difficult
to interpret what the value of “1.97” means for Phenotype 2.

Interpretable ML has become a prominent subject in recent
years as ML systems have started impacting the lives of
billions of people. In the context of ML, “interpretablity”
is defined (perhaps most generally) as the ability to explain
a model in human terms (Doshi-Velez and Kim [11]). Kim
et al. [12] define it more specifically as “the degree to
which a human can consistently predict the model’s result”.
For this work, interpretability may include the ability for
a clinician to understand why certain features are grouped
together physiologically. However, we focus on the ability
for a data scientist to explain why any individual prediction
was made, particularly when the machine logic relies on rare
combinations of features.

Interpretability of ML models is especially relevant, for
example, where fairness is critical, where the consequences
for ML-based decisions are far reaching, or where the cost of
mistakes is high. This is especially true at point of care, where
decision-making can literally be a matter of life and death [13].
Thus interpretable ML is crucial in the construction of decision
support systems in healthcare. There is a large body of work
on interpretable ML in supervised learning [14]. However, the
literature in unsupervised learning mainly focuses on classi-
cal clustering techniques [15]. This work compares classical
clustering with other techniques from unsupervised ML.

To provide clearly interpretable phenotypes that can be
used in generic ML tasks, we propose a new unsupervised
phenotyping framework that also can alleviate the curse of
dimensionality before the data are used in any potential
ML tasks. Specifically, unsupervised ML methods can be
used to form phenotypes with clear feature memberships by
grouping features rather than patients. Then, using a proposed
expressivity score, the set of phenotypes can be used to
replace the set of features describing each patient. Depending
on the number of phenotypes determined, the dimensionality
of each observation can thus be significantly reduced. And,
because each phenotype thus has a clear, boolean inclusion of
original features, this simplifies semantics for interpretation.

After applying the proposed framework to data from the
Medical Information Mart for Intensive Care III (MIMIC-
III) database [16], we evaluate how the proposal will affect
the hospital length of stay prediction problem on two dif-
ferent sub-tasks (i.e., Neonatal and Geriatric). The empirical
study demonstrates that this framework can be used, with no
detriment to the tasks’ performance metrics, while providing
improved interpretability. In summary, the main contributions
of this work are as follows:
• We propose a new unsupervised phenotyping framework

to generate easily interpretable phenotypes as new fea-
tures to describe each observation that can then be used
for generic ML tasks of EHRs.

• This proposed framework can not only alleviate problems
from high-dimensionality often faced in EHR applica-
tions, but also provide improved interpretability which is
crucial for healthcare.

• We evaluate phenotypes generated through the proposed
framework on two LOS prediction problems, for which
improved interpretability can be observed without signif-
icantly diminishing the LOS prediction performance.

II. RELATED WORK

A. Data Phenotyping

Expanding upon the concept of biological phenotypes, data
phenotypes are groupings of EHR data that expose clinically
relevant underlying patterns. Having emerged from concepts
of genetic expression, these groupings have historically been
used to describe disease patterns or to create patient cohorts
for medical and epidemiological study. These applications his-
torically relied on rule-based and statistical methods (“manual
methods”) [9]. However, with the burgeoning development of
ML methods in recent years, unsupervised learning approaches
are now used to uncover novel patterns in EHR data.

Non-negative Matrix Factorization (NMF) and Non-negative
Tensor Factorization (NTF) have shown particular utility in
EHR pattern discovery. For example, Joshi et al. [8] demon-
strated that the use of NMF in combination with the bag-of-
words NLP technique is helpful in deriving clinically valid
comorbidity phenotypes from clinical notes. Marble [5] is
another example using a series of tensor-factorization-based
approaches designed to find phenotypes in categorical health
data. Both approaches demonstrated competitively predictive
phenotypes deemed to be interpretable by clinical practition-
ers.

However, in healthcare AI, models and features are not
designed by clinical practitioners alone. Rather, they are often



generated by data scientists with limited clinical background,
and optimized for speedy feature validation to enable rapid
development. Ideally, both clinical and data science subject
matter experts should be able to vet the resultant phenotypes
without requiring continual interpretation from each other on
the semantic logic. Thus, while NMF/NTF methods are able to
produce “high-throughput” phenotypes (i.e., faster than man-
ual methods) [5], the validation process remains a bottleneck
for deployment in automated ML pipelines. Moreover, feature
membership in NMF/NTF-generated phenotypes is ill-defined,
since it may be the case that any given phenotype discovered
by these techniques is associated with all possible features by
some fractional value. This leads to arbitrary cutoffs, as well
as feature-phenotype associations that are not semantically
translatable and thus introducing subjectivity.

Clustering is another approach to EHR data grouping,
commonly used to generate patient cohorts for epidemiological
study. The k-means algorithm, for example, is one of the most
popular point-assignment based clustering algorithms in use.
Among recent work, [6] used k-means to identify 3 groups of
patients suffering from chronic obstructive pulmonary disease
(COPD) and [7] used k-means to group patients by an MCA-
reduced set of boolean diagnoses. Another popular clustering
approach is hierarchical clustering [17]. [18], for example,
used agglomerative hierarchical clustering to produce groups
of like-illnesses relevant to chronic disease management in
primary care. However, clustering approaches almost invari-
ably generate phenotypes by clustering patients. And while
interpretation of clustering results may be easier relative to the
aforementioned factorization methods, once again any given
phenotype may be associated with all possible features and
medical experience is often required.

In this work, we aim to generate data phenotypes that
are interpretable in their formation by disambiguating feature
membership. These interpretable phenotypes can then be used
to add interpretability to other generic ML tasks (e.g., addi-
tional clustering or supervised learning).

B. Feature Grouping

There are alternative strategies for grouping clinical fea-
tures without unsupervised learning, aside from standard fea-
ture engineering. One prominent example is the Phenotype
Knowledgebase (PheKB) [19]. PheKB is a tool and public
repository for community-generated, pre-validated rule-based
phenotyping algorithms. While crowdsourcing rule definitions
in this way reduce the burden of validation in some contexts,
the database is not comprehensive. Also, importantly, the
PheKB algorithms may not perform well across data from
different healthcare systems [20] and they can be cumbersome
to produce.

Another alternative strategy is the use of medical surveil-
lance and billing codes as grouping units, such as the Health-
care Cost and Utilization Project’s (HCUP) Clinical Classi-
fication Software (CCS) [21] codes. These codes are based
on the International Classification of Diseases (ICD) [22]
codes, which are often used as the raw features that are

manually designed for medical reporting. Since ICD codes are
highly granular, they can present an unmanageable number of
codes for the problems under discussion. HCUP’s CCS codes
group individual ICD codes into more manageable categories,
organized by higher-level concepts such as “body systems”.
Level 2 CCS categories are often used in health informatics for
data interpretation. However, these manually generated groups
do not capture variability in the specific datasets, nor do they
encapsulate the intricate interactions among the EHR features
such as labs and medications with diagnosis codes. Moreover,
because both the ICD and CCS systems are pre-specified, they
cannot be expanded to include custom features (e.g., specific
biometric ranges), and are hence not suitable surrogates for
interpretation.

C. Interpretable ML

We refer the reader to surveys of interpretable supervised
learning models such as [14] for a comprehensive overview.
[13] describes specific challenges in healthcare ML inter-
pretability. For unsupervised learning, prominent examples
of interpretable models include constraint-based clustering
models that use decision trees [23], models that first separate
the feature space using a decision tree by greedily maximizing
a heterogeneity measure [24], and probablistic models that
produce clustering rules for each cluster [15]. An active
learning model approach is introduced by Gilbert et al. [25]
for discovering rule sets for describing clusters. Interpretable
ML models such as these often focus on one specific ML task
(e.g., supervised learning or clustering), whereas in this work
we aim to prepare the EHR data with interpretable phenotypes
to be used in any generic ML tasks (in addition to addressing
the high-dimensionality challenge).

III. THE PROPOSED METHOD

To facilitate interpretation, we aim to find phenotypes as
clinically relevant feature groupings that are distinct and each
contain a concise feature subset to semantically show what the
phenotype is expressing.

A. Phenotype Generation

Consider an EHR data set X ∈ Rn×d with n patients, each
described by d features. We aim to find k (k � d) phenotypes
P = {P1, P2, · · · , Pk}, where each phenotype Pi contains mi

features such that
∑k

i mi = d and Pi ∩ Pj = ∅ for any 1 ≤
i < j ≤ k. The main goal is to ensure that all features within
each group are as similar as possible considering all patients.
Thus, the problem is to partition d features, each represented
by n patients as F = X> ∈ Rd×n (i.e., the transpose of X),
into k clusters in which each feature f ∈ R1×n belongs to
the cluster with the nearest mean (i.e., cluster center or cluster
centroid). Therefore, we can formulate the problem as

argmin
P

k∑
i=1

∑
f∈Pi

dis(f , µi) (1)

where µi is the center of the i-th cluster, and dis(·, ·)
calculates the distance between two features using one of many



popular distance functions (for example, Euclidean distance
or Manhattan distance). This becomes a standard clustering
problem and many traditional clustering methods (e.g., k-
means, agglomerative clustering, or spectral clustering [17])
can be applied to group features into k clusters.

B. Representation in Phenotype Space

Given k cluster-generated feature groups P , where P =
{P1, P2, · · · , Pk}, we propose to use phenotyping as a di-
mension reduction process and to represent patients in the
phenotype space for any generic tasks on the data. In other
words, each phenotype becomes a new single feature to
describe a patient. Thus, we can reduce the size of the patient
matrix from Xn×d to Y n×k, where the curse of dimensionality
can be alleviated for any future tasks.

The challenge then is to calculate the new feature values
Y n×k of each patient with respect to each phenotype gener-
ated, since each phenotype may consist of multiple original
features. We propose an expressivity score to calculate each
element of Y , that is, each Yij for the i-th patient with respect
to the j-th phenotype. Considering that each phenotype Pj

contains mj original features as

{fj1, fj2, · · · , fjmj
} (2)

many strategies can be adopted to represent the phenotype
with respect to different data types. For example, the average
value of each feature over all patients can be used to represent
the phenotype’s corresponding feature value as

Pj = [avg(fj1), avg(fj2), · · · , avg(fjmj
)] (3)

Then, the expressivity score Yij can be calculated based on
the distance between the i-th patient described by the features
in Pj and the j-th phenotype as

Yij = sim(X
Pj

i , Pj) (4)

where 0 ≤ sim(., .) ≤ 1, and X
Pj

i means the original
feature values of the i-th patient described by the features
in j-th phenotype and different similarity functions can be
adopted for sim considering the specific application scenario.
Thereafter, Y n×k can be obtained for generic tasks, which
not only overcomes the high-dimensionality problem in the
original feature space, but also provides clear semantics of
each phenotype (i.e., each new feature) for interpretation using
a subset of original features. The overall procedure of the
proposed interpretable phenotyping framework is summarized
in Alg. 1.

IV. EXPERIMENTS

To evaluate the proposed phenotyping framework for EHR
data, we apply it to two cohorts from the MIMIC-III [16] data
and use the LOS problem as an example of generic ML task
for evaluation.

Algorithm 1 Interpretable Phenotyping
Input: EHR data X ∈ Rn×d, the number of phenotypes k.
Obtain the transpose of X as F = X>

Clustering features in F into k disjoint clusters
for each cluster do

Obtain representation using original features as Eqn. 3
end for
for i = 1 to n do

Compute the expressivity score using Eqn. 4
end for
return F for interpretation and Y n×k for generic ML

A. Data

MIMIC-III is a large, freely-available, and de-identified
database of critical care encounters at the Beth Israel Dea-
coness Medical Center in Boston from 2001 to 2012 [16].
We selected two subset cohorts. The first, “Neonatal” subset
contains all encounters of patients who were transferred to a
neonatal Intensive Care Unit (ICU). The second, “Geriatric”
subset is that of all encounters for patients aged 65 and
above. Diagnoses and procedures are encoded from the 9th

edition of the ICD, hence referenced as “ICD-9” [22]. ICD-
9 code distributions for both subsets are listed in Table I,
where an encounter means an interaction between a patient and
healthcare provider(s) for the purpose of providing healthcare
service(s) or assessing the health status of a patient. Therefore,
each patient may have multiple encounters due to different
interactions. Using only the diagnosis and procedure codes as
features, the value of each feature is binary, meaning present
or not.

B. Phenotyping Setup

We apply the proposed phenotyping method to obtain new
data representations for each cohort without including addi-
tional information. To comprehensively evaluate the proposed
framework, we apply several standard clustering methods to
group features as described in the following list, then compare
the relative performance. Given the binary values of the
features, Manhattan distance is used to measure the distance
between two features.
• K-Means(f): k-means feature clustering [17]. K-means

clustering is applied directly to group features (rather
than patients), where each feature is assigned to only one
phenotype.

• Agg(f): hierarchical (agglomerative) feature clustering
[17]. Agglomerative clustering is applied directly to
group features, similar to K-Means(f).

• NMF(r): a restricted variant of NMF [8]. As shown in
Fig. I, with the standard NMF, each feature can be as-
sociated with multiple phenotypes of different strengths,
which makes interpretation hard. In this variant, each
feature is assigned to a single phenotype of the strongest
association value. For example, feature F is restricted to
be in Phenotype 2 only as shown in Fig. I.



TABLE I
MIMIC-III DATA SUBSETS

Subset Encounters ICD-9 Diagnoses ICD-9 Procedures Positive Distribution
Neonatal 8,101 927 164 LOS > 4 days P(+) = 0.53
Geriatric 26,074 4,889 1,581 LOS ≥ Mean (10.0467 days) P(+) = 0.33

(a) Neonatal (b) Geriatric

Fig. 2. Comparison of binary LOS classification performance (ROC AUC) with vs. without procedure codes besides diagnosis codes when the number of
phenotypes are increasing using PCA.

• Marble(r): a restricted variant of Marble [5]. Similar to
NMF(r), each feature is assigned to a single phenotype
of the strongest association value.

After we obtain the phenotypes using the above mentioned
methods where each feature is assigned to only one phenotype,
we treat each phenotype as one new feature. We calculate the
new data representation, that is the expressivity score Yij of
the i-th patient for the j-th phenotype, using the Manhattan
distance since all feature values are binary to calculate the
similarity in Eqn. 4. This can be written as

Yij = 1− Manh(X
Pj

i , Pj)

mj
(5)

where Pj is a simple mj-length vector of 1’s (i.e., the case
when every feature is present).

C. Task Setup

For each cohort selected, we evaluate the task performance
through a binary LOS prediction problem. To evaluate the
proposed framework for different application scenarios, we
set LOS > 4 as the positive class for the Neonatal cohort
to balance the positive and negative classes, while setting the
average (mean) LOS as the threshold for the Geriatric cohort
for a general setting where the positive and negative classes
are imbalanced as shown in Table I.

Besides the proposed phenotyping framework, we also
apply some state-of-the-art dimension reduction methods for
comparison.
• ICD-9: the original data presentation without dimension

reduction.
• CCS [21]: the manually-generated level-2 categoriza-

tions.

• PCA [26]: a standard unsupervised dimension reduction
method.

• NMF [8]: the standard NMF method.
• Marble [5]: the standard Marble method.
Based on the data representations obtained using the above

methods, XGBoost [27] using default parameters is applied for
the binary LOS classification problem to generate predictions
at the encounter level (for each patient-clinic interaction),
since different interactions from the same patient can also
result in different LOS. Then, four evaluation metrics are
used to compare relative performance over the binary LOS
classification problem, including accuracy, precision, recall,
and ROC AUC score, averaged over 10 trials of 80-20 holdout
validation. Each method is tested on the same set of 10 holdout
datasets.

D. Ablation Study

In this ablation study, we evaluate whether the inclusion
of procedure codes (i.e., ICD-9 codes) besides the diagnosis
codes can significantly affect the LOS prediction performance.
We also evaluate how the number of phenotypes can affect said
performance using PCA as a standard dimension reduction
method. Considering that we can apply PCA separately or
together to diagnosis codes and procedure codes, we compare
three different settings, i.e., diagnosis only, diagnosis and
procedure grouped separately, and diagnosis and procedure
grouped together.

As shown in Fig. 2, for the Neonatal LOS problem no
significant difference can be observed with the inclusion of
procedure codes, regardless of how variables are combined.
In contrast, there is a significant difference for the Geriatric
LOS problem, where the inclusion of procedure codes leads
to significantly better performance. A potential reason for this



Fig. 3. LOS prediction performance comparison: ROC AUC relative to the number of phenotypes. (Left: Neonatal; Right: Geriatric (i.e., 65+))

is that we have a relatively larger variety in procedures for the
cohort of Geriatric, which can result in different LOS. Notably,
the method of combination makes no significant difference.
Moreover, the trend in performance relative to the number of
phenotypes is similar regardless of which code types are in-
cluded. Fewer than 100 phenotypes are sufficient for prediction
regardless of the inclusion of procedure codes. Thus, we use
only diagnosis codes in the following experiments for the sake
of simplicity.

E. Task Performance

In this subsection, we compare the LOS prediction per-
formance based on the data representations obtained through
different phenotyping methods applied to the diagnosis only
data.

As illustrated in Fig. 3, the performance converges for
both cohorts when the number of phenotypes reaches around
200. Compared to 13, 000+ individual diagnosis codes, 200
phenotypes is significantly fewer (i.e., dimension is well
reduced) and thus reduce the cost for any further generic
ML task and facilitate the model interpretation. It should be
noted that Marble results are not included for the Geriatric
task. This is because that the computational time of Marble
increases dramatically relative to an increasing number of
desired phenotypes, rendering it intractable for the Geriatric
problem, as shown in Fig. 4.

From Fig. 3, it can be observed that when the number of
phenotypes is small, the standard NMF consistently provides
the best performance, while the performance of PCA is not
consistent for these two cohorts (i.e., good for Geriatric but
not for Neonatal). However, both standard NMF and PCA
lack clear feature assignments for interpretation. Yet, the more
interpretable, restricted NMF (i.e., NMF(r)) has degraded per-
formance. K-Means(f), on the other hand, demonstrates sim-
ilar performance to NMF but with clear feature assignments
for interpretation. When the number of phenotypes is large
enough, all phenotyping methods provide similar performance,

Fig. 4. Computation time comparison per number of phenotypes on Neonatal

and thus methods with better interpretability (e.g., K-Means(f))
are preferred.

To succinctly compare all methods including the two base-
lines, ICD-9 and CCS, we take the case of 200 phenotypes
as an example for each cohort and compare their performance
in Table II, where the best performance of each evaluation
metric is emphasized in bold. It should be noted that the
average performance of 10 trails is reported with its standard
deviation in the brackets as “mean (std)”. For the Neonatal
LOS problem, the CCS baseline yields the best precision,
yet is the worst performer by a significant margin for all
other performance metrics. In contrast, the other approaches
yield similar precision, with comparable performance across
all other metrics, although K-Means(f) yields both the best
Accuracy and best ROC AUC score. For the Geriatric LOS
problem, all approaches, including the CCS baseline, yield
similar performance across metrics, with the exception of
recall that has larger variance. Therefore, it appears that
the proposed phenotyping framework will not significantly
sacrifice task performance (and in some cases may improve



TABLE II
COMPARISON OF LOS PREDICTION PERFORMANCE WITH 200 PHENOTYPES

(MEAN (STD) OF 10 TRIALS AND THE BEST METHOD FOR EACH METRIC IS IN BOLD)

Metric ICD-9 CCS PCA K-Means(f) Agg(f) NMF NMF(r) Marble Marble(r)
Neonatal

Accuracy 0.8565 0.7944 0.8529 0.8579 0.8564 0.8554 0.8572 0.8559 0.8574
(0.0055) (0.0088) (0.0057) (0.0055) (0.0054) (0.0046) (0.0061) (0.0057) (0.0052)

Precision 0.828 0.8555 0.8189 0.8302 0.8275 0.8222 0.8321 0.829 0.8309
(0.0063) (0.0099) (0.0089) (0.0057) (0.0054) (0.0065) (0.0068) (0.0059) (0.0057)

Recall 0.9198 0.7357 0.9272 0.9195 0.9203 0.9274 0.9147 0.9168 0.9172
(0.0121) (0.0152) (0.0047) (0.0099) (0.0081) (0.0101) (0.01) (0.0088) (0.0088)

ROC AUC 0.8526 0.7980 0.8483 0.8541 0.8524 0.8510 0.8536 0.8522 0.8537
(0.0053) (0.0086) (0.0061) (0.0055) (0.0054) (0.0047) (0.0061) (0.0057) (0.0052)

Geriatric
Accuracy 0.7499 0.75 0.7541 0.7557 0.7553 0.7635 0.7479 0.748 0.7482

(0.0033) (0.0032) (0.0043) (0.0031) (0.0046) (0.0045) (0.0045) (0.0028) (0.0026)
Precision 0.7543 0.7064 0.6947 0.7387 0.7366 0.7372 0.7339 0.7332 0.7349

(0.0115) (0.0116) (0.0097) (0.0098) (0.0118) (0.0102) (0.0136) (0.0071) (0.0072)
Recall 0.3535 0.4091 0.4479 0.3961 0.3963 0.4343 0.3643 0.3654 0.3645

(0.0092) (0.0067) (0.0101) (0.0113) (0.0112) (0.0126) (0.0103) (0.0083) (0.0081)
ROC AUC 0.6486 0.6629 0.6758 0.6638 0.6635 0.6793 0.6498 0.6502 0.6501

(0.0044) (0.0033) (0.0055) (0.0048) (0.0061) (0.0063) (0.0057) (0.0041) (0.0038)

TABLE III
COMPARISON OF NEONATAL LOS PREDICTION PERFORMANCE WITH 20 PHENOTYPES
(MEAN (STD) OF 10 TRIALS AND THE BEST METHOD FOR EACH METRIC IS IN BOLD)

Metric ICD-9 CCS PCA K-Means(f) Agg(f) NMF NMF(r) Marble Marble(r)
Accuracy 0.8565 0.7944 0.8454 0.8583 0.8569 0.8553 0.8568 0.8417 0.8503

(0.0055) (0.0088) (0.0063) (0.0053) (0.0054) (0.0049) (0.0057) (0.0066) (0.0062)
Precision 0.8280 0.8555 0.8140 0.8300 0.8286 0.8234 0.8329 0.8102 0.8214

(0.0063) (0.0099) (0.0080) (0.0060) (0.0059) (0.0061) (0.0059) (0.0071) (0.0074)
Recall 0.9198 0.7357 0.9176 0.9207 0.9198 0.9249 0.9125 0.9162 0.9166

(0.0121) (0.0152) (0.0081) (0.0104) (0.0082) (0.0097) (0.0103) (0.0075) (0.0099)
ROC AUC 0.8526 0.7980 0.8410 0.8544 0.8530 0.8510 0.8534 0.8371 0.8463

(0.0053) (0.0086) (0.0065) (0.0052) (0.0054) (0.0050) (0.0057) (0.0067) (0.0062)

performance), while reducing the dimensionality of the prob-
lem. More importantly, the proposed phenotyping framework
can facilitate interpretation as described in the following
subsection.

F. Model Explanation

In this subsection, we evaluate how the proposed framework
can help in model explanation. To explain the prediction
model’s behavior, one way is to check which features are
used heavily to make the prediction decision, for example via
Local Interpretable Model-agnostic Explanations (LIME) [28]
and SHapley Additive exPlanations (SHAP) [29]. We take
the Neonatal task with 20 phenotypes as a case study for
which a performance comparison between different methods
can be found in Table III, where the average performance of
10 trails and its standard deviation in the brackets as “mean
(std)” are reported. Similar to the case with 200 phenotypes,
values for performance metrics are generally similar. While
the CCS approach provides the worst performance in terms of
ROC AUC, other approaches yield similar performance, and
K-Means(f) yields the best.

One potential reason that the interpretable phenotyping
methods (K-Means(f), Agg(f) and NMF(r)) yield similar pre-
diction performance on this Neonatal cohort is that the meth-
ods produce similar phenotypes, as observed in Fig. 5. Con-

cretely, when comparing feature membership between pairs of
these 20 phenotypes (pairs of phenotypes from two different
phenotyping methods), at least 14 pairs are essentially identical
between any two of the methods. For example, phenotype
14 of Agg(f), phenotype 10 of NMF(r), and phenotype 15
of K-Means(f) are essentially the same (see Fig. 5). This
demonstrates that different traditional clustering methods can
be adopted in our framework to generate interpretable pheno-
types for the sake of different application purposes, while more
efficient and easy-to-use ones like K-Means(f) are preferred.

To avoid potential bias based on our choice of interpretation
method, we applied both LIME [28] and SHAP [29] to
evaluate the interpretable methods (ICD-9, CCS, K-Means(f),
and NMF(r)). It should be noted that, SHAP can provide
both global and instance-level interpretation, while LIME is an
instance-level prediction explainer. To compare between these
two interpreters, we also obtain the global feature importance
for LIME by aggregating over instance-level explanations.
Concretely, global feature importance is assessed as the aggre-
gate mean importance of all prediction instances across all 10
holdout trials. Since SHAP can be applied to each holdout trial,
the average importance values were computed for both LIME
and SHAP, and then validated across the two methods. Because
this assessment yields consistent top phenotypes between the



Fig. 5. Feature membership comparison between different phenotyping methods for 20 phenotypes on Neonatal data

two interpretation methods as shown in Table IV (e.g., top
4 phenotypes are the same although the ranking is slightly
different for the true positive predictions), we present in the
following only the results from LIME for discussion.

TABLE IV
COMPARISON OF FEATURE IMPORTANCE BETWEEN LIME AND SHAP

FOR TRUE POSITIVE PREDICTIONS WITH 20 PHENOTYPES ON NEONATAL

Phenotype LIME Rank SHAP Rank
Label (True Positives) (True Positives)
p 5 1 2
p 3 2 1
p 15 3 3
p 0 4 4
p 13 5 7
p 10 6 12
p 16 7 9
p 9 8 11
p 4 9 8
p 17 10 10
p 2 11 5
p 12 12 13
p 1 13 6
p 18 14 20
p 11 15 16
p 19 16 15
p 8 17 14
p 6 18 17
p 14 19 19
p 7 20 18

Here we take the top five phenotypes used for true positive
prediction as an example (Fig. 6). As shown in Fig. 6, we
can observe that CCS uses very different sets of ICD-9 codes
relative to the other methods. This explains why CCS yields
different prediction performance compared to the rest, and it
shows the weakness of the manually created categories when
considering that the performance was reduced.

Additionally, the proposed K-Means(f) and NMF(r) are able
to capture more information relative to the ICD-9 baseline
and this additional information can be easily validated by
clinicians. An example of this is the set of phenotypes at
rank-2 importance, which include both “Neonatal bradycardia”
and “Primary apnea of the newborn”. Bradycardia means that
the heart rate is extremely slow, and primary apnea means a
cessation of breathing due to a lack of oxygen [30]. Because

bradycardia commonly follows apnea, it is no surprise to see
these two diagnoses grouped together in the same phenotype.
Such a simple connection is easily made with a quick search
online, and thus does not even require the experience of a
clinician.

Furthermore, the proposed framework presents the pheno-
type information with greater specificity than the CCS method.
For instance, although “Neonatal bradycardia” and “Primary
apnea of the newborn” are included in the same Level 2
CCS category (“Other perinatal conditions”), that category is
associated with 127 distinct diagnoses in this dataset. This is
far from easy interpretation and explains why they are not
among the top most important phenotypes for true positive
prediction.

A benefit of using LIME is that we can use its instance-level
interpretation to understand why one instance is misclassified
by a trained prediction model, so as to identify the model’s
potential weaknesses. For the example shown in Fig. 7, we
can observe that this model placed significant negative weight
on several phenotypes that the patient did not express, with
significant positive weight placed on a phenotype that was
only somewhat expressed. Whereas, the one fully expressed
phenotype, containing “Single liveborn...”, has significant neg-
ative weight, which results in the false negative decision. This
indicates some potential bias or weakness of the trained model
that could be improved.

In summary, the proposed unsupervised phenotyping frame-
work can be used to prepare data for generic ML tasks
with no detriment to performance, but clearly reduces the
dimensionality and provides improved model interpretability.

V. CONCLUSIONS AND FUTURE WORK

Considering the complexity and volume of data, as well
as the inherent need for explainable results in predictive
healthcare analytics, this work proposes an unsupervised in-
terpretable phenotyping framework to prepare EHR data for
generic healthcare tasks. Specifically, we propose to group
high-dimensional features into a smaller number of disjoint
groups as phenotypes. Then, each phenotype will be treated as
a new feature to describe each encounter, in which we propose
an expressivity score to describe an encounter using the new



Top Features in True Positive Predictions

Fig. 6. Top features for each model as identified by LIME

Fig. 7. LIME feature importance for one false negative prediction using K-Means(f) phenotypes

feature. Thereafter, the curse of high dimensionality from EHR
can be alleviated. More importantly, each phenotype has a
clear assigment of original features for easy interpretation.
With application to two different cohorts of the LOS prediction
problem, the proposed framework can provide clinically rele-
vant groups of features as phenotypes that are easy to interpret
without sacrificing the prediction performance on the task.

One limitation of this work is that we have restricted
phenotypes to be mutually exclusive, such that each feature is
a member of only a single phenotype. However, this restriction
is not inherent to the framework, and future experimentation

with fuzzy constraints (”fuzzy clustering”) to lift the restriction
would allow phenotypes to capture more nuanced feature inter-
actions. It may also lead to improved performance or potential
knowledge discovery. Another clustering technique of note for
future experimentation is co-clustering, which would compare
both the patient vectors and the feature vectors simultaneously.
Apparently, co-clustering can help find phenotypes shared by
a certain group of patients, where groups of patients are also
identified. Therefore, this is another interesting future direction
to see how co-clustering would compare in terms of the quality
of feature groupings and the predictive performance.
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“Multimorbidity clusters: clustering binary data from multimorbidity
clusters: clustering binary data from a large administrative medical
database,” Applied multivariate research, vol. 12, no. 3, pp. 163–182,
2008.

[19] J. C. Kirby, P. Speltz, L. V. Rasmussen, M. Basford, O. Gottesman, P. L.
Peissig, J. A. Pacheco, G. Tromp, J. Pathak, D. S. Carrell et al., “Phekb:
a catalog and workflow for creating electronic phenotype algorithms for
transportability,” Journal of the American Medical Informatics Associa-
tion, vol. 23, no. 6, pp. 1046–1052, 2016.

[20] S. A. Pendergrass and D. C. Crawford, “Using electronic health records
to generate phenotypes for research,” Current protocols in human
genetics, vol. 100, no. 1, p. e80, 2019.

[21] HCUP, “HCUPnet,” https://www.hcup-
us.ahrq.gov/toolssoftware/ccs/ccsfactsheet.jsp, online; accessed 6-
June-2020.

[22] WHO et al., “International classification of diseases: 9th revision, basic
tabulation list with alphabetic index,” 1978.

[23] B. Liu, Y. Xia, and P. S. Yu, “Clustering through decision tree con-
struction,” in Proceedings of the ninth international conference on
Information and knowledge management, 2000, pp. 20–29.

[24] R. Fraiman, B. Ghattas, and M. Svarc, “Interpretable clustering using
unsupervised binary trees,” Advances in Data Analysis and Classifica-
tion, vol. 7, no. 2, pp. 125–145, 2013.

[25] K. Gibert and U. Cortés, “Clustering based on rules and knowledge
discovery in ill-structured domains,” 1998.

[26] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and
recent developments,” Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
p. 20150202, 2016.

[27] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 785–794.

[28] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[29] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin,
B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From
local explanations to global understanding with explainable ai for trees,”
Nature Machine Intelligence, vol. 2, no. 1, pp. 2522–5839, 2020.

[30] P. Chandrasekharan, M. Rawat, A. M. Reynolds, K. Phillips, and
S. Lakshminrusimha, “Apnea, bradycardia and desaturation spells in
premature infants: impact of a protocol for the duration of ‘spell-
free’observation on interprovider variability and readmission rates,”
Journal of Perinatology, vol. 38, no. 1, pp. 86–91, 2018.


