

Finding Multiple Stable Clusterings

Juhua Hu*, Qi Qian^, Jian Pei*, Rong Jin^, and Shenghuo Zhu'

*Simon Fraser University Burnaby, BC, Canada

Michigan State University East Lansing, MI, USA

'Alibaba Group Seattle, WA, USA

All About (Multi-)Clustering

- Explorative
- Iterative
- Subjective
- "Every model is wrong, but some are more useful than the others"
- "If you torture the data long enough, it will confess" – Ronald H. Coase

Why Multiple Clusterings?

Intelligent Data Engineering and Analytics Lab

• Phenotype finding

Why Multiple Clusterings?

Customer relation management

Given: profiles of customers

Task: product recommendation

Possible way: Group customers with similar behavior

Grouping 1: profession Grouping 2: hobbies Grouping 3: gender

Traditional Clustering

- Goal
 - Group similar objects in one group
 - Separate dissimilar objects in different groups
- Examples: k-means, PAM, DBScan, ...
- BUT, only a single clustering solution is given
 A clustering consists of multiple clusters
 - A clustering consists of multiple
- Challenges
 - How to find multiple independent clusterings?
 - How to measure the independency among different clusterings?

Related work

- Alternative clustering (e.g., COALA [Bae & Bailey, ICDM'06])
 - Given a clustering
 - Dissimilarity + Quality
 - Highly sensitive to the input clustering
- Meta-clustering[Caruana et al., ICDM'06]
 - Generate many clusterings
 - Dissimilarity
 - High computational cost
- Subspace multi-clustering
 - Different subspaces reflect different perspectives
 - Exponential number of subspaces & overwhelming results

Finding Multiple Stable Clusterings

- E.g., CLIQUE[Agrawal et al., SIGMOD'98], grid-based

- Too many clusterings overwhelming
- Stable clusterings not sensitive to initialization and noise

Problem Formulation

Intelligent Data Engineering and Analytics Lab

- Input
 - Data $X \in \mathbb{R}^{d \times n}$
 - The number of clusters (in each clustering)
- Output
 - A clustering $c = \{X_1, X_2, \dots, X_k\}$ is an exclusive partitioning of the input data
 - Multiple clusterings
- Feature subspaces within the simplex_d

$$\Delta^{d} = \{ w_1 \mathbf{q}_1 + w_2 \mathbf{q}_2 \dots + w_d \mathbf{q}_d | w_m \ge 0, \sum w_m = 1 \}$$

 $\mathbf{q}_1 = (1, 0, 0, \cdots, 0), \mathbf{q}_2 = (0, 1, 0, \cdots, 0), \cdots, \overset{m=1}{\mathbf{q}_d} = (0, 0, 0, \cdots, 1)$

• Under a feature weight vector $\mathbf{w} = (w_1, w_2, \cdots, w_d)$

$$S_{i,j} = e^{-\|\mathbf{x}_i' - \mathbf{x}_j'\|_2^2}$$

– Where
$$\mathbf{x}_i' = \mathbf{w} \odot \mathbf{x}_i$$

• Similarity matrix S

Clustering Stability

Intelligent Data Engineering and Analytics Lab

- Normalized Laplacian matrix $L = D^{-1/2}SD^{-1/2}$
 - Where D is a diagonal matrix formed by

$$D_i = \sum_{j=1}^n S_{i,j}, \quad i = 1, 2, \dots, n$$

Given a Laplacian matrix L, if the eigengap $\lambda_k(L) - \lambda_{k+1}(L)$ is large enough, the top k eigenvectors of $L_{perb} = L + \epsilon$ are the same as those of L, where ϵ is a symmetric perturbation matrix of small spectral norm $\|\epsilon\|_2$.

 In spectral clustering, if the top k eigenvectors are the same for L and L_{perb}, the clusterings based on the same eigenvectors are the same

Finding one stable clustering

Intelligent Data Engineering and Analytics Lab

Weight Vector

- 1. Randomly initialize w
- 2. Iterative gradient ascent

$$\arg \max_{\mathbf{w} \in \Delta^d} \lambda_k(L) - \lambda_{k+1}(L) + \frac{\delta}{2} \frac{1}{|W|} \sum_{\mathbf{w}_p \in W} \|\mathbf{w} - \mathbf{w}_p\|_2^2$$

Previously obtained solutions

Sequentially finding stable and different weight vectors

Synthetic Data Sets

- $X \in \{0,1\}^{50 \times 3}$, k = 2
- Ground truth: each feature itself
- Baselines: k-means and spectral clustering
- Convergence

Results on synthetic data

Clustering produced by methods	Clustering in ground truth	NMI	RI	AR	MI	HI	Eigengap	Weight vector w
k-means	Clustering 1	1.000	1.000	-	.0000	1.000		
	Clustering 2	.0043	.4783	-	.5217	043	-	(.3333;.3333;.3333)
	Clustering 3	.0039	.4737	-	.5263	053		
Spectral	Clustering 1	.0283	.5569	-	.4431	.1138		
	Clustering 2	.7263	.7628	-	.2372	.5257	.0039	(.3333;.3333;.3333)
	Clustering 3	.0718	.6491	-	.3509	.2983		
Clustering 1	Clustering 1	1.000	1.000	-	.0000	1.000		
	Clustering 2	.0043	.4923	-	.5077	015	.2951	(1.000;.0000;.0000)
	Clustering 3	.0039	.5292	-	.4708	.0585		
Clustering 2	Clustering 1	.0043	.4783	-	.5217	044		
	Clustering 2	1.000	1.000	-	.0000	1.000	.2931	(.0000;1.000;.0000)
	Clustering 3	.0154	.5573	-	.4427	.1146		
Clustering 3	Clustering 1	.0039	.4737	-	.5263	053		
	Clustering 2	.0154	.5088	-	.4105	.4912	.2711	(.0000;.0000;1.000)
	Clustering 3	1.000	1.000	-	.0000	1.000		

Image data

Intelligent Data Engineering and Analytics Lab

Each image is represented by 6 features

- 3 average color features and 3 shape features

Results on image data

Intelligent Data Engineering and Analytics Lab

	-						
Clustering produced by methods	Clusterings in ground truth/by Spectral	NMI	RI	AR	MI	HI	Weight vector w
k-means		.1486	.5659	.0684	.4341	.1319	[.1667;.1667;.1667;.1667;.1667;.1667]
Spectral		.1432	.5650	.0611	.4350	.1300	[.1667;.1667;.1667;.1667;.1667]
Clustering 1	Clustering-by-Category	.1394	.5857	.0818	.4143	.1714	[.2538;.0011;.0765;.0655;.1004;.5027]
Clustering 2		.1627	.6045	.1289	.3954	.2092	[.3222;.0000;.0000;.0000;.6778;.0000]
Clustering 3		.1449	.5886	.0883	.4114	.1773	-
Clustering 4		.1151	.5716	.0465	.4284	.1432	[.4012;.0000;.0000;.5988;.0000;.0000]
k-means		.5905	.7626	.4905	.2374	.5253	-
Spectral		.5522	.7559	.4730	.2441	.5117	-
Clustering 1	Clustering-by-Color	.6160	.7711	.4926	.2289	.5241	-
Clustering 2		.5564	.7474	.4436	.2526	.4949	-
Clustering 3		.6886	.8051	.5681	.1949	.6103	[.4468;.0000;.5532;.0000;.0000;.0000]
Clustering 4		.5124	.7291	.3971	.2709	.4582	-
k-means	Spectral	.8839	.9581	.9118	.0419	.9161	-

Cluster representatives that are nearest to the cluster centers for clustering 2 and clustering 3

(b) Clustering-by-Color

Conclusions

- Contributions
 - Introduce a new measure for multi-clustering
 - Clustering stability
 - Propose a new multi-clustering method MSC
 - Empirically finding all hidden stable clusterings
- Future directions
 - -k is not fixed
 - Different stable clusterings have different number of clusters

