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Abstract—Multi-clustering, which tries to find multiple inde-
pendent ways to partition a data set into groups, has enjoyed
many applications, such as customer relationship management,
bioinformatics and healthcare informatics. This paper addresses
two fundamental questions in multi-clustering: how to model the
quality of clusterings and how to find multiple stable clusterings.
We introduce to multi-clustering the notion of clustering stability
based on Laplacian eigengap, which was originally used in
the regularized spectral learning method for similarity matrix
learning. We mathematically prove that the larger the eigengap,
the more stable the clustering. Consequently, we propose a novel
multi-clustering method MSC (for Multiple Stable Clustering).
An advantage of our method comparing to the existing multi-
clustering methods is that our method does not need any
parameter about the number of alternative clusterings in the
data set. Our method can heuristically estimate the number of
meaningful clusterings in a data set, which is infeasible in the
existing multi-clustering methods. We report an empirical study
that clearly demonstrates the effectiveness of our method.

Keywords—multi-clustering, clustering stability, feature sub-
space

I. INTRODUCTION

Clustering, also known as unsupervised learning, is the
real process of discovery and exploration by investigating the
inherent and, more often than not, hidden structures with data.
For example, a major part of the development of biology was to
cluster species into categories and identify features that define
the categorization.

Many clustering methods were proposed in literature. Most
of the existing methods [1] focus on finding one way to par-
tition data into groups. However, in many situations, different
orthogonal ways may exist to partition a given data set, each
way presents an unique aspect to understand the structure of
the data. For example, fruits can be clustered by species or
by color (Figure 1). They can even be clustered by nutrition
components and in some other ways. In customer relationship
management, customers can be clustered by gender, region,
job, age, religion, purchase behavior, credit history and many
other ways. As another example, mining phenotypes [2] is very
useful in bioinformatics and healthcare informations, and is
essentially a multi-clustering problem.
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(a) Fruits

(b) Clustering by species (c) Clustering by color

Fig. 1. Fruits can be clustered in different ways (Images are from Internet).

Multi-clustering and alternative clustering methods try to
find more than one way to partition a given data set, where
a specific way of partitioning the data is called a clustering.
Specifically, alternative clustering [3], [4], [5] attempts to find
one or multiple alternative clusterings with respect to a given
clustering. For example, COALA [6] aims to find an alternative
clustering of high quality and high dissimilarity comparing to
the given clustering. The major idea is to add instance level
constraints, such as linked pairs in the given clustering being
transformed to cannot-link constraints.

Alternative clustering methods highly rely on a given
clustering as the input. Consequently, the alternative clustering
result may not capture a user’s interest exactly. To handle
this problem, some researchers as Caruana et al. [7] proposed
to generate many alternatives. However, it is computationally
expensive to generate many alternative clusterings. Moreover,
it is hard to constrain the differences between the clusterings
computed, and overwhelming for users to absorb and under-
stand the results.

To interpret multiple possible clusterings, subspace multi-
clustering approaches produce multiple clusterings by consid-
ering different subsets of attributes that may represent different
perspectives about the objects, such as species or color in the
motivation example in Figure 1. For example, CLIQUE [8]
divides a multidimensional data space into grid-cells, each
dimension being partitioned into equal width intervals. Then,



dense cells in each subspace are identified using a density
threshold. A group of connected dense cells in a subspace is
regarded as a cluster. A clustering can be produced accordingly
within a subspace. Obviously, CLIQUE has to search an
exponential number of subspaces with respect to the number
of attributes. Although some fast heuristic variants, such as
INSCY [9], were proposed, the scalability remains a chal-
lenge. Another drawback is that the subspace multi-clustering
approaches cannot explicitly consider the dissimilarity between
different clusterings. Such methods tend to produce many
clusterings in order to cover some interesting ones, which may
likely overwhelm users.

In this paper, we challenge ourselves two fundamental
questions: how can we model the quality of clusterings and
how can we find multiple stable clusterings in a given data
set? We make a few technical contributions. First, we borrow
the idea of clustering stability based on Laplacian eigengap,
originally introduced by Meilǎ and Shortreed in the regularized
spectral learning method for similarity matrix learning [10],
and apply to multi-clustering. The intuition is that a clustering
is stable if small distortions on the attribute values do not affect
the discoverability of the clustering. Mathematically, we show
that the larger the eigengap, the more stable the clustering.
Second, based on the notion of stability of clusterings and the
underlying analysis on the Laplacian eigengap, we propose
a novel multi-clustering method, named MSC (for Multiple
Stable Clustering) to obtain a certain number of stable clus-
terings. We model the problem of finding a stable clustering
as an optimization problem maximizing the eigengap. The
problem is unfortunately non-convex, and thus we propose a
heuristic randomized method using iterative gradient ascent.
In order to find multiple stable clusterings, we introduce to
the optimization problem a constraint on the difference from
the clusterings found so far. An advantage of our method
comparing to the existing multi-clustering methods is that
our method does not need any parameter about the number
of alternative clusterings in the data set. Our method can
heuristically estimate the number of meaningful clusterings in
a data set, which is infeasible in the existing multi-clustering
methods. We also discuss techniques to speed up the search
process. Last, we report an empirical study on synthetic and
real data sets that clearly demonstrates the effectiveness of our
method.

The rest of the paper is organized as follows. Section II
reviews the related work briefly. Section III models the stability
of clusterings and presents an algorithm to find a stable
clustering. In Section IV, we develop MSC, an algorithm to
find multiple stable clusterings. Section V reports the results
of an empirical study. Section VI concludes this work and
discusses the future research directions.

II. RELATED WORK

In this section, we briefly review the existing work related
to our study.

A. Multi-clustering

Alternative clustering is a major type of multi-clustering
methods in literature. Given a clustering, an alternative clus-
tering method tries to find clusterings that are different from

the input clustering. Bailey [4] provided a thorough survey
on alternative clustering methods. Meta clustering [7] is a
typical unguided alternative clustering method, which first
generates many different clusterings using different clustering
algorithms or different settings, and then clusters the clus-
terings according to their similarities. In some application
scenarios, users may want to obtain a clustering as different as
possible from the input one. To address this demand, guided
alternative clustering methods were developed. For example,
MAXIMUS [11] utilizes a programming model to calculate
the maximum dissimilarity between a new possible clustering
and all clusterings obtained. Recently, Dang and Bailey [5]
used regularized PCA to find an alternative subspace that is
highly independent from the input clustering.

In multidimensional data sets, different subsets of at-
tributes, that is, different subspaces, may represent different
perspectives of the data, some researchers proposed to find
different clustering solutions by using different feature sub-
spaces, which can be referred as subspace multi-clustering.
CLIQUE [8] is the first subspace multi-clustering approach,
which is a grid cell based method and aims to explore all
potential subspaces and find the dense clusters. Since the
clustering results by CLIQUE are highly sensitive to the grid
positions, algorithms MAFIA [12] and SCHISM [13] were de-
veloped to enhance the grid cell based method. Their subspace
search strategy is later adopted by SUBCLU [14], which is an
extension of DBSCAN [15]. Some efficient variants [16], [9],
[17] were developed as well.

In summary, the existing multi-clustering methods mainly
focus on finding multiple good but different clusterings. At the
same time, those methods may not be able to capture a user’s
interest, and may overwhelm a user when they generate too
many clusterings.

B. Regularized Spectral Clustering

Spectral clustering [18] clusters data represented in pair-
wise similarities between data points. Spectral clustering has
been studied extensively. Please see [18] for a thorough treat-
ment. Here, we only review the regularized spectral learning
method [10], where Meilǎ and Shortreed tackled the problem
of automatically learning similarities between data points
for spectral clustering. They proved that a large Laplacian
eigengap corresponds to clustering stability. Thus, using the
eigengap as a regularizer is natural for learning problems
where some ground truth labels are available. In this paper,
we adopt their clustering stability notion, and apply it to the
multi-clustering problem.

III. STABLE CLUSTERINGS

In this section, we model the stability of a clustering and
discuss how to find a stable clustering. Let us start with some
preliminaries and the intuition.

A. Preliminaries and Ideas

In this paper, we consider a data set X ∈ R
d×n, that is,

X contains n instances, each of d features. We do not assume
any knowledge about how the instances in X are partitioned
into groups. We assume that a user wants k clusters from X ,
where k is a parameter.



A clustering c = {X1, X2, . . . , Xk} is a partitioning of the
instances in X , such that ∪k

m=1Xi ⊆ X and Xi ∩Xj = ∅ for
1 ≤ i < j ≤ k. Each Xm (1 ≤ m ≤ k) is called a cluster.
In clustering analysis, we are interested in clusterings where
objects in a cluster are similar and objects in different clusters
are dissimilar. Here, similarity can be defined in many different
ways and thus lead to various clustering methods.

In multi-clustering, we want to find multiple clusterings
that are independent and thus different from each other. How to
measure the independencies or differences among clusterings
is a key in multi-clustering design. In this paper, we explore
stabilities of clusterings as the measure. While we will develop
the technical details later in this section, the intuition is as
follows. We want to find stable clusterings. A clustering is
stable if any small distortions on the attribute values will not
affect the quality of the clustering. Unstable clusterings are
not desirable in multi-clustering since their quality is sensitive
to noise and thus may be caused by overfitting the current
observed data.

Now, the technical questions are how we can model the
stability of a clustering, and how to find a stable clustering.

B. Stability of a Clustering

We thoroughly consider clusterings in different subspaces.
In general, we consider all possible weighting designs of the
features. We use a simplex Δd to denote all possible feature
subspaces, which can be represented as a set of points

Δd = {w1q1 + w2q2 · · ·+ wdqd|wm ≥ 0,

d∑
m=1

wm = 1},

where qm is a unit vector corresponding to the m-th feature,
that is,

q1 = (1, 0, 0, · · · , 0)

q2 = (0, 1, 0, · · · , 0)

· · ·

qd = (0, 0, 0, · · · , 1)

and wm is the weight assigned to the m-th feature. Denote
by w = (w1, w2, · · · , wd) the feature weight vector. When all
weights are set to 1/d, it is the conventional full feature space.

For each data point xi, we can obtain the weighted vector
representation by multiplying each weight wm with the m-th
feature as x′

i = w
 xi, where 
 is the operation multiplying
each element of w with the corresponding feature in xi. Then,
the similarity between two instances xi and xj can be written
as

Si,j = e−‖x′
i−x

′
j‖

2
2 (1)

Now we apply spectral clustering to the similarity matrix
S. Note that, although we discuss only spectral clustering here,
any clustering method, such as k-means, can be applied to the
similarity matrix. We calculate the normalized Laplacian by

L = D−1/2SD−1/2 (2)

where D is a diagonal matrix formed by

Di =

n∑
j=1

Si,j , i = 1, 2, . . . , n

It is easy to verify that the eigenvectors of the normalized
Laplacian here having the largest eigenvalues are identical to
the eigenvectors of I − D−1/2SD−1/2 having the smallest
eigenvalues, as stated in [19].

In spectral clustering, we conduct eigen-decomposition for
the Laplacian matrix L and conduct clustering based on the
top k eigenvectors. Now we show the main theoretical result of
this paper, which indicates a nice property of stable clusterings.
Denote by λk(L) the k-th largest eigenvalue of L. Essentially,
we show that, if the eigengap λk(L)−λk+1(L) is sufficiently
large, a small perturbation on the similarity matrix S or on
the weight vector w will not affect the top k eigenvectors, and
thus the clusterings obtained upon them are stable.

Theorem 1 (Stability): Given a Laplacian matrix L, if the
eigengap λk(L) − λk+1(L) is large enough, the top k eigen-
vectors of Lperb = L + ε are the same as those of L, where
ε is a symmetric perturbation matrix of small spectral norm
‖ε‖2.

Proof: We prove that, for any ε such that ‖ε‖2 <
λk(L)−λk+1(L)

2 , the top k eigenvectors of Lperb = L + ε are
the same as those of L.

Since L is positive semi-definite, L has n non-negative
real-valued eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn = 0 with the
corresponding eigenvectors v1,v2, . . . ,vn. Denote by β =
λk(L)−λk+1(L). ε must be in one of the following two cases.

Case 1. ε is from the space spanned by the eigenvec-
tors of L. Then, Lperb = L + ε can be represented as∑n

i=1(λiviv
�
i + λε

iviv
�
i ), where each vi is an eigenvector

of L and ε =
∑n

i=1 λ
ε
iviv

�
i . In this case, ε only affects the

eigenvalues of Lperb comparing to those of L by a factor
λε
i , and the eigenvectors remain the same. Furthermore, since

‖ε‖2 < β/2, maxi |λ
ε
i | < β/2. Therefore,

λk + λε
k − (λk+1 + λε

k+1) > λk − β/2− (λk+1 + β/2)

= λk − λk+1 − β = 0

Thus, the top k eigenvectors of Lperb remain the same, though
the ordering of the top k eigenvectors may vary.

Case 2. ε is not solely from the space spanned by the
eigenvectors of L. Then, Lperb = L + ε can be decomposed
into two parts, one from the space spanned by the eigen-
vectors of L and the other from the orthogonal space. That
is, L + ε =

∑n
i=1(λiviv

�
i + λε

iviv
�
i + λ⊥

i uiu
�
i ), where∑n

i=1 λ
⊥
i uiu

�
i is part of ε from the orthogonal space. The

first part is similar to the first case. For the second part, since
‖ε‖2 < β/2, maxi λ

⊥
i <= maxi |λ

⊥
i | < β/2. Therefore,

λk = λk+1 + β ≥ β > max
i

λ⊥
i

Thus, the top k eigenvectors of Lperb remain the same as L,
though the ordering of the top k eigenvectors may vary.

Remark 1: In spectral clustering, if the top k eigenvectors
are the same for L and Lperb, the clusterings based on the
same eigenvectors are the same.

According to Theorem 1 and Remark 1, the larger the
eigengap between the k-th and the (k + 1)-th eigenvalues of
L, the more stable the clustering obtained upon L.



Algorithm 1: Finding a Stable State (FSS)

1: Input: Dataset X ∈ R
d×n, the number of clusters k,

the number of iterations T , and step size η
2: Randomly initialize weight vector w0 in the simplex
3: for t = 1 to T do
4: Compute S by Eq. 1
5: Calculate the normalized Laplacian L by Eq. 2
6: Conduct eigen-decomposition for L
7: Compute G by Eq. 4
8: wt = wt−1 + ηG
9: Project wt onto the simplex by P1+

10: end for
11: return wT

C. Finding a Stable Clustering

According to Theorem 1, the most stable clustering can be
obtained by maximizing the eigengap, that is,

arg max
w∈Δd

λk(L)− λk+1(L) (3)

where the most stable weight vector w is searched in the
simplex Δd. Note that the simplex constraint has a good sparse
property – it automatically eliminates those features of too
low weights. This property is desirable since sparse feature
selection has been demonstrated effective by many previous
studies [20], [21], [22], [23].

Although Eq. 3 models the most stable clustering nicely,
apparently the optimization problem in Eq. 3 is non-convex,
and thus is hard to find an exact solution.

As a heuristic solution, we can randomly initialize w as
w0 in the simplex Δd and solve the optimization problem by
iterative gradient ascent. At the t-th iteration (t ≥ 1), we set

wt = wt−1 + ηG

where the m-th element of vector G (1 ≤ m ≤ d) is

Gm =
〈
vkv

�
k ,

∂L

∂wm

〉
−
〈
vk+1v

�
k+1,

∂L

∂wm

〉
(4)

and vk is the k-th eigenvector. To constrain w within the sim-
plex Δd, in each gradient ascent step, we adopt the projection
algorithm proposed by Kyrillidis et al. [24]. Concretely, we
project wt obtained in the t-th step onto the simplex by

(P1+(wt))m = [(wt)m − α]+,

where α is a threshold that is set to α = 1
ρ (
∑ρ

i=1(wt)m −

1), ρ = max{m : (wt)m > 1
m (

∑m
i=1(wt)m − 1)}, and α

and ρ are calculated by first sorting the elements in wt in
descending order. Instead of directly calculating the gradient
under the simplex constraint, we first calculate the gradient
without the constraint, conduct the gradient ascent, and then
project w back to the simplex. Kyrillidis et al. [24] proved that
the projection algorithm still obtains the same w as considering
the simplex constraint in the gradient calculation.

Algorithm 1 shows the pseudo-code of FSS (for Finding a
Stable State), which finds a local optima for the Problem in
Eq. 3.

Algorithm 2: Finding Alternative Stable State (FASS)

1: Input: Dataset X ∈ R
d×n, the number of clusters k,

the number of iterations T , step size η, the set of
previously found stable states W , and the tradeoff
parameter δ

2: Randomly initialize weight vector w0 in the simplex
3: for t = 1 to T do
4: Compute S by Eq. 1
5: Calculate the normalized Laplacian L by Eq. 2
6: Conduct eigen-decomposition for L
7: Compute G by Eq. 4
8: wt = wt−1 + η(G+ δ 1

|W |

∑
wp∈W (wt−1 −wp))

9: Project wt onto the simplex by P1+

10: end for
11: return wT

IV. MSC: FINDING MULTIPLE STABLE CLUSTERINGS

In this section, we develop MSC, an algorithm that finds
multiple stable clusterings. We first present the framework, and
then discuss the techniques to speed up the algorithm.

A. Finding Multiple Stable States

To find various stable clusterings, we need to search all
stable states in the simplex. Although random initialization can
give a good start point, two random initialization values may
converge to the same local optimal clustering. To overcome this
problem, we introduce a constraint on the difference between
the current weight vector and those previously obtained. Let W
be the set of weight vectors obtained so far. The optimization
problem can be rewritten as

arg max
w∈Δd

λk(L)− λk+1(L) +
δ

2

1

|W |

∑
wp∈W

‖w −wp‖
2
2 (5)

In other words, we want to maximize the sum of the distances
between the current weight vector and those weight vectors
obtained previously, so as to keep the current clustering far
away from all previous ones. Here, δ ≥ 0 is a tradeoff
parameter for balancing the maximization of eigengap and the
dissimilarity.

Algorithm 2 describes how to find a new stable state
(weight vector), given the set W of stable states found so
far, by solving the optimization problem in Eq. 5 using
gradient ascent. The regularization term incurs only very light
computational cost.

We can run Algorithm 1 to find the first stable state, and
then run Algorithm 2 repeatedly with different initialization
values to find more stable states. Heuristically, if Algorithm 2
does not lead to any new stable state in the last l runs, then
we can terminate the process, where l > 0 is a parameter.

After gathering a set of stable weight vectors, we can
compute the similarity matrix S for each stable weight vector
w and apply spectral clustering to obtain the corresponding
stable clusterings. Each stable clustering obtained as such has
a corresponding sparse feature subspace w for user understand-
ing. The whole algorithm is summarized in Algorithm 3.



Algorithm 3: Multiple Stable Clustering (MSC)

1: Input: Dataset X ∈ R
d×n, the number of clusters k,

the number of iterations T , step size η, the tradeoff
parameter δ, and the stopping threshold τ

2: Initialize the stable state set W = ∅, and the
clustering solution set C = ∅

3: Obtain the 1st stable state w using Alg. 1
4: W = W ∪w
5: repeat
6: Obtain a new stable state w using Alg. 2
7: W = W ∪w
8: until minwi,wj∈W,i�=j ‖wi −wj‖

2
2 ≤ τ

9: Delete the w ∈ W that is last obtained
10: for each w ∈ W do
11: Compute S by Eq. 1
12: Calculate the normalized Laplacian L by Eq. 2
13: Conduct eigen-decomposition for L
14: Get the top k eigenvectors
15: Obtain the clustering c using k-means on the

eigenvectors
16: C = C ∪ {(w, c)}
17: end for
18: return C

An advantage of our method comparing to the existing
multi-clustering methods is that our method does not need any
parameter about the number of alternative clusterings in the
data set. The optimization on both the eigengap and the weight
vector dissimilarity leads to stable clusterings discovered in
the iterations. The mining method terminates when no new
stable and substantially different clustering can be found. As
demonstrated in the experimental results in Section V, our
method can heuristically estimate the number of meaningful
clusterings in a data set, which is infeasible in the existing
multi-clustering methods.

B. Speedup

To find a stable state vector w, we conduct gradient ascent
for T iterations. In each iteration, we have to compute the full
similarity matrix S based on the weight vector obtained in the
previous iterations. Thus, the time and space complexities are
O(n2). We also have to conduct eigen-decomposition for the
Laplacian matrix L to obtain the largest k+1 eigenvalues and
their corresponding eigenvectors, whose computational cost is
O(kn2). All other computation steps are cheaper comparing to
these two. This heavy computational cost limits the application
of MSC to large-scale data sets that have many instances.

The Nyström method [25], [26] has been commonly used
to approximate kernel matrices. We can use it to approximate
our similarity matrix S ∈ R

n×n. We randomly sample m � n
columns from matrix S and obtains a symmetric sub-matrix
M ∈ Rm×m. Without loss of generality, we can take the first
m columns of S as the sample. Let A and B be two sub-
matrices of S such that A, B and M do not overlap with one
another, and A, B and M together cover every element in S.
Then, S can be rewritten as

S =

[
M B�

B A

]

Let C ∈ R
n×m be the sub-matrix containing the selected

columns, that is,

C =

[
M
B

]

The Nyström approximation of S is given by

S̃ = CM−1C�

Using the Nyström approximation, the cost for calculating the
similarity matrix S is reduced to O(nm).

Since only the top k+1 eigenvalues and their corresponding
eigenvectors are needed in MSC, our goal is to find a rank-
(k + 1) approximation Sk+1 of S.

Let Sk+1 = UΛU�, where Λ contains the largest k + 1
eigenvalues of S, and U contains their eigenvectors. Following
the recent work [27], we define an analogous matrix S∗ ∈
R

m×m as

S∗ = D
− 1

2
∗ MD

− 1
2

∗

where D∗ = diag(M1).

Since S∗ is a m × m matrix, it can be decomposed
efficiently to get its top k+1 eigenvalues Λ that are also the top
k+1 eigenvalues of Sk+1 and their corresponding eigenvectors,
denoted by set V . Thereafter, the top k + 1 eigenvectors of
Sk+1 can be obtained by

U = D
1
2Q

where Q = CD
1
2
∗ V Λ−1 and D = diag(QΛQ�1).

By replacing Steps 11 to 14 in Algorithm 3 as well as the
similar steps in Algorithms 1 and 2 accordingly by this speedup
method, for each iteration of our gradient ascent method, we
can reduce the computational cost from O(n2) to O(n). For
the space complexity, if storing C in memory, it can be reduced
from O(n2) to O(nm). Since C is only accessed once, it can
be computed row by row, and thus the space complexity can
be further reduced to O(nk). This makes our MSC method
applicable on large-scale data.

V. EMPIRICAL STUDY

To test our proposed MSC method, we conducted an
empirical study on both synthetic and real data sets. We report
the results in this section.

A. Settings

To test whether the MSC method can find at least one
clustering that is consistent with the ground truth labels, we
set the parameter k as the number of clusters given by the
ground truth. The number of iterations T was set to 30 for all
the experiments, which is sufficient to allow the gradient ascent
method to converge, as observed in our experimental results
(Figs. 2, 6 and 7). All other parameters were tuned by the
holdout for each dataset. Specifically, we randomly sampled
25% of the data points in the data set following the same
distribution of the clusters in the ground truth for holdout.
Empirically we found that, after normalization so that each
data instance has norm 1, setting η = 1 and δ = 0.001 achieved
the best performance, which will be used as default values in
this section.



TABLE I. STATISTICS OF THE DATA SETS.

Data # Instances # Features # Clusters

synthetic data 50 3 2

fruit 105 6 3

balance 625 4 3

iris 150 4 3

wine 178 13 3

To the best of our knowledge, the existing multi-clustering
methods either need some parameters to specify the number of
clusterings to be found or do not guarantee the dissimilarity
or quality of clusterings found. We cannot find an existing
method that does not need a parameter about the number of
clusterings and, at the same time, can guarantee the quality
(stability in our method) of and dissimilarity among clusterings
found. Therefore, in the rest of this section, we focus on testing
our method against finding high quality clusterings, and do
not compare with the existing multi-clustering methods. A
thorough comparison will be left as future work.

Specifically, we compare the clusterings produced by MSC
with the results from two well known clustering methods: k-
means [28] and normalized spectral clustering [18], denoted by
“k-means” and “Spectral” hereafter, respectively. When those
two methods were applied, we weighted each feature the same,
because those two methods cannot find the weights of features
automatically.

We report the matching quality between two clusterings
using five popularly used measures: Normalized Mutual Infor-
mation (NMI), Rand Index (RI), Adjusted Rand Index (AR),
Mirkin’s Index Distance (MI), and Hubert’s Index (HI) [29].
The smaller MI, the more similar the two clusterings under
comparison. For the other four measures, the larger the values,
the more similar the two clusterings.

The information about the data sets used in the experiments
is summarized in Table I.

B. A Case Study Using Synthetic Data

We use a synthetic data set to demonstrate that MSC can
in practice determine the number of stable clusterings and
discover the clusterings.

We randomly generated 50 data points with 3 binary
features. That is, the synthetic data X ∈ {0, 1}50×3. We set
the number of clusters k = 2. Due to the binary features,
each feature solely can group the data points into 2 clusters,
where the feature itself is a subspace. Therefore, we have
3 clusterings in the ground truth denoted by “Clustering
1”, “Clustering 2”, and “Clustering 3”, respectively. For this
synthetic data, we first normalize the data so that each instance
has norm 1, and set the stopping threshold as τ = 0.001 in
Algorithm 3. MSC output 3 stable clusterings as shown in
Table II.

The clustering produced by k-means matches Clustering 1
in the ground truth, manifested by the first feature, though all
attributes are equivalently weighted in k-means. However, k-
means can only produce a single partitioning, and thus cannot
produce the other two clusterings in the ground truth, which is
also the case for the normalized spectral clustering method.
The spectral clustering method output a clustering solution
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Fig. 2. The changes of eigengap in iterations on the synthetic data.

relatively consistent with but not perfectly matching Clustering
2 in the ground truth, manifested by the second feature.

As shown in Table II, MSC found the three clusterings
perfectly in the ground truth. Moreover, MSC also found
the three stable states (weight vectors) exactly as expected
(each feature provides a perfect feature subspace for a 2-way
clustering), as shown in the last column of Table II. These
weight vectors obtained confirm the sparse property of the
simplex constraint. MSC output the three clusterings in the
order of Clustering 1, Clustering 2 and Clustering 3. The order
was the decreasing order of eigengap. The eigengaps for those
three stable states are much larger than the eigengap in the
clustering produced by the spectral clustering method, which
demonstrates that by maximizing the eigengap, MSC can find
stable clusterings.

Fig. 2 shows how the eigengap of each clustering solution
converges as the number of iterations increases. It can be
easily observed that our gradient ascent method converges very
quickly on the synthetic data, which also demonstrates the
effectiveness of our method.

C. A Case Study on an Image Data Set

We conducted a case study on images of three types of
fruits, namely apples, bananas and grapes, in different colors,
namely red, yellow and green for apples, yellow and green
for bananas, and red and green for grapes. There are two
different clusterings in the ground truth: the clustering by
fruit category, denoted by Clustering-by-Category, and the
clustering by color, denoted by Clustering-by-Color.

1) Data Preparation: We collected from Internet 15 images
for each sub-group, i.e., red apples, yellow apples, green
apples, yellow bananas, etc. In total, there were 15× 7 = 105
images, 45 about apples, 30 about bananas, and another 30
about grapes. Orthogonally, there were 30 images about red
fruits, 30 about yellow fruits, and 45 about green fruits.

For each image, we firstly partitioned it into blocks of 4
pixels by 4 pixels, and then extracted the color and texture
features for each block. For the color features, we transformed
the RGB images into the HSI color space, which is appro-
priate for object recognition as suggested by Shapiro and
Stockman [30]. Thereafter, the color feature of each block



TABLE II. CLUSTERINGS ON THE SYNTHETIC DATA. (The best cases are highlighted in bold. The AR values are not provided here because the
denominators in the AR calculation are all zeros here.)

Clustering produced by methods Clustering in ground truth NMI RI AR MI HI Eigengap Weight vector w

Clustering 1 1.000 1.000 - .0000 1.000

k-means Clustering 2 .0043 .4783 - .5217 -.043 - (.3333;.3333;.3333)

Clustering 3 .0039 .4737 - .5263 -.053

Clustering 1 .0283 .5569 - .4431 .1138

Spectral Clustering 2 .7263 .7628 - .2372 .5257 .0039 (.3333;.3333;.3333)

Clustering 3 .0718 .6491 - .3509 .2983

Clustering 1 1.000 1.000 - .0000 1.000

Clustering 1 Clustering 2 .0043 .4923 - .5077 -.015 .2951 (1.000;.0000;.0000)

Clustering 3 .0039 .5292 - .4708 .0585

Clustering 1 .0043 .4783 - .5217 -.044

Clustering 2 Clustering 2 1.000 1.000 - .0000 1.000 .2931 (.0000;1.000;.0000)

Clustering 3 .0154 .5573 - .4427 .1146

Clustering 1 .0039 .4737 - .5263 -.053

Clustering 3 Clustering 2 .0154 .5088 - .4105 .4912 .2711 (.0000;.0000;1.000)

Clustering 3 1.000 1.000 - .0000 1.000

Fig. 3. Example images in the fruit data set.

TABLE III. CLUSTERINGS ON THE FRUIT IMAGE DATA SET. (The best cases are highlighted in bold.)

Clustering produced by methods Clusterings in ground truth/by Spectral NMI RI AR MI HI Weight vector w

k-means .1486 .5659 .0684 .4341 .1319 [.1667;.1667;.1667;.1667;.1667;.1667]

Spectral .1432 .5650 .0611 .4350 .1300 [.1667;.1667;.1667;.1667;.1667;.1667]

Clustering 1 Clustering-by-Category .1394 .5857 .0818 .4143 .1714 [.2538;.0011;.0765;.0655;.1004;.5027]

Clustering 2 .1627 .6045 .1289 .3954 .2092 [.3222;.0000;.0000;.0000;.6778;.0000]

Clustering 3 .1449 .5886 .0883 .4114 .1773 -

Clustering 4 .1151 .5716 .0465 .4284 .1432 [.4012;.0000;.0000;.5988;.0000;.0000]

k-means .5905 .7626 .4905 .2374 .5253 -

Spectral .5522 .7559 .4730 .2441 .5117 -

Clustering 1 Clustering-by-Color .6160 .7711 .4926 .2289 .5241 -

Clustering 2 .5564 .7474 .4436 .2526 .4949 -

Clustering 3 .6886 .8051 .5681 .1949 .6103 [.4468;.0000;.5532;.0000;.0000;.0000]

Clustering 4 .5124 .7291 .3971 .2709 .4582 -

k-means Spectral .8839 .9581 .9118 .0419 .9161 -

was represented by the average value of each channel. Thus,
each block had three color features, corresponding to the
channels of Hue, Saturation, and Intensity, respectively. For the
texture features, we employed the one-level two-dimensional
Daubechies-4 wavelet transformation [31] to decompose each
block to four frequency bands. Each band had four parameters
{ck,l, ck,l+1, ck+1,l, ck+1,l+1}. We then calculated the features
by

f = (
1

4

1∑
i=0

1∑
j=0

c2k+i,l+j)
1
2

with the bands about activities in horizontal, vertical and
diagonal directions [32], which also led to three features for a
block.

For an image with multiple six dimensional blocks, we
applied k-means for segmentation as recommended in [32].
After segmentation, we then used raster scanning [30] to

get all connected components. A region whose number of
blocks is below a threshold was set to background. We erased
background regions. Then, each fruit region was represented
by the average color features and the normalized inertia as the
shape features [32]

l(H, γ) =

∑
x ∈ H‖x− x̂‖γ

V (H)1+γ/k

where H is the fruit region, V (H) is the number of blocks in
the region and x̂ is the center of the region. We respectively
set γ = 1, 2, 3 to calculate the shape features, and thus the
total number of features for each fruit region was six. Fig. 3
shows some example images. The first row is the original
images collected from Internet sources, and the second row
is the recognized fruit regions bounded and represented by the
average RGB colors.
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Fig. 4. The changes of eigengap in iterations on the fruit image data set.

2) Results: Table III shows the results of k-means, spectral
clustering and MSC on this image dataset. The parameters
for MSC were set to T = 30, η = 1, δ = 0.01, and τ =
0.1. Interestingly, the clustering results produced by k-means
and spectral clustering were almost identical, which were more
consistent with the ground truth clustering by color than that
by category.

MSC produced 4 stable clusterings on this data set. Each
clustering emphasized on different feature subspaces. For
instance, Clustering 3 produced by MSC corresponded to a
feature subspace that only considers the color features. Conse-
quently, Clustering 3 was very consistent with Clustering-by-
Color in the ground truth, and was also more consistent than
the clusterings generated by k-means and spectral clustering
with respect to Clustering-by-Color. Simultaneously, Cluster-
ing 2 focused on both the color and shape features and put
more weight on the shape feature. Clustering 2 was substan-
tially close to Clustering-by-Category than those produced by
k-means and Spectral. A clustering using both the shape and
color features is highly reasonable. To distinguish between
apples, bananas and grapes, only the shape features may not
be enough. For example, a bunch of bananas may happen to
have a shape similar to that of a bunch of grapes. Thus, we
need to get help from the color attributes. For example, this
data set does not have red bananas.

In addition to those two clusterings, MSC also produced
two other stable clusterings, Clustering 1 and Clustering 4 in
Table III. Those two stable clusterings weighted on totally
different subspaces. The 4 stable clusterings produced by MSC
had low redundancy – all pairwise NMIs between them were
smaller than 0.55. Moreover, MSC provided different sub-
spaces for the stable clusterings, which were informative for
user understanding. Interestingly, two different subspaces led
to two somehow similar clusterings on the data, e.g., Clustering
2 and Clustering 4 in Table III. An important application of
different weight vectors leading to similar clusterings is multi-
view clustering [33], [34], which aims to combine results from
different views to generate a consensus clustering.

Fig. 4 shows how the eigengap of each clustering solution
converges as the number of iterations increases. Figs. 5(a)
and 5(b) show the images that are closest to the cluster
centers of Clustering 2 and Clustering 3, respectively. The

(a) Clustering-by-Category

(b) Clustering-by-Color

Fig. 5. The images closest to the cluster centers.

TABLE V. CLUSTERING REDUNDANCY. Clustering 1 and Clustering 2
were produced by MSC.

Clusterings compared NMI RI AR MI HI

Data set balance

k-means vs. Spectral .1598 .6103 .1233 .3897 .2206

Clustering 1 vs. Clustering 2 .2714 .6438 .1988 .3562 .2875

Data set iris

k-means vs. Spectral .9398 .9825 .9610 .0175 .9649

Data set wine

k-means vs. Spectral .3733 .6962 .3328 .3038 .3924

Clustering 1 vs. Clustering 2 .3754 .7411 .4232 .2589 .4821

cluster centers for Clustering 2 are apple, banana and grape,
respectively, which are consistent with Clustering-by-Category
in the ground truth. The cluster centers of Clustering 3 are
yellow, green, and red, respectively, which match the ground
truth of Clustering-by-Color. Please note that colors green and
red here are both represented by grapes. This further verified
that MSC can find meaningful weight vectors (subspaces)
corresponding to different stable clusterings hidden in data.

D. More Results on the UCI Data Sets

We also tested MSC on some real datasets from the UCI
Machine Learning Data Repository [35]. We report the results
on 3 data sets here as examples. Note that each data set in this
subsection provides only one ground truth clustering.

1) Results on Data Sets Balance and Iris: We used two
low-dimensional UCI datasets: balance and iris. The parame-
ters were set as the same as on the synthetic data.

Table IV compares the clusterings produced by the methods
tested against the ground truth. MSC found two stable states
on the balance dataset. One of the stable states weighted more
on the first and second features, while the other stable state
put more weights on the second and third features. The sparse
property of the simplex constraint can also be observed from
the values of these two obtained weight vectors.

The clustering generated by the first stable state was
much more consistent with the provided ground truth than the
clusterings produced by k-means and Spectral. The clustering
produced by MSC had a larger eigengap than that produced
by the spectral clustering method.

To understand the redundancy between clusterings, Table V
compares the clusterings by k-means and Spectral, and the
clusterings produced by MSC. The redundancy between the
clusterings produced by k-means and Spectral on the balance



TABLE IV. CLUSTERINGS ON THE UCI DATA SETS Balance, Iris AND Wine. All clusterings produced by the methods tested are compared with the
ground truth.

Clusterings produced by methods tested NMI RI AR MI↓ HI Eigengap Weight vector w

Data set balance

k-means .2702 .6551 .2765 .3449 .3102 - [.2500;.2500;.2500;.2500]

Spectral .2769 .6636 .2942 .3364 .3271 .0000 [.2500;.2500;.2500;.2500]

Clustering 1 .3215 .6928 .3556 .3072 .3856 .0126 [.5000;.5000;.0000;.0000]

Clustering 2 .1238 .5895 .1389 .4105 .1791 .0126 [.0000;.5006;.4994;.0000]

Data set iris

k-means .7582 .8797 .7302 .1203 .7595 - [.2500;.2500;.2500;.2500]

Spectral .7347 .8679 .7037 .1321 .7358 .0519 [.2500;.2500;.2500;.2500]

Clustering 1 .8366 .9341 .8510 .0659 .8683 .2733 [.0000;.0000;.8658;.1342]

Data set wine (×10−5)

k-means .3823 .7030 .3470 .2970 .4061 - -

Spectral .2945 .6813 .2890 .3187 .3627 .0349 -

Clustering 1 .2859 .6780 .2814 .3220 .3516 .0757 -

Clustering 2 .5893 .8200 .5987 .1800 .6401 .0526 -
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Fig. 6. The changes of eigengap in iterations on data set balance.

data set was low. This confirmed that using different clus-
tering methods may generate substantially different alterna-
tive clusterings. The second clustering produced by MSC is
substantially different from the first one, which confirms the
effectiveness of the stability measure.

On the iris dataset, MSC found a stable state that weighted
more on the third and the fourth features. The clustering
is much more consistent with the ground truth comparing
to the clusterings produced by k-means and Spectral that
had much smaller eigengaps. These two methods generated
very similar clusterings on this data set and thus failed to
provide different alternative clusterings. Remarkably, MSC
produced only one stable clustering on this dataset. The results
from MSC heuristically indicated that the data set may not
allow multiple interesting clusterings. This information is very
helpful in practice, since the existing multi-clustering methods
cannot determine the number of alternative clusterings in a
data set exactly or heuristically.

Figs. 6 and 7 show how the eigengap converges as the
number of iterations increases. On both data sets, the eigengaps
converge in less than 20 iterations.

2) Results on Data Set Wine: Wine is a data set of higher
dimensionality. The statistics of the data set are included in
Table I. The stopping threshold τ was set to 0.2, and all other
parameters were set to the same as the data sets balance and
iris. The results are also shown in Tables IV and V, where we
omit the weight vectors limited by space.
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Fig. 7. The changes of eigengap in iterations on data set iris.

k-means and Spectral produced quite different clusterings.
However, those clusterings were not matching the ground
truth. MSC computed two stable clusterings. The second stable
clustering output by MSC was very consistent with the ground
truth. The first stable clustering is substantially different from
the ground truth and the second stable clustering.

Please note that, since the feature values were normalized
and then distributed by the weight vector, the eigengap ob-
tained on this data set was much smaller than those obtained on
the other two data sets, mainly due to the high dimensionality.
The two clusterings produced by MSC had larger eigengaps
than that by Spectral, which may be a factor leading to that
our clustering is more consistent with the ground truth.

VI. CONCLUSIONS

In this paper, to address the practical demands on multi-
clustering, we tackled the challenges of how to model the
quality of clusterings and how to find multiple stable clus-
terings in a given data set. We applied the idea of clustering
stability based on Laplacian eigengap, originally introduced
by Meilǎ and Shortreed in the regularized spectral learning
method for similarity matrix learning [10], to multi-clustering.
The intuition is that a clustering is stable if small distortions
on the attribute values do not affect the discoverability of
the clustering. Mathematically, we proved that the larger the
eigengap, the more stable the clustering. Based on the notion
of stability of clusterings and the underlying analysis on the



Laplacian eigengap, we developed a novel multi-clustering
method MSC to obtain a certain number of stable cluster-
ings. We modeled the problem of finding a stable clustering
as an optimization problem maximizing the eigengap. The
problem is unfortunately non-convex, and thus we proposed
a heuristic randomized method using iterative gradient ascent.
In order to find multiple stable clusterings, we introduced to
the optimization problem a constraint on the difference from
the clusterings found so far. An advantage of our method
comparing to the existing multi-clustering methods is that
our method does not need any parameter about the number
of alternative clusterings in the data set. Our method can
heuristically estimate the number of meaningful clusterings in
a data set, which is infeasible in the existing multi-clustering
methods. We also discussed techniques to speed up the search
process. An empirical study on synthetic and real data sets
clearly demonstrated the effectiveness of our method.

There are a series of interesting questions for future work.
For example, for each dataset, we only studied the case when
the number of clusters is fixed. How to address data sets where
different stable clusterings may have very different numbers of
clusters is an interesting direction.
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