
Clustering Analysis of Email Malware Campaigns
Ruichao Zhang

School of Engineering and Technology
University of Washington Tacoma

rczhang@uw.edu

Shang Wang
School of Engineering and Technology

University of Washington Tacoma
swang848@uw.edu

Renee Burton
Infoblox

rburton@infoblox.com

Minh Hoang
Infoblox

mihnhoang@infoblox.com

Juhua Hu
School of Engineering and Technology

University of Washington Tacoma
juhuah@uw.edu

Anderson C A Nascimento
School of Engineering and Technology

University of Washington Tacoma
andclay@uw.edu

Abstract—The task of malware labeling on real datasets faces
huge challenges—ever-changing datasets and lack of ground-
truth labels—owing to the rapid growth of malware. Clustering
malware on their respective families is a well known tool used
for improving the efficiency of the malware labeling process.
In this paper, we addressed the challenge of clustering email
malware, and carried out a cluster analysis on a real dataset
collected from email campaigns over a 13-month period. Our
main original contribution is to analyze the usefulness of email’s
header information for malware clustering (a novel approach
proposed by Burton [1]), and compare it with features collected
from the malware directly. We compare clustering based on email
header’s information with traditional features extracted from
varied resources provided by VirusTotal [2], including static and
dynamic analysis. We show that email header information has
an excellent performance.

Index Terms—Malware labeling, email campaigns, clustering
analysis, malware feature extraction

I. INTRODUCTION

A. Challenges for malware labeling

Labeling malware samples as variants of known malware
families is a very important task for multiple cybersecu-
rity applications, such as identifying new threats, selecting
disinfection mechanisms, attribution, and malware lineage.
Unfortunately, malware grows in amounts and variants very
rapidly. For example, in 2019 Kaspersky identified 24,610,126
unique malware samples [3]. In 2020, such number has grown
to 33,412,568 [4]. The rapid growth of malware poses two
challenges to the task of malware labeling:

a) Ever-changing datasets: with the new malware mod-
els discovered every day, malware in the field is ever-changing.
In contrast, reference datasets used for academic purpose such
as Drebin [5] are often outdated.

b) Lack of ground-truth labels: the rapid growth of
malware makes it difficult for human experts to manually label
the newly collected malware samples. However, ground-truth
labels are essential for various malware labeling approaches,
using both heuristic and machine learning techniques.

B. Previous works and their shortcomings

There are a variety of malware labeling approaches in both
academia and industry.

Anti-virus (AV) checkers are a common tool for per-
forming automatic malware labeling. However, it is not un-
common for labels given by different AV checkers to be
inconsistent, due to both different detection techniques and
different naming conventions adopted (conventions such as
CARO [6] and CME [7] are not widely adopted by the
industry [8], [9], [10]). Such inconsistency causes great con-
fusion to researchers. Different labels may be assigned by
different AV checkers to samples in the same family, e.g.,
troj.win32.firseria and trojan.Win_firseria; sim-
ilar labels may be assigned to samples from different variants
in a malware family, e.g., X97M/Agent.FQ.gen!Eldorado
and X97M/Eldorado.Agent.nemdk. In addition, many
AV checkers will add extra information to the labels,
such as md5 hashes and variant versions, which makes
it more difficult to summarize this information (e.g.,
Trojan:Win32/Emotedted.44223fe).

Previous researches, like AVClass [11] and Euphony [12],
work on the basis of AV labels to extract family names, ap-
plying self-defined heuristic rules, such as generic token check
and suffix token removal. Plurality vote is then used to reach a
consensus among different AV checkers. Such methods have
a good performance on strongly labeled malware. However,
they rely too much on accurate and reliable raw AV labels,
which are difficult to produce due to reasons discussed above.

VirusTotal is a tool commonly used by malware researchers
[2]. It is an online service that analyzes files and URLs,
enabling the detection of viruses, worms, trojans and other
kinds of malicious contents using AV engines and website
scanners. It has a dataset of more than 2 billion analyzed
samples, with their AV labels, metadata, behavioral analyses,
etc. However, most previous works did not take full advantage
of the sufficient resources made available by VirusTotal.
AVClass [11] and Euphony [12] merely used the raw AV
labels provided by VirusTotal. Song et al. [13] only used
the basic metadata of malware. Faridi et al. [14] made use978-1-7281-5684-2/20/$31.00 ©2021 IEEE

of dynamic analysis directly from the Cuckoo Sandbox [15],
while VirusTotal provides results from multiple sandboxes,
with a wider coverage of malware samples. Therefore, in our
research we take advantage of the varied resources provided
by VirusTotal, including metadata, behavioral analysis, static
and dynamic features.

C. Email campaigns

A large proportion of malware is spreaded through emails,
which are also known as malicious spam, or malspam. In
2019, in the 975,491,360 attacks detected by Kaspersky [3],
467,188,119, or 47.89% were malspam; in all email traffic,
56.51% was contributed by malspam [16]. Thus, one will
face the challenges described in subsection I-A when labeling
malspam.

Malspam is sent through different campaigns. A malspam
campaign is defined as a set of emails sent by a threat actor,
limited in a certain timeframe and to a certain theme. Burton
[1] proposed a novel approach for labeling malspam. They
use email metadata, such as email subjects, senders’ IP ad-
dresses, attachment filenames, etc., rather than information in
malware itself. Graph-based approaches are applied to cluster
the malware samples. Comparing to traditional heuristic and
machine learning approaches, this novel approach does not
require much human resources (for manually labeling the
dataset) or computational resources (for training models), nor
does it require the source code or binaries of malware samples
(for static and dynamic analysis).

In this paper, we evaluate such a novel approach and
compare it to the use of more traditional features for malware
clustering.

D. Paper structure

The rest of the paper is organized as follows. Section II
introduces some previous works of malware labeling. Section
III summarizes our main contributions. Section IV describes
our methodology, and discusses the feasibility and limitation
of using malware labeling tools’ outputs as “labels”. Section
V describes the dataset we work with, shows its family
distribution and points out that the dataset is skewed. We also
introduce in this section the features we choose from meta-
data and behavioral reports provided by VirusTotal. Section
VI describes the three methods to construct matrices from
features, as well as the clustering algorithm we apply. Section
VII gives the definition of the evaluation metrics we use,
and explains why purity is the most suitable metric for our
context. Section VIII shows the evaluation result and provides
a detailed analysis. Finally, in section IX, we draw conclusions
for our research, points out the difficulties while working with
the real dataset, and suggest methods to improve our work in
future.

II. RELATED WORK

In this section, we discuss about previous works in the field
of malware labeling, especially those related to our work.

Sebastián et al. [11] designed AVClass, an automatic label-
ing tool that takes as input a large amount of AV labels for
malware samples, and outputs the most likely family name
for each sample, by addressing three key challenges: normal-
ization, removal of generic tokens, and alias detection. The
limitation of AVClass is that it is heavily dependent on a priori
knowledge, both on ground-truth family names and on AV-
specific naming conventions. Because of the rapid update of
real malware datasets and lack of universally adopted naming
conventions, AVClass faces huge problems when working on
real datasets.

Hurier et al. [12] proposed Euphony, a system which also
produces family labels based on AV checker labels, but is
independent of a priori knowledge on malware families or
AV naming schemes. It uses an incremental parsing algorithm
based on a few pre-defined heuristic rules and a knowledge
base which does not include a priori knowledge for family
names. Theoretically, Euphony adapts to real datasets better
than AVClass does, which is a significant improvement. How-
ever, Euphony’s output heavily depends on the AV label input;
as a consequence, it cannot identify tags if AV checkers only
provide overly generic tokens for malware samples.

Most related to our work is that of Faridi et al. [14],
who studied the malware clustering problem using different
algorithms, distance functions and sets of features. This is
the first attempt not only for affinity propagation and two
forms of spectral clustering, but for two cutoff methods
of hierarchical clustering as well. Our process of feature
construction is related to theirs, in the sense that we both
use malware behavioral reports, TF–IDF matrix and ssdeep
distance. Furthermore, They deployed multiple clustering algo-
rithms, including hierarchical, density-based, prototype-based,
etc. However, they only focused on malware of the pe file
type, and did not use as much information made available by
VirusTotal as we do.

Similarly, Mohaisen et al. [17] developed AMAL, a system
collecting behavioral features to characterize malware usage
of file system, memory and network. AMAL utilized the
behavioral features to create representative features, which are
used for classification tasks.

Trinius et al. [18] also created a representation using be-
havioral features. The system, known as MIST, is designed
for malware analysis using data mining and machine learning
techniques.

Ducau et al. [19] developed a representation space for mal-
ware samples, where samples with similar behaviors appear
close to each other by introducing deep learning approaches.

Zhang et al. [20] also used deep learning techniques to
bridge the information gap between machine learning and
signature-based detection. They proposed a new representation
learning approach to cluster labels by preserving different
kinds of information from multiple sources (including static
code analysis, metadata and raw AV labels).

Song et al. [13] analyzed pe malware in November 2018,
with the metadata provided by VirusTotal. The analysis in-
cludes trend of the number of malware outbreaks, statistics of

malware size, and distribution of malware types. Their result
shows that malware appear in bursts and that distribution of
malware are highly skewed.

III. MAIN CONTRIBUTIONS

Our work follows a long line of research where clustering
is used as a tool for aiding malware labeling. The main idea is
to cluster malware samples in the hope that malware samples
belonging to the same family will end up in the same clusters.
Picking up the right features, clustering metrics, and evaluation
metrics are central points to be addressed in such kind of
approach.

To the best of our knowledge, we are the first work that
systematically analyze the effectiveness of using email header
information as a feature for malware clustering. This technique
has recently been proposed in [1] and shows very interesting
properties. It is much easier to extract email header infor-
mation. There is no need for sandboxes, reverse engineering
or even having direct access to the malware code itself. We
show that email header information is an excellent approach
compared to more traditional dynamic and static features. We
systematically compare email header features to dynamic and
static features presented in VirusTotal and see how well they
perform for clustering malware families.

IV. METHODOLOGY

As mentioned in section I, the main goals of our research
are:

1) to address the two challenges of labeling malware on
real datasets;

2) to propose an approach for malware clustering and label-
ing, utilizing several resources from static and dynamic
analysis;

3) to evaluate the performance of the novel approach based
on email campaigns, and to compare it with our ap-
proach based on malware features.

We propose the following methodology. We work on a
dataset with n1 samples, S = {s1, ..., sn1}, collected from
email campaigns. C0 = {c01, ..., c0n1

} is a set of clusters from
the email-based approach, where c0i indicates the cluster of
sample si (i ∈ {1, ..., n1}). Because the dataset is unlabeled,
we use the results of AVClass and Euphony, L1 = {l11, ..., l1n1

}
and L2 = {l21, ..., l2n1

}, as “labels”. Metadata reports and
behavioral reports, which contains the static and dynamic
analysis, are retrieved from VirusTotal for every sample. We
choose a set of n2 features F = {f1, ..., fn2

} from metadata
reports and behavioral reports, and from each feature f ∈ F
we construct one or more matrices. Denote the set of n3

matrices as M = {m1, ...,mn3}, (n3 > n2). Each matrix
mj ∈M is fed into a clustering algorithm, which produces a
set of clusters Cj = {cj1, ..., cjn1

} as its output.
We choose a set of n4 evaluation metrics V = {v1, ..., vn4

}.
Denote E(A,B, v) where {A,B} ⊆ {L1, L2, C0, ..., Cn1

},
as the evaluation result of A and B, using metric v ∈ V .
We compute E(C0, Li, v) where i ∈ {1, 2} and v ∈ V
as a measure of performance of the email-based approach;

E(Cj , Li, v) where j ∈ {1, ..., n3} measures the performance
of the corresponding malware feature.

Our methodology is built on the basis of assumption 1:
Assumption 1: For our dataset, AVClass and Euphony re-

sults are close enough to the hypothetical ground-truth labels.
But how can we be so sure that such assumption is true for

our dataset? We gain our confidence from previous evaluations
of AVClass and Euphony on ground-truth data. Moreover, we
also noticed that the results of AVClass and Euphony are
close enough to each other, on different parts of the dataset,
evaluated by multiple metrics, which strengths our belief on
assumption 1.

V. DATASET AND FEATURES

We worked on a dataset collected by Burton [1] over a 13-
month period, from April 2019 to April 2020. It was collected
from real email campaigns. It consists of two file types:
Microsoft Office documents (doc) and archives (archive). We
retrieved metadata reports and behavioral reports from Virus-
Total, and chose the sandboxes that produced most behavioral
reports for samples for each file type, as is shown in table I.

File type Samples Samples processed Sandbox
by specified sandbox chosen

doc 10,554 7,401 Lastline [21]
archive 20,105 4,231 RedDrip [22]

TABLE I: File types of the dataset

Since we do not have ground-truth labels for the dataset, we
used AVClass and Euphony results as “labels”. The malware
family distribution of each file type is shown as tables II, III,
IV and V, using AVClass and Euphony results as “labels”, re-
spectively. For the same file type, the total number of samples
may be different for AVClass and Euphony. This is because
the number of unlabeled samples are different for AVClass and
Euphony: generally, there are much more unlabeled samples
for AVClass. We noticed that the dataset collected from email
campaigns is quite skewed, e.g., 83.201% samples are AVClass
“emotet” and 60.300% samples are Euphony “emotet”.

Family Count %
emotet 5542 83.201
sagent 729 10.944
w2000m 131 1.967
obfuse 51 0.766
others 208 3.123

TABLE II:
doc family distribution,
AVClass as “labels”

Family Count %
emotet 4461 60.300
sagent 660 8.921
emodldr 463 6.258
efgr 190 2.568
generickdz 181 2.447
eldorado 160 2.163
eiob 84 1.135
efzn 83 1.122
efjn 80 1.081
cve 79 1.068
others 957 12.937

TABLE III:
doc family distribution,
Euphony as “labels”

Family Count %
mydoom 2401 60.739
autoit 276 6.982
netsky 200 5.059
mudrop 104 2.631
agensla 88 2.226
bagle 62 1.568
agenttesla 60 1.518
genkryptik 53 1.341
noon 48 1.214
others 661 16.722

TABLE IV:
archive family distribution,
AVClass as “labels”

Family Count %
cuyllc 1273 30.152
mudrop 764 18.096
eldorado 226 5.353
agensla 224 5.306
netsky 200 4.737
dsipmr 152 3.600
mytob 146 3.458
acna 99 2.345
generickdz 64 1.516
bagle 62 1.468
ponystealer 48 1.137
agenttesla 46 1.090
others 918 21.742

TABLE V:
archive family distribution,
Euphony as “labels”

We retrieved metadata reports and behavioral reports for
every sample from VirusTotal, and chose features from both
reports.

A. Metadata reports

Metadata reports are fundamental analysis reports provided
by VirusTotal, which provide the most basic information
about the threat, such as submission date, AV checker results,
original filename, file size, file sha256 hash, etc. We use the
following features in metadata reports.

a) tags: tags is a high-level summary provided by Virus-
Total. It describes the malware sample from multiple aspects,
such as file type (e.g., “xlsx”, “rar”), behaviors (e.g., “copy-
file”, “download”), and other characteristics (e.g., “assembly”,
“macros”).

b) ssdeep: ssdeep [23] is a program for context triggered
piecewise hashes (CTPH), which is a fuzzy hashing algorithm,
whereby similar files will have similar ssdeep hashes [24]. The
edit distance of two ssdeep hashes can reflect the edit distance
of the two original files. Thus, ssdeep can be used as a measure
of file dissimilarity.

B. Behavioral reports

Behavioral reports provides dynamic analysis of malware
samples. VirusTotal collects the outputs of multiple sandboxes
for a malware sample, which are made available in a single
behavioral report. However, unlike metadata reports, not every
sample has a behavioral report; even for those with a behav-
ioral report, different samples may be analyzed by different
sets of sandboxes. Therefore, we had to choose the sandboxes
that analyze the most samples for each file type.

For each file type, we chose the behavioral features that
occur in most samples, as is shown in table VI.

Feature doc archive
files attribute changed 3
files dropped 3
files opened 3
modules loaded 3 3
mutexes opened 3
mutexes created 3
processes created 3
processes tree 3 3
registry keys deleted 3
registry keys opened 3
registry keys set 3
Total 8 5

TABLE VI: Behavioral features for doc and archive samples

VI. PREPROCESSING AND CLUSTERING

Once the features are selected, we enter the stage of
preprocessing, where one or more matrices are constructed
for each feature. Each matrix is then fed into the HDBSCAN
clustering algorithm.

A. One-hot matrix

One-hot encoding is one of the simplest encodings for
categorical data in the field of machine learning. If the data
has m categories, the one-hot vector h of a sample can be
defined as h = (h1, ..., hm), where for 1 6 j 6 m

hj =

{
1, if sample is in the j-th category
0, otherwise (1)

In a one-hot vector, there is exactly one bit of 1. However, in
our context, we use one-hot for feature tags, which is multi-
valued. Therefore, we define the tags one-hot vector t of a
sample as t = (t1, ..., tm), where for 1 6 j 6 m

tj =

{
1, if sample has the j-th tag
0, otherwise (2)

Furthermore, we construct the tags one-hot matrix A1 as

A1 =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

 (3)

where each row represents a sample and each column repre-
sents a tag. Sample i has tag j in its tags iff ai,j = 1.

B. TF–IDF matrix

In natural language processing, TF–IDF (term frequency–
inverse document frequency) is a measure of how important
a token is to a document in a corpus. The TF–IDF value
tfidf(t, d,D) of a token t to a document d in a corpus D
is defined as

tfidf(t, d,D) = tf(t, d) · idf(t,D) (4)

where term frequency tf(t, d) is

tf(t, d) =
count of t in d

number of tokens in d
(5)

and inverse document frequency idf(t,D) is

idf(t) = log
number of documents in D

1 + number of docs in D where t occurs
(6)

The intuition behind TF–IDF is as follows. tf(t, d) mea-
sures how important t is to d: the higher tf(t, d) is, the more
times t occurs in d, therefore the more important t is to d.
idf(t,D) measures how informative t is in D: the higher
idf(t,D) is, the fewer documents t occurs, therefore the more
likely t is a specific word and is related to the topics of
these documents. As the product of tf(t, d) and idf(t,D),
tfidf(t, d,D) takes into consideration both the importance of
t to d and the informativeness of t in D.

In our dataset, we use TF–IDF for tags and every behavioral
features. A document is a sample in this context. For tags,
each unique tag is a token. For behavioral features, we do
some preprocessing before tokenization, including conversion
to lowercase, removal of punctuation and stitching tokens
that make sense together from a priori knowledge, splitting
filenames from the path to it, etc. We also stitch together all
texts from all behavioral features and do tokenization on the
resulting larger texts. Then we construct the TF–IDF matrix
A2 as

A2 =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
...

. . .
...

an,1 an,2 · · · an,m

 (7)

where each row represents a sample and each column repre-
sents a token. The value of ai,j equals to the TF–IDF value
of the j-th token to the i-th document in the corpus.

C. ssdeep distance matrix

As is described in subsection V-A, ssdeep is a measure
for dissimilarity of the original files by comparing the ssdeep
hashes. For example, if a single byte of a file is modified,
the ssdeep hashes of the original file and the modified file are
considered highly similar. The ssdeep is useful for searching
for similar files. For instance, two malware samples generated
from the same malware family which inserts configuration
statically into a stub sample, may be easy to identify as having
a high similarity. Thus we compute the ssdeep hash of feature
strings to compare the similarity of different malware samples.

The Python package ssdeep [23] provides a function to get
the similarity score of two ssdeep hashes, which ranges from
0 (no similarity or negligible similarity) to 100 (very similar,
if not an exact match). We can transform the similarity score
s to dissimilarity score (i.e., distance) s′ by

s′ =
100

s+ 1
− 100

101
(8)

Then we construct the ssdeep distance matrix A3 as

A3 =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 (9)

where each row and each column represent a sample. The
value of ai,j equals to the distance of the i-th sample and j-th
sample.

In addition, we constructed ssdeep distance matrix for each
of the behavioral features. For a sample, a given behavioral
feature usually has multiple strings. We sort these string alpha-
betically (so that edit distance makes sense) and concatenate
these strings. Then we compute the pairwise distance of these
strings and construct an ssdeep distance matrix as described
above.

D. HDBSCAN

Now that we have constructed the matrices from the fea-
tures, we feed them into a clustering algorithm, for which we
choose HDBSCAN.

HDBSCAN [25] is an extension to DBSCAN [26], the
density-based clustering algorithm. Not only can it cluster data
of varying shape, like DBSCAN does, it can also cluster data
of varying density.

HDBSCAN defines the concept of mutual reachability dis-
tance, which is based on density. The original space is trans-
formed to a mutual reachability distance-based space, where
a weighted graph is built. HDBSCAN builds the minimal
spanning tree for the graph, via Prim’s algorithm. The minimal
spanning tree is then converted to a single linkage tree, and
ultimately to a condensed tree, which represents a hierarchy
of clusters. HDBSCAN selects the most stable clusters as its
output.

VII. EVALUATION

To evaluate the performance of our malware features and the
email-based approach, we adopted multiple evaluation metrics
for clustering. Purity measures the homogeneity of a set of
clusters, while ARI, AMI and FMI measure the similarity
between two sets of clusters. Purity is apparently weaker than
the other three metrics, but fits the nature of our research. We
also use some auxiliary metrics.

A. Purity

Purity is a metric for the homogeneity of the labels in each
clusters. Given a set of m clusters C = {c1, ..., cm} and a set
of n labels L = {l1, ..., ln}, we define

pi =

max
16j6n

|ci ∩ fj |

|ci|
(10)

for i ∈ {1, ...,m}. Purity purity(C,L) is defined as

purity(C,L) =

m∑
i=1

pi|ci|
m∑
i=1

|ci|
(11)

Purity reflects the extent of clusters having few (i.e., ho-
mogeneous) labels. However, even when purity is high, the
clusters and labels are not necessarily similar enough, for one
label can be distributed into multiple clusters. It is possible that
for the same pair of clusters C and labels L, their other metrics
such as ARI could be drastically lower, while the purity is
relatively high. This does not mean purity is not good enough

as an evaluation metric. On the contrary, purity best fits the
nature of our research, for two reasons:

1) The main goal of our approach is to make sure in each
cluster there are homogeneous labels, so that each cluster
can be given a proper name; in later processes, those
clusters with the same name can be merged together.

2) More importantly, in the email-based approach clusters
are derived from email campaigns. An email campaign
is limited in a certain timeframe and to a certain threat
actor and theme. However, a malware family can surely
occur in multiple timeframes, be related to multiple
thems and sent by multiple threat actors. Therefore
families are naturally distributed in multiple clusters
in this approach, for which the only suitable metric is
purity.

B. ARI

Given a set of ground-truth labels and a clustering, the Rand
index RI is [27]:

RI =
TP+TN

TP+FP+TN+FN
(12)

and the adjusted Rand index ARI is defined by:

ARI =
RI−E[RI]

max(RI)− E[RI]
(13)

C. AMI

Given two clusterings U and V , the mutual information MI
between U and V is defined as [28]:

MI(U, V) =

|U |∑
i=1

|V |∑
j=1

P (i, j) log(
P (i, j)

P (i)P ′(j)
) (14)

Adjusted mutual information AMI is defined by:

AMI =
MI−E[MI]

mean(H(U), H(V))− E[MI]
(15)

where H(U) and H(V) are entropy of U and V .

D. FMI

Given a set of ground-truth labels and a clustering, the
Fowlkes-Mallows index FMI is defined as:

FMI =
TP√

(TP+FP)(TP+FN)
(16)

E. Auxiliary metrics

In addition, we report three auxiliary metrics, which do
not evaluate the features’ performance, but help us understand
their qualities.
• dimension: the dimension of a feature matrix. Only ap-

plicable to one-hot matrices and TF–IDF matrices. If the
dimension is very high, the feature matrix may be sparse
and there may be an amount of noise.

• n clusters: number of clusters returned by clustering
algorithms. If this metric is too high, the dataset is split
into too many small clusters; as a result, purity may be
falsely high.

• n noise: number of samples for which clustering al-
gorithms fail to assign a cluster. Since our evaluation
excludes the noise points, if this metric is too high, purity,
ARI, AMI and FMI may be falsely high.

VIII. RESULTS AND DISCUSSIONS

Tables VII, VIII, IX and X show the evaluation results for
doc and archive, using AVClass and Euphony as “labels”,
respectively.

Approach dimension n clusters n noise Purity ARI AMI FMI
avclass - 46 740 1.0000 1.0000 1.0000 1.0000
euphony - 159 3 0.9622 0.4437 0.4554 0.7649
email - 1764 0 0.9466 0.0210 0.1586 0.1970
tags onehot 38 94 59 0.9110 0.0964 0.2570 0.4301
tags tfidf 38 96 41 0.9102 0.0970 0.2569 0.4299
ssdeep - 389 148 0.9626 0.0039 0.1494 0.0847
modules loaded tfidf 1634 544 230 0.9270 0.0068 0.1252 0.1462
processes created tfidf 691 618 237 0.9367 0.0277 0.1307 0.3090
processes tree tfidf 756 901 495 0.9361 0.0261 0.1125 0.3008
registry keys set tfidf 5204 792 4370 0.9032 0.0128 0.1017 0.1324
files attribute changed tfidf 15909 245 460 0.8972 0.0450 0.1270 0.3359
mutexes created tfidf 1047 241 181 0.9111 0.0669 0.1877 0.4055
registry keys deleted tfidf 3191 1613 1302 0.9082 0.0010 0.0378 0.0509
mutexes opened tfidf 149 68 22 0.8884 0.3694 0.3378 0.7884
all features tfidf 23066 149 182 0.9008 0.3733 0.3025 0.8144
modules loaded ssdeep - 463 357 0.9221 0.0072 0.1244 0.1483
processes created ssdeep - 513 325 0.9301 0.0261 0.1272 0.2984
processes tree ssdeep - 684 597 0.9214 0.0284 0.1112 0.3050
registry keys set ssdeep - 435 985 0.8848 0.0127 0.0660 0.1989
files attribute changed ssdeep - 234 513 0.8793 0.0371 0.1112 0.3117
mutexes created ssdeep - 189 148 0.9082 0.0686 0.1934 0.4053
registry keys deleted ssdeep - 448 803 0.8897 0.0146 0.0886 0.2083
mutexes opened ssdeep - 61 41 0.8887 0.3673 0.3369 0.7888
baseline - - - 0.8320 - - -

TABLE VII: Evaluation results for doc, AVClass as “labels”

Approach dimension n clusters n noise Purity ARI AMI FMI
avclass - 46 740 0.7587 0.4437 0.4554 0.7649
euphony - 159 3 1.0000 1.0000 1.0000 1.0000
email - 1764 0 0.8043 0.0448 0.2832 0.1869
tags onehot 38 94 59 0.7046 0.1520 0.3772 0.3717
tags tfidf 38 96 41 0.7037 0.1528 0.3776 0.3715
ssdeep - 389 148 0.8400 0.0110 0.3058 0.0924
modules loaded tfidf 1634 544 230 0.7591 0.0101 0.2165 0.1143
processes created tfidf 691 618 237 0.7967 0.0351 0.2375 0.2363
processes tree tfidf 756 901 495 0.7955 0.0393 0.2045 0.2354
registry keys set tfidf 5204 792 4370 0.7480 0.0257 0.1468 0.1299
files attribute changed tfidf 15909 245 460 0.6816 0.0600 0.1492 0.2636
mutexes created tfidf 1047 241 181 0.6898 0.0600 0.2128 0.2994
registry keys deleted tfidf 3191 1613 1302 0.7228 0.0028 0.0724 0.0483
mutexes opened tfidf 149 68 22 0.6655 0.2108 0.2675 0.5896
all features tfidf 23066 149 182 0.6779 0.1800 0.2389 0.6007
modules loaded ssdeep - 463 357 0.7458 0.0103 0.2111 0.1152
processes created ssdeep - 513 325 0.7821 0.0367 0.2324 0.2320
processes tree ssdeep - 684 597 0.7606 0.0429 0.1935 0.2395
registry keys set ssdeep - 435 985 0.6600 0.0062 0.0812 0.1352
files attribute changed ssdeep - 234 513 0.6559 0.0482 0.1233 0.2393
mutexes created ssdeep - 189 148 0.6840 0.0624 0.2155 0.2995
registry keys deleted ssdeep - 448 803 0.6780 0.0162 0.1286 0.1535
mutexes opened ssdeep - 61 41 0.6648 0.2080 0.2640 0.5899
baseline - - - 0.6030 - - -

TABLE VIII: Evaluation results for doc, Euphony as “labels”

Approach dimension n clusters n noise Purity ARI AMI FMI
avclass - 121 278 1.0000 1.0000 1.0000 1.0000
euphony - 297 9 0.8720 0.3946 0.6063 0.5818
email - 1061 0 0.8583 0.7433 0.5338 0.8577
tags onehot 11 11 7 0.6595 0.3243 0.2331 0.6735
tags tfidf 11 13 1 0.6597 0.3236 0.2325 0.6729
ssdeep - 274 554 0.8134 0.0300 0.2530 0.1592
processes tree tfidf 3076 415 470 0.6234 0.0047 -0.0013 0.1587
registry keys opened tfidf 12626 699 577 0.6359 0.0005 -0.0021 0.0687
modules loaded tfidf 2997 691 838 0.6327 0.0003 0.0030 0.0411
files opened tfidf 11754 475 622 0.6196 -0.0046 -0.0061 0.1583
files dropped tfidf 9775 400 586 0.6211 0.0042 0.0016 0.1802
all features tfidf 27988 538 1379 0.6391 -0.0000 -0.0025 0.0489
processes tree ssdeep - 295 539 0.6140 0.0033 0.0021 0.1414
registry keys opened ssdeep - 437 502 0.6191 0.0009 0.0011 0.0753
modules loaded ssdeep - 470 673 0.6223 0.0002 0.0021 0.0590
files opened ssdeep - 495 475 0.6170 0.0007 0.0019 0.0998
files dropped ssdeep - 240 309 0.6093 0.0041 0.0047 0.1765
baseline - - - 0.6074 - - -

TABLE IX: Evaluation results for archive, AVClass as “labels”

Approach dimension n clusters n noise Purity ARI AMI FMI
avclass - 121 278 0.5760 0.3946 0.6063 0.5818
euphony - 297 9 1.0000 1.0000 1.0000 1.0000
email - 1061 0 0.5784 0.3130 0.4265 0.5290
tags onehot 11 11 7 0.3841 0.1205 0.2039 0.4099
tags tfidf 11 13 1 0.3843 0.1208 0.2052 0.4096
ssdeep - 274 554 0.7869 0.1370 0.4392 0.2600
processes tree tfidf 3076 415 470 0.3532 0.0046 0.0016 0.0956
registry keys opened tfidf 12626 699 577 0.3977 0.0010 0.0022 0.0423
modules loaded tfidf 2997 691 838 0.4015 0.0005 0.0048 0.0253
files opened tfidf 11754 475 622 0.3567 -0.0050 -0.0039 0.0937
files dropped tfidf 9775 400 586 0.3498 0.0033 0.0012 0.1086
all features tfidf 27988 538 1379 0.4013 0.0005 0.0004 0.0306
processes tree ssdeep - 295 539 0.3412 0.0046 0.0048 0.0870
registry keys opened ssdeep - 437 502 0.3605 0.0013 0.0040 0.0462
modules loaded ssdeep - 470 673 0.3639 0.0006 0.0032 0.0360
files opened ssdeep - 495 475 0.3632 -0.0009 -0.0002 0.0576
files dropped ssdeep - 240 309 0.3249 0.0037 0.0047 0.1067
baseline - - - 0.3015 - - -

TABLE X: Evaluation results for archive, Euphony as “labels”

Since our dataset is very skewed, purity could be falsely
high because most data points happen to fall in the dominant
family by its prediction. Therefore we introduced a hypothet-
ical set where every label is the dominant label according
to AVClass/Euphony. The purity of this hypothetical set and
AVClass/Euphony equals to the ratio of the dominant family
in AVClass/Euphony, and we use it as a baseline for purity.
For both file types, evaluated by both AVClass and Euphony,
every approach beats the baseline in the case of purity.

We highlight the best results with boldface fonts in the
tables. For purity, if the purity of an approach is higher than
the average of AVClass/Euphony and the baseline, we annotate
it with boldface. For ARI, AMI and FMI, if the metric is higher
than the average of the maximum and minimum, we annotate
it with boldface. One can notice that the results for the two file
types are quite different; within the same file type, the results
for AVClass and Euphony as “labels” are quite similar (which
also coordinates with assumption 1).

For the doc file type, most of our features extracted
from static and dynamic analysis produce excellent results,
in the case of purity. Some features, like email, tags,
ssdeep, mutexes opened tfidf, all features ssdeep and mu-
texes opened ssdeep, also produces good results in ARI, AMI
and FMI. email’s purity is among the highest, which confirms
the novel approach can produce highly homogeneous clusters;
on the other hand, email is not good evaluated by other metrics,
but this is acceptable due to the reason explained in subsection
VII-A. It is also notable that some of all features ssdeep’s
metrics are better than any of the behavioral features—some
even higher than Euphony.

As for the archive file type, the results are quite different.
Our malware analysis-based approaches do not excel in be-
havioral features. However, email is quite high for all metrics,
some of which is even much higher than that of Euphony.

There are also similarities between the two file types. For
example, in our malware features, tags and ssdeep are the most
stable, with some metric noticeably high for both file types. If
we take n clusters and n noise into consideration, tags is the
best feature among all—which is not so surprising, since it
is a high-level summary derived from multiple analysis. Also,
the results of tags onehot and tags tfidf are always so close,
showing that representing tags with one-hot or TF–IDF does

not have a significant effect, probabaly because each token
occurs in each document for at most once. What’s more, there
proves to be little difference in performance, transforming
behavioral features to whether TF–IDF feature matrices or
ssdeep distance matrices.

As validation of assumption 1, we check AVClass and
Euphony’s purity, comparing to one another. For doc, we
have E(L2, L1,purity) = 0.9622 and E(L1, L2,purity) =
0.7587; for archive, we have E(L2, L1,purity) = 0.8720
and E(L1, L2,purity) = 0.5760. This proves that AVClass
and Euphony are fairly homogeneous for our dataset (the
lowest purity, 0.5760 means in an AVClass cluster, there are

1
0.5760 = 1.736 Euphony labels on average). That strengths
our belief in assumption 1.

IX. CONCLUSIONS AND FUTURE

Our evaluation shows that the novel approach based on
email campaigns is as good as—if not better—traditional ap-
proaches based on features retrieved from static and dynamic
analysis. Because of its nature, the email-based approach splits
one family into multiple clusters, resulting in low ARI, AMI
and FMI for certain file types. However, this is acceptable in
our context, for families distributed in multiple clusters can
be merged again in later processes, as long as the clusters are
homogeneous.

As for our own approach, which is based on features from
malware analysis and evaluated on the same real dataset, there
is not a universal conclusion for both file types and all features.
This is perhaps based on different mechanisms of doc and
archive, or the insufficiency of data available from VirusTotal,
which is the best we can begin with when working with a real
dataset. However, we do discover that features such as tags
and ssdeep will produce excellent results, no matter for which
file type.

We met with some difficulties when working with the real
dataset. To begin with, as just mentioned, analysis reports may
not be available from VirusTotal, as the real dataset is updated
rapidly. Second, since we lack ground-truth labels, we have
to used AVClass and Euphony results as “labels”. Based on
assumption 1, such a methodology seems quite promising, but
can never be proved. Also, the real dataset is quite skewed,
which makes the baseline for purity very high and may affect
how we evaluate the performance of our approach.

In future, we will improve our work from the following
aspects:
• Use our approach on a more balanced dataset with

ground-truth label (not necessarily a real dataset).
• Use cluster ensemble techniques (as we have shown that

merging multiple behavioral features may produce better
results than any of those does separately).

• Make use of AV checker labels provided by VirusTotal,
as AVClass and Euphony do.

• Try more sophisticated embedding techniques, rather than
those we currently use.

REFERENCES

[1] Renee Burton. “Distilling Malicious Campaigns in
Spam”. https : / / info . infoblox . com / resources -
whitepapers - tools - of - the - trade - distilling - malicious -
campaigns-in-spam.

[2] VirusTotal. https://www.virustotal.com/.
[3] Kaspersky Security Bulletin 2019. Statistics. https : / /

securelist . com / kaspersky - security - bulletin - 2019 -
statistics/95475/.

[4] Kaspersky Security Bulletin 2020. Statistics. https : / /
securelist . com / kaspersky - security - bulletin - 2020 -
statistics/99804/.

[5] Daniel Arp et al. “Drebin: Effective and explainable
detection of android malware in your pocket.” In: Ndss.
Vol. 14. 2014, pp. 23–26.

[6] AS Fridrik Skulason and Vesselin Bontchev. “A new
virus naming convention”. In: CARO meeting. 1991.

[7] D Beck and J Connolly. “The common malware enu-
meration initiative”. In: Proceedings of the Virus Bul-
letin Conference. 2006.

[8] Vesselin Bontchev. “Current status of the caro malware
naming scheme”. In: Virus Bulletin (VB2005), Dublin,
Ireland (2005).

[9] Tom Kelchner. “The (in) consistent naming of mal-
code”. In: Computer Fraud & Security 2010.2 (2010),
pp. 5–7.

[10] Malware Naming Hell: Taming the mess of AV detection
names. https://www.gdatasoftware.com/blog/2019/08/
35146-taming-the-mess-of-av-detection-names.

[11] Marcos Sebastián et al. “Avclass: A tool for massive
malware labeling”. In: International Symposium on Re-
search in Attacks, Intrusions, and Defenses. Springer.
2016, pp. 230–253.

[12] Médéric Hurier et al. “Euphony: Harmonious unifica-
tion of cacophonous anti-virus vendor labels for An-
droid malware”. In: 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR).
IEEE. 2017, pp. 425–435.

[13] Linhai Song et al. “Learning from big malwares”.
In: Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems. 2016, pp. 1–8.

[14] Houtan Faridi, Srivathsan Srinivasagopalan, and Rakesh
Verma. “Performance Evaluation of Features and Clus-
tering Algorithms for Malware”. In: 2018 IEEE In-
ternational Conference on Data Mining Workshops
(ICDMW). IEEE. 2018, pp. 13–22.

[15] Cuckoo Sandbox. https://cuckoosandbox.org/.
[16] Spam and phishing in 2019. https : / / securelist . com /

spam-report-2019/96527/.
[17] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen.

“Amal: High-fidelity, behavior-based automated mal-
ware analysis and classification”. In: computers & se-
curity 52 (2015), pp. 251–266.

[18] Philipp Trinius et al. A malware instruction set
for behavior-based analysis. Tech. rep. University of
Mannheim, Institute of Computer Science, 2009.

[19] Felipe N Ducau et al. “Automatic Malware Description
via Attribute Tagging and Similarity Embedding”. In:
arXiv preprint arXiv:1905.06262 (2019).

[20] Yanxin Zhang et al. “Familial clustering For weakly-
labeled Android malware using hybrid representation
learning”. In: IEEE Transactions on Information Foren-
sics and Security 15 (2019), pp. 3401–3414.

[21] Detect and respond to cyber attacks, cyber threats.
https://www.lastline.com/.

[22] File deep analysis platform. https://sandbox.ti.qianxin.
com/sandbox/page.

[23] Helmut Grohne Jesse Kornblum and Tsukasa OI. ssdeep
– Fuzzy hashing program. https://ssdeep-project.github.
io/ssdeep/index.html.

[24] Jesse Kornblum. “Identifying almost identical files us-
ing context triggered piecewise hashing”. In: Digital
investigation 3 (2006), pp. 91–97.

[25] Ricardo JGB Campello, Davoud Moulavi, and Jörg
Sander. “Density-based clustering based on hierarchi-
cal density estimates”. In: Pacific-Asia conference on
knowledge discovery and data mining. Springer. 2013,
pp. 160–172.

[26] Martin Ester et al. “A density-based algorithm for dis-
covering clusters in large spatial databases with noise.”
In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[27] William M Rand. “Objective criteria for the evaluation
of clustering methods”. In: Journal of the American
Statistical association 66.336 (1971), pp. 846–850.

[28] Nguyen Xuan Vinh, Julien Epps, and James Bailey.
“Information theoretic measures for clusterings compar-
ison: Variants, properties, normalization and correction
for chance”. In: The Journal of Machine Learning
Research 11 (2010), pp. 2837–2854.

