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Abstract. This paper explores how computer programmers extract mean-
ing from the computer program texts that they read. This issue is exam-
ined from the perspective that program reading is governed by a number
of economic choices, since resources, particularly cognitive resources, are
severely constrained. These economic choices are informed by the reader’s
existing belief set, which includes beliefs pertaining to the overlapping
and enclosing social groups to which the program reader, the original
programmer, and the program’s users belong. Membership within these
social groups, which may be as specific as the set of programmers work-
ing within a particular organization or as general as the members of
a particular nation or cultural group, implies a set of shared knowl-
edge that characterizes membership in the social group. This shared
knowledge includes both linguistic and non-linguistic components and
is what ultimately provides the interpretative context in which mean-
ing is constructed. This account is distinguished from previous theories
of computer program comprehension by its emphasis on the social and
economic perspective, and by its recognition of the similarities between
computer program understanding and natural language understanding.

1 Program Readers

Computer programs are sequences of instructions that direct the operation of a
computer. Programs are written in a programming language and are interpreted
by one or more language translators into machine language and converted into
electrical energy so as to query and change the energy state of the underlying
computer hardware. Programs in execution can be viewed as carrying out func-
tionality from the perspective of their role within a human and social context,
such as word processing, graphical manipulation, and accounting.

If computers were programmed by the gods, perfectly and without cost, then
there would be no need for people to read programs. But programs are written
by people, and in order to fix errors introduced during software development
or to add new functionality desired by software purchasers, programmers must
read and understand the program texts written by other programmers.

The original programmer thus writes for two very different audiences — peo-
ple and computers. This “original programmer” may in fact be a large group
of people but for consistency will be referred to in the singular for the balance
of the paper. The original programmer adds particular syntactic expressions
because of her understanding that the human reader, but not the computer



reader, has beliefs, intentions, goals, desires and preferences. Further, the com-
puter will always (short of hardware failure) read and interpret the instructions
in its program while the human reader might decide that reading certain pro-
gram segments is not worth the cognitive effort. In this paper program readers
will refer to people and not computers unless otherwise indicated.

The reader undertakes their reading task with a set of existing beliefs and
with a set of programming artifacts that includes the program itself and perhaps
other documents such as requirements and design documents, internal memos,
and technical documentation. The reader performs her actions within a socio-
cultural embedding in an organization, community and society. Meaning con-
struction involves a change in the belief state of the program reader. The reader
can choose from a set of actions in order to alter her belief state. Such actions
include purely internal cognitive events such as recall and inference, as well as
events that have external components, such as speaking with other programmers
or reading program and documentation texts.

In ascribing meaning to the expressions in a program, a reader must deter-
mine both how the expressions will affect the underlying computer state, that is,
its actual behavior, and how the sequence of computer state changes are related
to issues of human concern. Each of these tasks will be examined in turn.

2 Syntax and Semantics: The Traditional View

The syntaz of a language specifies the set of all legal sentences in the language.
Modern programming languages fall into the language class called deterministic
context free languages (DCFL’s). The meta-language for describing DCFL’s, the
contezt-free grammars, describe the atomic units of the language as well as how
these atomic units may be combined via a set of rewrite rules. The context-free
grammars are generative, in that from a finite set of atomic units and a finite set
of recursively specified rewrite rules, an unbounded number of legal programs
can be described. The use of context-free grammars to describe programming
languages, rather than more expressive meta-languages (such as phrase-structure
grammars) is an engineered choice, since the described DCFL’s balance the need
for expressivity against the need for fast, automated translation to the machine
language of the underlying computer hardware.

The semantics of a programming language, as the term is used in computer
science, refers to the way in which the underlying computer state changes as
a result of expression execution. This semantics is compositional in that the
rewrite rules can have corresponding semantic rules; the semantics of a com-
pound expression is determined by the semantics of its components and the
semantics of the composition operations. Because the underlying semantics re-
lates to computer state changes over time, the meta-languages generally used
for describing semantics have been a combination of formal state-based dynamic
logic and informal natural language. As a result, communicating the semantics
of programming languages has led to a higher level of ambiguity and misunder-



standing within groups of program language users than for communicating the
syntax of programming languages.

Programming languages also provide mechanisms for the introduction of new
linguistic entities. For example, the following defines a new linguistic term sum
in the Java programming language.

double sum( double[] A ) {
float total 0;
for (int i = 0; i < A.length; i++ )
total += A[i];

}

The central idea behind these language extensions is to enable the definition of
new abstractions. As Guy Steele writes [19, pp.xv-xvi] “The most important con-
cept in all of computer science is abstraction. ... Abstraction consists in treating
something complex as if it were simpler, throwing away detail. In the extreme
case, one treats the complex quantity as atomic, unanalyzed, primitive.” Pro-
gramming languages are extended in order that atomic expressions can stand for
larger syntactic complexes. In the Java example above, the expression sum( S )
stands for the sum of the elements in the sequence S, i.e., Z?;OI S[i]- “Nam-
ing is perhaps the most powerful abstraction notion we have, in any language,
for it allows any complex to be reduced for linguistic purposes to a primitive
atom” [19, pp.xv-xvi]. Named abstractions, such as subroutines (as in the Java
sum example) or objects, are supported by all modern programming languages.
In this way, programming languages can be extended to arbitrary levels, where
complexes at one level become the atomic units at the next higher level through
abstraction and naming. Any particular program is thus expressed at a number
of different linguistic levels provided by the base language and each of its defined
extensions.

3 Programming Languages as Social Constructs

Any particular programmer will belong to a number of overlapping and enclosing
programming communities. Acculturation into a community will involve learning
the set of linguistic abstractions shared by members of this community along with
the associated knowledge that the abstractions stand for. Researchers examining
programmer cognition have referred to such shared abstractions as plans [18].
Additionally, software practitioners have codified many of these abstractions in
framework libraries such as C++’s Standard Template Library (STL) [14] and
in repositories of micro-architectures called patterns [9]. These range from the
most general abstractions that transcend programming language differences and
are common to most trained programmers, (e.g. the binary-search routine), to
abstractions common to object oriented programmers (e.g. the iterator pattern),
to abstractions used by programmer subcultures, e.g. users of Java’s Collection
classes, users of a program library built by a specific company, or users of a library
built for a single project. The individual programmer may even have a number



of abstractions that only they themselves use. As Harold Abelson points out [8,
Forward], “Perhaps the whole distinction between program and programming
language is a misleading idea, and that future programmers will see themselves
not as writing programs in particular, but as creating new languages for each
new application.”

The names used to describe abstractions are important to human readers but
of no consequence to the computer since people are able to transfer semantic
knowledge associated with particular names acquired through acculturation in
non-programming social settings. For example, the standard meaning of search
in English is to look for something, and naming a computational abstraction
“search” provides the reader with a strong indications of its functionality. Using
names that stand for real-world concepts can thus help program readers under-
stand the meaning of programs. But other names without real-world referents
can, through social habit and convention, come to stand for particular compu-
tational abstractions, such as Lisp’s edr or SQL’s clob. Similarly, terms that do
have real-world referents in natural language can have such meanings over-ridden
by their use within programmer communities. For example, push refers to a com-
putation that places an object on top of a stack, as opposed to “push the box
out of the doorway” in everyday usage. The meaning that a reader accords to
such expressions will have much more to do with such things as the level of stan-
dardization of the the named abstractions, the extent to which the reader has
been acculturated into the language community, and the reader’s beliefs about
the original programmer’s acculturation into this language community, rather
than to any similarity of meaning between the computational abstraction and
real world operations.

This acculturation occurs explicitly through instruction as well as individual
study using professional journals, textbooks, and programs written by others.
But a significant amount of the acculturation happens through communication,
feedback, practice, and observation within the programming setting itself. Pro-
grammers code together, look critically at one another’s code, engage in online
discussion groups, and attend professional meetings, workshops, and conferences.
Perhaps much of the success of pair programming [21] (one of the central compo-
nents of Extreme Programming [3]) is due to the rapid acculturation and implicit
knowledge transfer that occurs when programmers work in close contact with
one another.

4 Real World Models and Shared Knowledge

Syntactic constructs in computer programs refer not only to the programming
objects common to programmer communities, such as numbers, lists, and func-
tions, but also to entities in the everyday world, from the employees and payrolls
of an accounting system to the paintings and painters of an art museum’s inven-
tory system.

To facilitate a reader’s understanding, the writer chooses some of the linguis-
tic expressions so as to make explicit the program’s function within the real-world



context. For example, a programmer modeling biological phenomena might name
some of the computational objects “locus”, “genome”, and “crossover” in order
to establish the real-word context and mapping for these terms.

A reader’s interpretation of the linguistic expressions in the program text
crucially depends upon the shared knowledge between program writer and reader
about the real-world. With respect to natural language understanding, James
Allen writes [1, 548]

shared knowledge . ..is the knowledge that both agents know and know
that the other knows. Shared knowledge arises from the common back-
ground and situation that the agents find themselves in and includes
general knowledge about the world (such as how common actions are
done, the standard type of hierarchy classifications of objects, general
facts about the society we live in, and so on). Agents that know each
other or share a common profession will also have considerable shared
knowledge as a result of their previous interactions and their education
in that field. ... While individual beliefs may play a central role in the
content of a conversation, most of the knowledge brought to bear to
interpret the other’s actions will be shared knowledge.

Programmers are members of various overlapping and enclosing social groups
within the larger society — for example, professional organizations, civic clubs,
local communities, and national and ethnic cultural groups. These social groups
have shared knowledge that is learned as part of the acculturation process within
the group. Language that is specific to members of the group stands for the
shared background knowledge of its members and provides an efficient means for
discussing such knowledge. That is, acculturated users know not only the jargon,
colloquialisms and idioms of the social group, but understand the concepts and
knowledge underlying the terms, using them appropriately and understanding
their appropriate use by others. As De Mauro comments on Wittgenstein’s ideas
concerning socially shared language [7, 53-4]:

But in the measure in which you belong to my own community, you have
been subjected to a linguistic and cultural training similar to my own
and I have valid grounds for supposing that your propositions have a
similar meaning for both of us. And the ‘hypothesis’ which I make when
I hear you speak, and which you make speaking to me, is confirmed for
both of us by both your and my total behavior.

Each individual may belong to many such “communities”, each with its own
linguistic and cultural training.

One of the perennial difficulties of software development is that programmers
may not be members of the same social groups as the software users, the people
who will interact directly with the program after it is developed. It is no sur-
prise, then, that determining the software requirements, i.e. what the software is
intended to do, accounts for a significant proportion of the software development
budget and that a large percentage of software errors can be traced to errors



in the requirements (up to almost 50% by some estimates [2]). The process of
determining requirements involves a transfer of knowledge from users and clients
(those who pay for the software) to programmers. This process is time consum-
ing, error prone, and costly because not only is the sheer quantity of knowledge
that programmers must acquire significant, much of this knowledge is implicit
and taken-for-granted by the users, acquired by them via the informal, context-
embedded processes described above for programmers. There might thus be a
vast language and culture gap to bridge between the users — ranging from doctors
and accountants to dancers and photographers — and the software developers.
Practices of placing expert users into software development organizations
for the duration of a development project — one of the operating principles of
Extreme Programming [3] — should enhance knowledge transfer by lowering com-
munication costs and increasing communication bandwidth. What we may see
in the future is an increasing movement of personnel in the opposite direction,
where software developers join the embedding user organization for the duration
of the software lifecycle, exploiting the fact that much of the knowledge about a
program’s meaning is encoded only in the neurons of the users and programmers.

5 The Cognitive Economics of Meaning Construction

The knowledge content of a message can far exceed the information-theoretic
limit imposed by the number of bits used to encode the message, due to the
immense amount of extant shared knowledge that a message can activate in the
reader’s mind. In his writings on cognitive sociology [6], Cicourel uses the term
indezicality to refer to the aspects of language “that require the attribution of
meaning beyond the surface form” since linguistic expressions serve as indexes
for mental encodings of previous experiences.

The central economic choice of a writer of natural language text, then, con-
cerns what to explicitly include in the text and what to leave out of the text,
i.e., its degree of indexicality. In other words, what knowledge and abstractions
can the writer assume that the reader already possesses? The writer trades text
size against the risks and costs associated with ambiguity and misunderstanding;
short texts are preferred to large texts, all other things being equal, since people
are under various selection pressures to manage their own resources efficiently.

As with natural languages, programming languages are also indexical, since
meaning construction requires that readers possess both a model of the executing
hardware and a model of the embedding social context in which the program
executes. Writers of computer programs make similar, though not identical kinds
of choices as writers of natural language text. The difference concerns the fact
that programs are read by computer as well as human readers. Programmers are
constrained to use only those linguistic abstractions for which there exist explicit
translations (via the above described extension mechanisms, and/or through
the existing interpreters and language translators) to the underlying machine
language of the executing hardware. Because programs are written at a number
of different levels of description the program writer has considerable latitude in



choosing the set of linguistic abstractions and the associated names within their
programs.

There are three important reasons why a program reader makes economic
choices when reading and interpreting a program. First, the understanding task
itself is known to be computationally intractable [22]. That is, no efficient al-
gorithm exists guaranteeing that meaning can always be correctly discerned.
Second, the human brain has particular limitations, for example with respect to
memory and processing speed that constrain the manner and rate with which in-
ferences can be made. And third, human tasks are performed within a social and
economic environment that limits the expenditure of resources on any particular
task.

Not only must the individual program reader efficiently manage their internal
cognitive resources, but they must also take account of the external environment
in order to estimate costs associated with different knowledge acquisition actions
and values associated with possible outcomes of these actions. Examples of exter-
nal action-cost constraints include the software and hardware systems available
to the reader for executing and maintaining the program, the presence of other
personnel with expertise related to the task, communication technologies and
policies that enable the sharing of data and knowledge, project development
practices that provide a documented historical trajectory of the program’s evo-
lution, and opportunities for further education and training related to the task
at hand. Subjective outcome values, though particular to the reader, will cer-
tainly be influenced by such things as her individual value system, beliefs about
the institutional and social tolerance for errors, and beliefs about the economic
climate in which the organization operates.

As a consequence of these economic constraints, we can conjecture that read-
ers employ understanding processes that allow them to tradeoff the amount of
resource that they devote to the understanding task — most importantly time —
against the level or quality of meaning that they construct. We can take this pro-
cess to be approximately monotonic, i.e., more resource will in general produce
more and better understanding. Without such a process, the reader would have
no basis for expending further resources in pursuit of greater understanding.

How much and what kinds of resource a reader devotes to any particular
reading episode will depend upon their tradeoff of the perceived costs and ben-
efits as mentioned above associated with their different action choices, and the
level of understanding that they believe they possess at different times during
the problem solving episode. Empirical studies supporting this conjecture indi-
cate that programmers read only a portion of the program text related to their
task rather than the entire program — the so-called as-needed reading strategies
[13]. Further, we can expect program readers to exploit their shared knowledge.
This prediction is consistent with the study described in [12], where program-
mers used the abstraction structure and names to determine which particular
parts of the program to read and which to ignore: “Subjects spent a major part
of their time searching for code segments relevant to the modification task and
no time understanding parts of the program that were perceived to be of little



or no relevance. ...Subjects hypothesized relevance based on their knowledge
about the task domain and programming in general. Subjects used procedure
and variable names to infer functionality. ... While looking for code subjects
guessed correctly the names of procedures they had not seen.” The program
reader’s economic choices therefore concern determining the level of description
at which the program text should be read and the level of understanding that
must be achieved in order to carry out the task at hand.

Several studies have attempted to determine if readers traverse program text
and construct mental representations of the text by starting at lower levels of
program description and moving to more abstract levels, or by movement in
the opposite direction, from abstractions to concrete descriptions [15, 16, 4].
The above discussion, however, implies that there is no such fixed strategy;
rather, a reader might move in either direction depending upon estimates of the
costs and benefits of their action choices at any given time. This is not to say
that readers employ a strict decision-theoretic policy, such as that described in
[11]. Such a strategy violates the computational constraints mentioned above,
since this meta-cognitive activity, i.e., enumerating preferences and evaluating
expectations, is itself too costly an activity to perform optimally. Nonetheless,
we can expect some type of minimal, or bounded rationality, as proposed by
Cherniak [5] and Simon [17], that enables agents to pursue preferred world states
to the extent that they are known, but in an approximate and heuristic fashion.
This is consistent with reports by von Mayrhauser and Vans [20] in observing
program understanding behavior among experts in large-scale comprehension
tasks, which they describe as moving in either the upward or downward direction
opportunistically.

6 Conversational Maxims and Cooperative Social Norms

An additional factor that helps a reader gain computational efficiencies is the
extent to which the reader believes that the writer intends her text to be under-
stood. Grice [10] argues that hearers in natural language conversation assume
that speakers follow cooperative social norms. These norms can be viewed as a
set of implicit rules, which Grice called conversational mazims. These maxims,
as summarized in [1, p566] are:

Maxim of Quality — Do not say things for which you lack evidence.

Maxim of Quantity — Make your contribution as informative as re-
quired, but not overly informative.

Maxim of Manner — Avoid obscurity of expression and ambiguity.

Maxim of Relation — What you say should be relevant to the current
topic.

With respect to programs, these maxims are generally satisfied in the orga-
nizational and social settings in which programs are produced. The Maxim of
Quality is met since programs must be translatable and executable in order to
provide functionality. The Maxim of Quantity is met when programs are written



at different levels of abstraction, so that readers can balance information content
with resource expenditure and the amount of knowledge that the reader brings
to the reading task. The Maxim of Manner is met when the original program-
mer uses public, shared language, such as that codified by standards committees
and user groups, instead of private, ad-hoc language that will take the reader
longer to decode. And the Maxim of Relation is met when the program writer
structures their code into cohesive units, e.g. subroutine libraries, objects, frame-
works, plans, and patterns. That is, the goal structure provided by programming
plans provides cohesiveness and “topicality” to program text.

Studies by Soloway [18] confirm that readers have strong expectations that
program writers follow such relevance constraints, which he termed discourse
rules, and comprehension was negatively impacted when programs violated these
discourse rules. Although program writers are not obliged to follow these max-
ims, it would nonetheless be surprising for writers to violate the very principles
that provide such efficiencies in their natural language communications.

7 Summary

Programs are written so as to be both executable by computers in order to
carry out useful work, and to be read by other people who must maintain the
programs in order to fix errors and to extend the program’s functionality. In
order to construct meaning from a program the program reader makes economic
choices about her actions where the costs and benefits are influenced not only
by cognitive constraints but also by the organizational and social context in
which the program-related activities occur. This context affects the costs that
the reader assigns to the different actions available to her, as well as to the values
associated with the different expected outcomes of performing these actions. Of
fundamental importance is the extent to which the reader believes that she shares
common knowledge with the program writer, both in programming and appli-
cation domains. This common knowledge is associated with the different social
and language-using groups to which the reader and writer belong. Group-specific
language is used to economically index the large quantity of group-specific knowl-
edge that provides the interpretative context for meaning construction. Following
cooperative conversational maxims, program writers exploit shared knowledge
and language by using the abstraction and naming mechanisms of programming
languages to express programs at a variety of different levels. Program readers
likewise exploit this shared knowledge and language as well as the cooperative
communicative intent of the writer to balance the level of meaning that they
construct against the resource constraints under which they operate.
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