
Cost-adaptive Neural Networks for Peak Volume Prediction with EMM Filtering

Bin Yu∗, Giovanna Graciani†, Anderson Nascimento†, Juhua Hu†
∗ Infoblox, Santa Clara, USA, biny@infoblox.com

† Center for Data Science, School of Engineering and Technology, University of Washington, Tacoma, USA
{giograc, andclay, juhuah}@uw.edu

Abstract—As the emergence of the Internet of Things (IoT)
and the growing number of IoT devices, a stable connection
service has become one of the key factors concerning the Quality
of Service (QoS) provision. How to anticipate the peak traffic
volume is essential. If the resource allocation is under provisioned,
the service becomes susceptible to failure or security breach.
Unfortunately, peak volumes are not captured in the systematic
components of data and as a result conventional trend prediction
methods have proven insufficient. We propose a framework that
implements neural networks with filtering and a cost-adaptive
loss function to improve the ability to predict peak volumes.
Implementing this method on a real Domain Name Server
(DNS) traffic data, we observe not only the improvement in the
prediction performance but also a shorter lag time to predict
peak values, which demonstrates our proposed method.

Index Terms—Quality of Service, network traffic, peak volume
prediction, cost-adaptive neural networks

I. INTRODUCTION

The Internet of Things (IoT) is grounded on a connection
of billions of devices on the Internet. As the growing number
of IoT devices, maintaining a stable connection service has
become a challenging task to improve the usage experience
of IoT applications. To meet the demands, anticipating peak
volume of requests is crucial.

For instance, Domain Name Server (DNS) plays an impor-
tant role in the connection service, which translates domain
names (e.g., google.com) entered by devices to IP addresses
for connection. If a DNS is under provisioned, it becomes
susceptible to failure or security breach. In fact, DNS query
flooding or overloading the DNS server, is a common DNS
Denial of Service (DDoS) attack strategy as it can render a
network services unresponsive and prevent accessing network
resources. As shown in Fig. 1, by deploying a large number of
Bad Bots, an entity can overload the DNS Servers and render
the entire DNS service incapacitated. DNS servers can also
become overloaded by a sudden unexpected rise in benign
network traffic [1]–[3]. Therefore, it is important to anticipate
the peak volume in different aspects (e.g., DNS and DHCP) to
provide a stable connection service in terms of QoS for IoT.

Unfortunately, peak values are not captured in the system-
atic components of data and as a result conventional trend
prediction methods have proven insufficient to generate strong
predictions as follows. Simple linear models such as Auto
Regressive Integrated Moving Average (ARIMA) have been
widely used for general time-series forecasting problems [4]–
[7]. Besides, exponential smoothing is a technique that can

Fig. 1: An Example of DOS attack against a DNS1.

be used for time-series prediction [8]. However, these works
do not address the nontrivial task of peak prediction. Linear
models such as ARIMA and exponential smoothing have been
shown to lack the ability to effectively capture peak values
in data. This is because linear models fail to represent the
stochastic and nonlinear nature of a traffic flow [9].

In contrast, neural networks are well known for capturing
the non-linearity of data, and various non-linear models have
been applied for network traffic prediction such as Convo-
lutional Neural Networks (CNN), Long Short Term Memory
Networks (LSTM), Artificial Neural Networks (ANN), Gated
Recurrent Units (GRU) and variants of these models [9]–
[11]. However, none of these works address peak prediction.
Recently Yu et al. [12], [13] proposed a filter, named EMM, in
conjunction with a non-linear model that has shown promising
results in peak prediction. EMM filter is also adopted in our
work to better prepare the data for peak prediction.

Specifically, we propose a general peak prediction frame-
work. We first prepare the data through the EMM filter [12],
[13] to specifically extract peak values within a time window
and a local normalization to capture the peak information
comparing the most recent volume. More importantly, we pro-
pose a cost-adaptive loss function that applies a higher penalty
to under-prediction than over-prediction. This is because the
effects of under-prediction of traffic volume are more severe
than over-prediction, as shortages can result in system failure
and security risk. In the application to a real DNS traffic data,
we observe an improvement in ability to predict peak volumes,
and a shorter lag time for peak predictions. Both of these
are essential to maintaining a well provisioned service, which
demonstrates our proposed peak prediction framework.

1https://www.slideshare.net/AmazonWebServices/
dns-ddos-mitigation-using-amazon-route-53-and-aws-shield978-1-7281-0858-2/19/$31.00 ©2019 IEEE

The rest of the paper is organized as follows. Section II gives
an overview of related work. Then, we present our proposed
framework in Section III. Section IV reports the results of an
empirical study over a real DNS traffic data. Finally, Section V
concludes this work and discusses the future work.

II. RELATED WORK

Various time-series forecasting models have been proposed
for trend prediction on network traffic, with only a couple
focusing on peak value prediction. These models can be
classified into two main categories, that is, linear models and
non-linear models.

A. Linear Models

There have been many successful applications of ARIMA
models to network traffic modeling and predictions [4]–[6].
While these works address time-series forecasting for network
traffic data, they lack the capability of peak volume prediction
that is a non-trivial task. Peak values are not captured in the
systematic components of a dataset and as a result conven-
tional trend prediction methods, such as ARIMA, are insuffi-
cient to generate strong predictions on peak values [9]. Some
traditional time-series forecasting models such as ARIMA
have been applied to peak prediction [14], [15] in some real
tasks. However, peak prediction over network traffic data has
not been addressed before.

Common filtering approaches such as exponential smooth-
ing [8] suffer from the same caliber of performance as ARIMA
models on generating peak prediction due to a similar reliance
on the systematic components of data. Recently, Yu et al. [12],
[13] proposed an EMM filter which shows promising results
when predicting peak values on network data. We adopt this
filter to better prepare the data for peak prediction.

B. Non-linear Models

To combat the poor performance of linear models on non-
linear data, non-linear models were proposed. Neural networks
are well known for capturing the non-linearity of data [16].

Cicek et al. [17] compared the results of an Artificial Neural
Network (ANN) and Seasonal ARIMA (SARIMA) models for
predicting network traffic and found that their performance
are similar. Thereafter, Mozo et al. [10] adopted CNN to
forecast short-term changes in the amount of traffic crossing
a data center network. They found that CNN model greatly
outperforms standard ARIMA models due to the ability of
CNNs to exploit the non-linear regularities of network traffic.

Accouni et al. [11] proposed a LSTM model to predict
network traffic since LSTMs are well known to capture the
temporal dependencies between features more accurately than
traditional ANNs. They found that the LSTM model vastly
outperforms traditional linear methods and feed forward neural
networks, such as CNNs and ANNs. Hua et al. [18] also
implemented a LSTM model to predict traffic data. Fu et
al. [9] compared the results of LSTM, GRU and ARIMA
models to predict short-term traffic flow, and their experiments
demonstrate that Recurrent Neural Network (RNN) based deep

learning methods such as LSTM and GRU perform better than
ARIMA models. Authors of [19] found that various RNN
models such as LSTM and GRU achieve similar performance.
Unfortunately none of the aforementioned models focus on
peak value prediction. As such, the present literature is insuf-
ficient to accurately predict peaks in network traffic so as to
support the stable connection service for IoT.

III. THE PROPOSED METHOD

Assume a time-series of the form · · · , tn−1, tn, tn+1, · · ·
where tn is the present time in the series, we define
a network traffic volume sequence in this time-series as
· · · , vn−1, vn, vn+1, · · · . Then, our traffic prediction problem
can be defined as

vn+1 = P (vn, vn−1, ..., vn−k+1) (1)

where P is the prediction function to estimate, and k is the step
size or the number of history instances used for prediction.

Our peak volume prediction framework consists of two main
stages. The first stage is the data preparation with the EMM
filter [12], [13] and a local normalization. Then, the second
stage is to train a cost-adaptive time-series forecasting model.

A. Data Preparation

To better capture the peak values in history, we ap-
ply the EMM filter [12], [13] to the raw traffic data
· · · , vn−1, vn, vn+1, · · · , which results in the filtered sequence
· · · , v′n−1, v′n, v′n+1, · · · , where

v′n = max
0≤i≤n

{
β

i
ω vn−i

}
(2)

β ∈ [0, 1] is the weight or inheritance coefficient, and ω is the
filter kernel size or filter window size. Concretely, the filter is
used to focus on the peak values in a given window utilizing
a maximum aggregator that applies a magnitude decaying
exponentially with time. This effectively keeps all peak values
and filters random noise as shown in Fig. 2, where the filter
window size is set to 3.

Moreover, traffic volume at different times are often of
greatly different scales, and thus normalization is applied.
While global normalization is commonly applied for general
time-series prediction [5], [11], [18], [20], we apply local
normalization to capture peak information comparing the
most recent traffic volume. Local normalization results in the
sequence · · · , wn−1, wn, wn+1, · · · , where

wn =
v′n − v′n−1
v′n−1 + ε

(3)

and ε is a small constant.

B. Weighted Signed Error (WSE) Loss Function

Mean Squared Error (MSE) [21] is a commonly used loss
function in the last fully connected layer of neural networks.
For example, the LSTM model in Fig. 3 has an input layer,
one LSTM layer, and an output layer in which MSE is aimed
to be minimized.

2015-09-01

2015-10-01

2015-11-01

2015-12-01

2016-01-01

2016-02-01

2016-03-01

2016-04-01

2016-05-01

2016-06-01

2016-07-01

2016-08-01

2016-09-01

2016-10-01

2016-11-01

2016-12-01

2017-01-01

2017-02-01

2017-03-01

2017-04-01

2017-05-01

2017-06-01

2017-07-01

2017-08-01

2017-09-01

2017-10-01

2017-11-01

2017-12-01

2018-01-01

2018-02-01

2018-03-01

2018-04-01

2018-05-01

2018-06-01

2018-07-01

2018-08-01

2018-09-01

Date

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vo
lu

m
e

of
 U

nr
es

ol
ve

d
DN

S
Tr

af
fic 1e8

Raw Data
EMM Filtered

Fig. 2: Raw data vs. EMM filtered data on DNS traffic data. The EMM filter window size is set to 3.

Fig. 3: An example of LSTM model

Under provisioned resources can lead to disastrous conse-
quences for network servers like network failure or a risk
of security vulnerability. In another word, under-prediction of
traffic volume is more serious than over-prediction. However,
MSE treats the empirical errors of under and over prediction
equivalently as

MSE =
1

N

N∑
i=1

(wp
i − wi)

2 (4)

where wi is the observed volume, wp
i is the predicted volume,

and N is the total number of predicted volumes.
To penalize under-prediction more heavily than over-

prediction, we propose a weighted loss function that is cost-
adaptive. Specifically, we propose a Weighted Signed Error
(WSE) as

WSE =
1

N

N∑
i=1

α
1+sign(w

p
i
−wi)

2 (wp
i − wi)

2 (5)

where α ∈ [0, 1] is a weight coefficient and sign(wp
i −wi) = 1

if wp
i ≥ wi, -1 otherwise. Apparently, if α is set to 1, WSE

is equivalent to MSE. Moreover, WSE penalizes the under-
prediction more heavily than over-prediction. For example,
when α = 0.1, the weight for under-prediction is 1 while
that for over-prediction is 0.1.

IV. EXPERIMENTS

To demonstrate our proposed framework for peak volume
prediction, we apply it to a real DNS traffic data. The
data contains a univariate time-series of the daily aggregated
volume of unresolved queries on a real DNS over about three
years (i.e., from Sep. 24th, 2015 to July 30th, 2018), where
missing values were filled with interpolation. Therefore, this
DNS traffic data contains 1,040 instances, where each instance
is a daily volume of unresolved queries over the real DNS
server. The whole time-series is shown as “Raw Data” with
green real line in Fig. 2.

The main statistics of the DNS traffic data are summarized
in Table I. Specifically, the number of daily queries varies a
lot over the time. For example, the minimum volume over
the three years is only 46, while the maximum reaches up to
around 300 millions. Therefore, allocating a fixed amount of
resource all the time for this DNS server is not realistic. For
example, if we give the capacity of 300 millions to this server
all the time, we waste a lot of resources in many days that
can be used by other high demanding servers. Therefore, it is
crucial to accurately predict the volumes including the peak
values.

TABLE I: A Summary of the DNS Traffic Data

Domain Type Mean Min Median Max
Unresolved 100,498,447 46 94,268,425 294,870,823

A. Evaluation Metric

Metrics of interest are root mean squared error (RMSE) and
root weighted signed error (RWSE) defined as follows.

RMSE =
√
MSE (6)

RWSE =
√
WSE (7)

RMSE is a standard evaluation metric used for time-series
forecasting. However, RMSE is not designed for the prediction
of peak values, as it assigns equal weight to over and under
prediction. Thus, we propose a novel metric RWSE according
to our novel loss function WSE to evaluate how the models
perform on peak volume predictions.

B. Setup
We embed our cost-adaptive loss function WSE into sev-

eral effective neural networks for time-series forecasting as
follows.

1) ANN [22]: The ANN model constructed consists of an
input layer, one hidden layer, and an output layer with a
linear activation function.

2) LSTM [23]: The LSTM model is constructed by an input
layer, one LSTM layer, and an output layer with a tanh
activation function as in Fig. 3.

3) GRU [24]: GRU is a type of recurrent neural network as
LSTM. However, GRU models are less complex due to a
reduction in inputs [9]. The constructed GRU model has
an input layer, one GRU layer, and an output layer with
a tanh activation function.

4) MCCNN [25]: MCCNN is multi-channel CNN. We con-
struct a model consisting of one input layer that feeds into
three separate channels. Each of these channels varies
in their filter size, 3, 5, and 7, respectively. Then, the
network is followed by a convolutional layer, a max
pooling layer and a flattening layer. The patterns learned
by each of the three channels are merged together in a
concatenate layer followed by a fully connected layer and
an output layer with a linear activation function.

We tune the parameters and evaluate the models using 5-
fold cross validation. Specifically, with a set step size k, we
can use the time series to produce N − k instances. Then, we
split all these instances into 5 almost equal-sized folds, where
each fold can be used to test and the rest four are used for
training. The average performance of these 5 trials with the
standard deviation are reported and compared.

For the EMM filter, we tune the window size ω from
{3, 5, 7} to capture the weekly seasonality, where 3 days is
half of a week, 5 days is a complete work week, and 7
days is a full week. We find that ω = 3 achieves the best
performance. We also tune our inheritance exponent β with
values {0.1, 0.5, 0.7, 0.9} and find the best performance with
β = 0.5.

For the local normalization, we set the constant ε = 0
since the minimum volume is not zero as shown in Table I.
Considering that LSTM and GRU models are using the tanh
activation function, we re-scale the time-series into the range
of [−1, 1] specifically for these two models.

Finally, we tune the step size k from the values {3, 5, 7}
to similarly consider the weekly seasonality. We find that
k = 7 results in the best performance. We also tune the weight
coefficient α of our loss function from {0.1, 0.2, 0.5} and find
the best performance with α = 0.2. This means setting the
weight of under-prediction 20x higher than over-prediction
provides the best performance.

C. Performance Comparison
To demonstrate the helpfulness of each component in our

framework, that is, EMM filter, local normalization, and the
proposed loss function WSE. We compare the performance of
the following methods.

TABLE II: Performance Comparison on DNS Traffic Data
(The best performance is in bold where statistical significance
test with 95% confidence is used).

Model RWSE RMSE
Linear Models

ARIMA G 0.275±0.141 0.502±0.338
ARIMA L 0.170±0.063 0.222±0.080

LR G 0.236±0.114 0.407±0.273
LR L 0.169±0.063 0.221±0.081

EMM LR G 0.228±0.114 0.422±0.284
EMM LR L 0.165±0.060 0.239±0.089

RNN Models
LSTM G WSE 0.622±0.149 1.384±0.329
LSTM G MSE 0.382±0.087 0.841±0.187
LSTM L WSE 27.024±11.168 60.428±24.971
LSTM L MSE 23.141±9.204 51.745±20.581

EMM LSTM G WSE 0.639±0.150 1.427±0.333
EMM LSTM G MSE 0.394±0.088 0.873±0.190
EMM LSTM L WSE 0.171±0.060 0.329±0.114
EMM LSTM L MSE 0.159±0.062 0.240±0.092

GRU G WSE 0.618±0.148 1.376±0.326
GRU G MSE 0.380±0.085 0.835±0.182
GRU L WSE 25.886±11.386 57.883±25.459
GRU L MSE 22.723±9.429 50.810±21.083

EMM GRU G WSE 0.636±0.149 1.419±0.330
EMM GRU G MSE 0.391±0.086 0.867±0.186
EMM GRU L WSE 0.172±0.060 0.334±0.115
EMM GRU L MSE 0.160±0.060 0.240±0.090

ANN and CNN Models
ANN G WSE 0.181±0.058 0.333±0.093
ANN G MSE 0.173±0.067 0.250±0.114
ANN L WSE 0.167±0.062 0.222±0.081
ANN L MSE 0.169±0.063 0.220±0.080

EMM ANN G WSE 0.180±0.058 0.352±0.102
EMM ANN G MSE 0.166±0.067 0.264±0.125
EMM ANN L WSE 0.153±0.059 0.246±0.092
EMM ANN L MSE 0.159±0.061 0.231±0.089

MCCNN G WSE 0.202±0.122 0.339±0.298
MCCNN G MSE 0.188±0.095 0.303±0.228
MCCNN L WSE 0.169±0.064 0.222±0.082
MCCNN L MSE 0.170±0.064 0.221±0.081

EMM MCCNN G WSE 0.199±0.127 0.356±0.307
EMM MCCNN G MSE 0.183±0.096 0.317±0.232
EMM MCCNN L WSE 0.157±0.061 0.251±0.095
EMM MCCNN L MSE 0.163±0.063 0.236±0.092

1) ARIMA [26] with two different normalization methods,
global (ARIMA G) and local (ARIMA L), respectively.
The best parameters are used. Specifically, the data is dif-
ferenced once for ARIMA in order to achieve stationarity.

2) Linear Regression (LR) [27] with or without EMM fil-
ter followed by different normalization methods, which
includes LR G, LR L, EMM LR G, and EMM LR L.

3) Neural networks with or without EMM filter
followed by different normalization methods (i.e.,
G and L) and different loss functions (i.e., MSE
and WSE), which are in the format of <FIL-
TER> <MODEL> <NORMALIZATION> <LOSS>.
For example, an ANN model that applies EMM filtering
followed by local normalization with our custom loss
function WSE is represented as EMM ANN L WSE.

Table II summarizes the empirical results of different meth-
ods under the two interested evaluation metrics, i.e., RWSE

and RMSE. The best performance for each evaluation metric
is in bold (significance test with 95% confidence applied).

From the results, we can observe that RNN models are
outliers in terms of performance. Potential factors can be that
RNN models cannot capture the DNS traffic pattern well or
the data size is not sufficient for RNN models to train strong
enough models. Based on the results of linear models and
other neural networks, we can have a few major observations.

1) Local normalization improves both RMSE and RWSE:
Local normalization improves general prediction (RMSE) and
peak prediction (RWSE) for all models. This demonstrates
that local normalization is able to capture the DNS traffic
pattern much better than global normalization, which can also
be observed in Fig. 4. Specifically, to compare the performance
between local and global normalization, we fix the model as
EMM ANN WSE and randomly choose one of the five folds
as test to show the difference between the observed volumes
(i.e., green dashed line) and the predicted volumes (i.e., blue
solid line). It shows that local normalization is a tighter fit to
each data point. Global normalization is based on the mean
and standard deviation of the whole time-series, and thus it is
less accurate for each individual instance in the series since
there is such a large range present in the data.

2) EMM filter improves RWSE but worsens RMSE: It can
be observed that EMM filter significantly improves RWSE for
all models, but worsens RMSE. RWSE is smaller when the
model generates over-predictions even if the over-prediction is
further from the predicted value, which results in an increase
to the RMSE. Therefore, EMM filter is only useful for peak
predictions where under-prediction is much more serious than
over-prediction.

3) WSE with local normalization improves RWSE: WSE
improves peak prediction performance on local normalized
data for ANN and MCCNN, regardless if EMM filter is
applied. The positive effects of the WSE coupled with local
normalization can be observed in the example of Fig. 5.
Similarly, we fix the model as EMM ANN L and compare the
performance of using different loss functions, MSE and WSE,
respectively. The areas within the red rectangles show that
MSE has the problem of under-prediction due to the delayed
the prediction, while WSE helps anticipate a peak value with
less delay and has no under-prediction at all. This is significant
to our application, where we would like to anticipate peak
values with as little delay as possible. This demonstrates that
our proposed loss function is better able to anticipate peak
values than the standard MSE loss function.

4) ANN with best RMSE and RWSE performance: The
ANN model achieves the best performance for both general
DNS traffic forecasting and peak volume prediction as shown
in Table II. It further demonstrates our proposed framework
combined with ANN. However, we have the doubt if this is
because of the size limit of the DNS data similar to the doubt
on the performance of RNN models, which will be our future
work.

V. CONCLUSION

Aiming to provide a stable connection service for IoT that
consists of billions of devices, we propose a new framework
for peak volume prediction for network servers. We show that
an EMM filter with a cost-adaptive loss function deployed in
certain neural networks can help improve the peak volume
prediction over a real DNS traffic data.

Compared to DNS data, the Dynamic Host Configuration
Protocol (DHCP) or the Wireless Sensor Network (WSN)
are also important connection infrastructures for IoT. We will
explore the proposed framework on these specific applications
in the future.

REFERENCES

[1] R. K. Chang, “Defending against flooding-based distributed denial-of-
service attacks: a tutorial,” IEEE communications magazine, vol. 40,
no. 10, pp. 42–51, 2002.

[2] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “Detect-
ing DNS amplification attacks,” in Critical Information Infrastructures
Security, J. Lopez and B. M. Hämmerli, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 185–196.

[3] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis, and
S. Gritzalis, “DNS amplification attack revisited,” Computers & Security,
vol. 39, pp. 475–485, 2013.

[4] B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network traffic modeling and
prediction with ARIMA/GARCH,” in Proc. of HET-NETs Conference,
2005, pp. 1–10.

[5] H. Z. Moayedi and M. Masnadi-Shirazi, “ARIMA model for network
traffic prediction and anomaly detection,” in Proc. of IEEE International
Symposium on Information Technology, vol. 4, 2008, pp. 1–6.

[6] W. H. K. Tsui, H. O. Balli, and H. Gower, “Forecasting airport passenger
traffic: the case of hong kong international airport,” Education and
Research Proceedings, vol. 2011, pp. 54–62, 2011.

[7] S. Mehrmolaei and M. R. Keyvanpourr, “A brief survey on event predic-
tion methods in time series,” in Artificial Intelligence Perspectives and
Applications, R. Silhavy, R. Senkerik, Z. K. Oplatkova, Z. Prokopova,
and P. Silhavy, Eds. Springer, 2015, pp. 235–246.

[8] G. Mahalakshmi, S. Sridevi, and S. Rajaram, “A survey on forecasting
of time series data,” in Proc. of IEEE International Conference on
Computing Technologies and Intelligent Data Engineering, 2016, pp.
1–8.

[9] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network
methods for traffic flow prediction,” in Proc. of The 31st IEEE Youth
Academic Annual Conference of Chinese Association of Automation,
2016, pp. 324–328.

[10] A. Mozo, B. Ordozgoiti, and S. Gómez-Canaval, “Forecasting short-term
data center network traffic load with convolutional neural networks,”
PloS One, vol. 13, no. 2, p. e0191939, 2018.

[11] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based frame-
work for traffic matrix prediction in SDN,” in Proc. of 2018 IEEE/IFIP
Network Operations and Management Symposium, 2018, pp. 1–5.

[12] B. Yu, L. Smith, and M. Threefoot, “Exponential moving maximum
filter for predictive analytics in network reporting,” in Proc. of The
5th International Conference on Advances in Information Mining and
Management, 2015, pp. 27–32.

[13] ——, “Exponential moving maximum (EMM) filter for predictive
analytics in network reporting,” Patent, Jul. 3, 2018, US Patent App.
10/015,059.

[14] C.-L. Hor, S. J. Watson, and S. Majithia, “Daily load forecasting and
maximum demand estimation using ARIMA and GARCH,” in Proc.
of IEEE International Conference on Probabilistic Methods Applied to
Power Systems, 2006, pp. 1–6.

[15] N. Amjady, “Short-term hourly load forecasting using time-series mod-
eling with peak load estimation capability,” IEEE Transactions on Power
Systems, vol. 16, no. 3, pp. 498–505, 2001.

[16] G. P. Zhang, B. E. Patuwo, and M. Y. Hu, “A simulation study of arti-
ficial neural networks for nonlinear time-series forecasting,” Computers
& Operations Research, vol. 28, no. 4, pp. 381–396, 2001.

Fig. 4: Global (top) vs. local (bottom) normalization using the model EMM ANN WSE.

Fig. 5: MSE (top) vs. WSE (bottom) on EMM ANN L (red rectangle areas show less delay and no under-prediction for WSE).

[17] Z. I. E. Cicek and Z. K. Ozturk, “Short term traffic flow forecasting using
artificial neural networks,” Sigma, vol. 9, no. 4, pp. 405–414, 2018.

[18] Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu, and H. Zhang, “Traffic predic-
tion based on random connectivity in deep learning with long short-term
memory,” in Proc. of IEEE 88th Vehicular Technology Conference, 2018,
pp. 1–6.

[19] R. Vinayakumar, K. Soman, and P. Poornachandran, “Applying deep
learning approaches for network traffic prediction,” in Proc. of IEEE
International Conference on Advances in Computing, Communications
and Informatics, 2017, pp. 2353–2358.

[20] M. J. T. Bantugon and R. J. C. Gallano, “Short- and long-term electricity
load forecasting using classical and neural network based approach: A
case study for the philippines,” in Proc. of IEEE Region 10 Conference,
2016, pp. 3822–3825.

[21] E. Lehmann and G. Casella, Theory of Point Estimation. Springer
Verlag, 1998.

[22] F. Rosenblatt, “The perceptron: a probabilistic model for information

storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, p. 386, 1958.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Proc. of
the Conference on Empirical Methods in Natural Language Processing,
2014, pp. 1724–1734.

[25] H. Cecotti and A. Graser, “Convolutional neural networks for P300
detection with application to brain-computer interfaces,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3,
pp. 433–445, 2010.

[26] C. Chatfield and H. Xing, The Analysis of Time Series: An Introduction
with R, 7th ed. Chapman and Hall/CRC, 2019.

[27] J. Neter, W. Wasserman, and M. H. Kutner, Applied Linear Regression
Models. Irwin Homewood, IL, 1989.

