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Abstract
Ecologic studies use data aggregated over groups rather than data
on individuals. Such studies are popular because they use existing
databases and can offer large exposure variation if the data arise
from broad geographical areas. Unfortunately, the aggregation of
data that define ecologic studies results in an information loss that
can lead to ecologic bias. Specifically, ecologic bias arises from the
inability of ecologic data to characterize within-area variability in
exposures and confounders. We describe in detail particular forms
of ecologic bias so that their potential impact on any particular study
may be assessed. The only way to overcome such bias, while avoiding
uncheckable assumptions concerning the missing information, is to
supplement the ecologic with individual-level information, and we
outline a number of proposals that may achieve this aim.
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Ecological bias: the
difference between
associations at the
individual and
ecologic levels

INTRODUCTION

Ecologic studies are characterized by being
based on grouped data, with the groups of-
ten corresponding to geographical areas. Such
studies have a long history in many disci-
plines including political science (39), geog-
raphy (50), sociology (59), and epidemiology
and public health (48). Here we concentrate
on the latter and discuss why ecologic studies
are widely used and detail the unique draw-
backs that lead to the potential for ecologic
bias, which describes the difference between
ecologic and individual associations. Ecologic
data may be used for a variety of purposes
including disease mapping (the geographical
summarization of risk measures) and cluster
detection (in which geographic anomalies are
flagged); here we focus on geographical cor-
relation studies that investigate associations
between risk and exposure. In disease map-
ping, ecologic bias is not a problem because
prediction of area-level risk summaries is the
objective rather than the estimation of asso-
ciations. Interesting within-area features may
be masked by the process of aggregation; but
although ecologic covariates may be used in
disease-mapping models to improve predic-
tions, the coefficients are not of direct interest
(75).

Ecologic studies are popular for many rea-
sons, the obvious one being the wide and in-
creasing availability of aggregated health and
population data; exposure information is usu-
ally less readily available. If the exposure is an
environmental pollutant, then concentration
information will rarely be aggregate in nature;
it is more typical for measurements from a set
of pollution monitors to be available. Nev-
ertheless, we still refer to such nonindivid-
ual summaries as “ecologic.” Improved ease of
analysis also contributes to the widespread use
of ecologic data. For example, geographical
information systems (GIS) allow the effective
storage and combination of data sets from dif-
ferent sources and with differing geographies
(13, 14, 47, 58, 61), and recent advances in
statistical methodology allow a more refined

analysis of ecologic data (see References 21
and 78 for reviews).

There are numerous examples of ecologic
studies in the public health and epidemiol-
ogy literature. For example, Figure 1 displays
stomach cancer mortality in 1991–1993 vs. in-
fant mortality in 1921–1923, each measured
in 27 countries. One hypothesis that explains
the apparent association is that stomach can-
cer risk is related to H. pylori infection, trans-
mitted in the same way that diarrheal diseases
contributed to diseases that caused the ob-
served childhood mortality rates. However,
testing this hypothesis about the cause of indi-
vidual disease is complicated owing to the po-
tential for ecological bias. Specifically, the 27
countries differ in many respects besides their
rates of stomach cancer and infant mortality.
The variables representing these differences
may be related to both rates, and so the ob-
served ecologic association may be due to con-
founding. The three highlighted countries,
Japan, Russia, and Chile, “share very little
in terms of their current socio-environmental
conditions, and historically they are very dif-
ferent countries culturally, economically, and
socially” (45); the implication is that con-
founding is not responsible for the simulta-
neous high values of the two rates. But con-
founding is harder to characterize in ecologic
studies because it consists of both within-area
and between-area components. For example,
within each country there is variability in in-
fant mortality rates, which may covary with
confounders (see the Ecologic Bias section).

For motivation we briefly describe three
additional ecological associations. Mortality
rates for cervical cancer and the percentage
pap test rate, both by state, are presented in
figure 3 of Reference 61 as an example of
an exploratory spatial analysis and to illus-
trate the flexibility of a GIS. In the context
of income inequality and health, figure 1 of
Reference 70 presents life expectancy vs. in-
come inequality in 11 countries. The correla-
tion between income inequality and health is
−0.81, but the authors note that “data from
aggregate-level studies of the effect of income
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Figure 1
Stomach cancer mortality in 1991–1993 vs. infant mortality rate in 1921–1923 in 27 countries. Reprinted
from the Annual Review of Public Health, Volume 26, 2005. Reproduced from Reference 45; data from
Reference 42.

inequality on health . . . are largely insufficient
to discriminate between competing hypothe-
ses.” Thus the information loss in ecologic
studies leads to a fundamental identifiability
problem: Many scientifically interesting mod-
els are indistinguishable from the observed ag-
gregate data alone. Finally, the two plots of
figure 5 in Reference 44 show the percentage
of individuals with forced vital capacity less
than 85% vs. two measures of particulate mat-
ter (<2.1 μm and 2.1–10 μm) for 22 U.S. and
Canadian communities. These plots are based
on semiecological data in that individual-level
data on outcome and confounders are supple-
mented with ecological exposure information.
Such studies are less susceptible to ecologi-
cal bias owing to the increase in information
when compared with a pure ecologic study
(see Semi-Ecologic Studies section).

The paucity of exposure data has recently
led a number of authors to combine ecologic
population and health data with modeled ex-
posure concentration surfaces; for a review of
such modeling see Reference 36. For exam-
ple, Zidek and colleagues (80) examine the
association between daily hospital admissions

for respiratory disease and sulfate concentra-
tions, whereas Carlin et al. (9) examine the
relationship between pediatric asthma emer-
gency room visits and ozone, the latter mod-
eled using kriging within a GIS. In each of
these examples, great effort is placed on the
modeling of the concentration surface with-
out considering ecologic bias.

The structure of this review is to provide
an illustrative ecologic study in the next sec-
tion before cataloging a number of sources of
bias in the Ecologic Bias section. Methods for
supplementing ecologic data with individual-
level information are described in the section
Combining Ecologic and Individual Data.

ILLUSTRATIVE EXAMPLE: SIDS
RISK IN NORTH CAROLINA

We examine data on sudden infant death
syndrome (SIDS) and race; these data are
available at the individual level, thus al-
lowing the implications of aggregation to
be examined. Mortality and birth data
were obtained from the North Carolina
State Center for Health Statistics Web
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Ecological fallacy:
the result of ecologic
bias in which
incorrect
individual-level
inference is drawn
from ecologic data

Pure specification
bias: due to
nonlinear individual
models changing
their mathematical
form under
aggregation

site (http://www.schs.state.nc.us/SCHS/).
SIDS cases, along with the number of live
births, were extracted by race for each of the
100 counties of North Carolina for the years
2001–2004. There were a total of 386 cases,
and Figure 2a shows the distribution of risk
across the 100 areas. Race was categorized
as white/nonwhite with 220 white deaths.
There were 473,484 live births over the 4
years; 343,811 of them were white. Figure 2b

shows the proportion of nonwhite births;
across the counties, the proportion of non-
white live births ranges between 0.006 and
0.733 with a median of 0.222 so that in most
areas there are more white births than non-
white births. The mortality rates for non-
whites and whites are 1.28 and 0.64 deaths per
1000 live births, respectively, giving a relative
risk of 2.0 with asymptotic 95% confidence
interval (1.64, 2.45).

We now assume that only ecological data
are available. An ecologic dataset would
consist of the proportion of nonwhite, x̄,
along with the number of SIDS deaths, y,
and the total births, n, in each area. The top
map in Figure 3 displays the proportion of
nonwhite, with areas of relative high fre-
quency in the northeast and south, although
these are not reflected in the risk map in
the bottom figure. A naive ecologic model is
given by

Ecologic Risk = eαe +βe x̄ 1.

and fitting this model gives an estimate of the
ecologic relative risk eβe, of 0.89 (0.44–1.79),
so that the risk point estimate decreases
as the proportion of nonwhites increases,
but the uncertainty is large and we would
conclude that the ecologic data have little to
say about the association. The fitted curve
is superimposed on the scatterplot of y vs.
x̄ in Figure 2c. If this point estimate was
assumed to apply at the individual-level we
would conclude that nonwhite babies are at
lower risk than are white babies, the opposite
of that found in the individual-level analysis,
thus providing an example of the ecological

fallacy. We return to the source of the
fallacy after we discuss sources of ecological
bias.

ECOLOGIC BIAS

A vast literature describes sources of ecologi-
cal bias (see for example, 25, 28, 29, 40, 48, 51,
52, 56, 57, 69, 73, 74, 75). The fundamental
problem with ecological inference is that the
aggregation process reduces information, and
this information loss usually prevents identifi-
cation of associations of interest in the under-
lying individual-level model. Ecologic bias is
relative to a particular individual-level model.
When trying to understand ecologic bias it is
beneficial to specify an individual-level model
and aggregate to determine the consequences
(64, 74, 76). If there is no within-area variabil-
ity in exposures and confounders, then there
will be no ecological bias; so ecological bias
occurs because of within-area variability in ex-
posures and confounders, although a number
of distinct consequences occur as a result of
this variability. Ecologic bias is also referred
to as aggregate, or cross-level, bias, the latter
emphasizing the differing levels of the data
and inference. Throughout this article, we as-
sume that at the individual level the outcome
is a 0/1 disease indicator.

Pure Specification Bias

So-called pure specification bias (25) [also
referred to as model specification bias (64)]
arises because a nonlinear risk model changes
its form under aggregation. We initially as-
sume a single exposure x and the individual-
level model

Individual Risk = eα+βx, 2.

which is often used for a rare disease; eα is
the risk associated with x = 0 (baseline risk)
and eβ is the relative risk corresponding to
an increase in x of one unit. We concentrate
on this model but will also comment on lin-
ear forms. Unfortunately the logistic model,
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SIDS rate per 1000 births
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(a) SIDS risk (× 1000) (b) Nonwhite proportion

(c) Risk versus proportion nonwhite

Figure 2
Proportion of nonwhite births and risk of SIDS ( × 1000) across 100 counties of North Carolina in the
years 2001–2004.
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which is often used for nonrare outcomes, is
not amenable to analytical study, and so the
effects of aggregation are difficult to discern
(63).

We consider a generic area containing n
individuals with exposures xi, i = 1, . . . , n.
Aggregation of Model 2 yields

Ecologic Risk = 1
n

n∑

i=1

eα+βxi 3.

so that the ecologic risk is the average of the
risks of the constituent individuals. We let x̄
represent the proportion of exposed individu-
als, i.e., x̄ = 1

n

∑n
i=1 xi . A naive ecologic model

would assume

Ecologic Risk = eαe +βe x̄, 4.

where the ecologic parameters αe , βe have
been subscripted with “e” to distinguish them
from the individual-level parameters in Model
2. Model 4 is a contextual effects model be-
cause risk depends on the proportion of ex-
posed individuals in the area (see Contextual
Effects section for further discussion). Inter-
preting eβe as an individual association would
correspond with a belief that average exposure
is causative and that individual exposure is ir-
relevant, or that the difference between the
aggregated and individual exposures is negli-
gible (so that within-area variability in expo-
sure is small). The difference between Models
3 and 4 is clear: Whereas the former aver-
ages the risks across all exposures, the latter
is the risk corresponding to the average ex-
posure. We have eβ = eβe only when there
is no within-area variability in exposure so
that xi = x̄ for all i = 1, . . . , n individuals.
Hence pure specification bias is reduced in
size as homogeneity of exposures within ar-
eas increases so that small areas are advanta-
geous. Unfortunately data aggregation is usu-
ally carried out according to administration
groupings and not to obtain areas with con-
stant exposure.

For a binary exposure Model 2 can be
written

eα+βx = (1 − x)eα + xeα+β,

which is linear in eα and eα+β . This form sim-
ply yields the aggregate form

Ecologic Risk = (1 − x̄)eα + x̄eα+β, 5.

which shows that with a linear risk model
there is no pure specification bias. If model
4 is fitted using a binary proportion x̄, there
will be no correspondence between eβ and eβe

because they are associated with completely
different comparisons. The extension to gen-
eral categorical exposures is straightforward,
and the parameters of the disease model are
identifiable so long as we have the aggregate
proportions in each category.

For continuous exposure, pure specifica-
tion bias is dominated by the relationship be-
tween the within-area mean and variance of
the exposure and will be small if the within-
area variability is unrelated to the mean; if
the variance increases with the mean (which
will often be the case for environmental expo-
sures), then overestimation of a harmful ex-
posure (β > 0) will occur (73). Unfortunately
this condition is impossible to assess with-
out individual-level data on the exposure. If
β is close to zero, pure specification bias is
also likely to be small (because then the expo-
nential model will be approximately linear for
which there is no bias), although in this case
confounding is likely to be a serious worry.

Pure specification bias will result unless we
have a categorical variable and we know the
within-area proportions in each category, ex-
cept when the exposure is constant within ar-
eas or the risk model is linear. If the exposure
is heterogeneous within areas, we need infor-
mation on the variability within each area to
control the bias. Such information may come
from a sample of individuals within each area;
how to use this individual-level data is the sub-
ject of the Combining Ecologic and Individual
Data section.

Example Revisited

Returning to the North Carolina example,
the discrepancy between the individual-level
relative risk estimate of 2.0 and the ecologic
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association of 0.89 derived from Model 1 is
explained by pure specification bias; we fit-
ted the contextual effects Model 4 and not
the aggregate form in Model 5. Unfortunately
fitting the latter model produces an estimate
of 0.91 for these data. The reason for this
discrepancy is that Model 5 is very unstable
statistically and produces a likelihood surface
that is highly irregular. In particular an asymp-
totic confidence interval is not appropriate
here. This phenomenon has been observed
elsewhere (30), which suggests that great care
should be taken in fitting Model 5.

Confounding

We assume a single exposure x, a single con-
founder z, and the individual-level model

Individual Risk = eα+βx+γ z. 6.

As with pure specification bias, the key to
understanding sources of, and correction for,
ecological bias is to aggregate the individual-
level model to give

Ecologic Risk = 1
n

n∑

i=1

eα+βxi +γ zi . 7.

To understand why controlling for con-
founding is generally impossible with ecologic
data, we consider the simplest case of a bi-
nary exposure and a binary confounder (which
for ease of explanation we refer to as gender).
Table 1 shows the distribution of the expo-
sure and confounder within a generic area.
The complete within-area distribution of ex-
posure and confounder can be described by
three frequencies, but the ecologic data usu-
ally consist of only the proportion exposed, x̄,

Table 1 Exposure and gender distribution in
a generic area: x̄ is the proportion exposed
and z̄ is the proportion male; p00, p01, p10, and
p11 are the within-area cross-classification
frequencies

Female Male
Unexposed p00 p01 1 − x̄
Exposed p10 p11 x̄

1 − z̄ z̄ 1.0

and the proportion male, z̄. From Model 7 the
aggregate form is

Ecologic Risk

= p00eα + p10eα+β + p01eα+γ + p11eα+β+γ

= (1 − x̄ − z̄ + p11)eα

+ (x̄ − p11)eα+β + (z̄ − p11)eα+γ

+ p11eα+β+γ, 8.

showing that the marginal prevalances x̄, z̄
alone are not sufficient to characterize the
joint distribution unless x and z are indepen-
dent, in which case z is not a within-area con-
founder. This scenario has been considered
in detail elsewhere (41), where it was argued
that if the proportion of exposed males ( p11) is
missing it should be estimated by the marginal
prevalences (x̄ × z̄); however, we cannot de-
termine the accuracy of this approximation
without individual-level data. This is a recur-
ring theme in the analysis of ecologic data.
Bias can be reduced under model assumptions,
but estimation is crucially dependent on the
appropriateness of these assumptions, which
are uncheckable without individual-level
data.

We now turn to the situation with a binary
exposure and a continuous confounder. Let
the confounders in the unexposed be denoted,
zi , i = 1, . . . , n0, and the confounders in the
exposed, zi , i = n0 + 1, . . . , n0 + n1. In this
case the ecologic form corresponding to
Model 6 is

Ecologic Risk = q0 × r0 + q1 × r1,

where q0 = n0/n and q1 = n1/n are the
probabilities of being unexposed and exposed,
and

r0 = eα

n0

n0∑

i=1

eγ zi , r1 = eα+β

n1

n0+n1∑

i=n0+1

eγ zi

so that r0 and r1 are the aggregated risks in
the unexposed and exposed. Thus we need
the confounder distribution within each ex-
posure category, unless z is not a within-area
confounder. The requirement for stratum-
defined exposure distributions is closely re-
lated to mutual standardization as described
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in Reference 60, which requires exposure dis-
tributions to be standardized with respect
to a confounder, if risk has been standard-
ized to this confounder. Again, if we fit the
model

Ecologic Risk = eαe +βe x̄+γe z̄,

where z̄ = 1
n

∑n
i=1 zi , then the coefficient β

has no relation to βe in the naive ecologic
model.

Often one can attempt to control for con-
founding via expected numbers E using the
regression model:

Ecologic Risk = E × eαe +βe x̄

(17, 18, 22). This approach implicitly as-
sumes, however, that there is no within-area
confounding (75). For example, the expected
numbers are often calculated on the basis of
the age and gender distribution, but this con-
trols only for between-area confounding and
will provide confounder control only if the
within-area exposure distribution is the same
across age and gender stratum. This is not
likely to hold for age in particular. Whenever
an ecologic study is considered, the ability to
control for known confounders for the dis-
ease/exposure under investigation should be
considered. For most chronic diseases, known
lifestyle risk factors include one or more of
the following: smoking, alcohol, and diet. In
an ecologic study, individual-level informa-
tion on these variables is not available, and
it has become popular to attempt to control
for these variables using area-level measures
of socioeconomic status (e.g., 46). Although
these measures may be strongly correlated
with lifestyle variables (20), they cannot pick
up the subtleties of within-area confounding.
Therefore, unless the association of interest
is strong, ecologic results controlled for con-
founding in this way should be interpreted
with great caution.

The extension to general exposure and
confounder scenarios is obvious from the dis-
cussion above. If we have true confounders
that are constant within areas (for example, ac-
cess to health care), then they are analogous to

conventional confounders because the area is
the unit of analysis. Hence, the implications
are relatively easy to understand and adjust-
ment is straightforward.

Without an interaction between exposure
and confounder, the parameters of a linear
model are estimable from marginal informa-
tion only, although if an interaction is present
within-area information is required.

Contextual Effects

A contextual variable represents a character-
istic of individuals in a shared neighborhood,
and in some scenarios (for example, the mea-
surement of health disparities) such effects are
of great interest. For example, the mean in-
come in an area, in addition to individual in-
come, has been hypothesized as being predic-
tive of health (37). We consider the simple
individual-level linear model

E[Yi |xi , x̄] = α + βW(xi − x̄) + βB x̄, 9.

where βB is the between-area (contextual) ef-
fect and βW is the within-area individual ef-
fect. The aggregate form is

E[Ȳ|x̄] = α + βB x̄,

which shows that both individual and con-
textual effects cannot be simultaneously esti-
mated without individual-level data. In a non-
linear model, both effects may be estimable
with ecologic data, but the amount of infor-
mation concerning βW is small (64). More im-
portantly, the derivation for the linear model
reveals that estimation is crucially dependent
on the form of the nonlinear model, and we
cannot check the form of the model from
only the ecologic data. Hence, although sen-
sitivity analyses to identify both parameters
may be carried out, inference is totally unre-
liable with only ecologic data. Investigators
(26) have also noted that when contextual ef-
fects are of interest they are susceptible to
cross-level bias when estimated from ecologic
data.

Some have argued, in dietary and environ-
mental contexts, that the contextual exposure
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x̄ may be a better estimate of exposure for an
individual than xi would be when individual-
level measurement error is large. For example,
Navidi et al. (49) propose a design that com-
bines individual-level regression with eco-
logic comparisons to combine the best aspects
of each data source; individual-level analyses
are free of ecologic bias but may have poor
power and measurement error in exposures,
each of which may be rectified in ecologic
data.

In general, multilevel models have pro-
vided a popular framework for analyzing as-
sociations at different geographical scales (for
example, to estimate neighborhood effects),
but these models cannot control for con-
founding due to unmeasured variables, and
the interpretation of parameters is not always
straightforward. The usual interpretation of a
parameter associated with a particular variable
is revealed by increasing the variable by one
unit, while keeping all other variables fixed.
Consideration of Model 9 illustrates the dif-
ficulties in applying this approach in cases
where the variable appears at more than one
level. Suppose we wish to interpret βW ; if we
increase xi by one unit, the mean also increases
by 1/n. To interpret βW we must keep the
mean in the area constant, for example, by
reducing everyone else’s x by 1/(n − 1). Fur-
ther discussion may be found in Reference 27,
and interpretation of more complex models is
provided in References 2 and 67.

Semi-Ecologic Studies

Table 2 summarizes four distinct scenarios in
terms of data availability (40, 64). In a semie-
cologic study, sometimes more optimistically
referred to as a “semi-individual study” (40),
individual-level data are collected on outcome
and confounders, with exposure information
arising from another source. In the Harvard
six-cities study (16), for example, the exposure
was city specific and an average of pollution
monitors the study’s follow-up.

We consider the risk for an individual
in confounder stratum c; under aggregation

Table 2 Study designs by level of outcome and exposure data

Exposure

Individual Ecologic
Outcome Individual Individual Semi-ecologic

Ecologic Aggregate Ecologic

Semiecologic
study:
individual-level data
are available on
outcome and
confounders, with an
ecologic exposure
assessment

we have

Semi-Ecologic Risk in stratum c

= eα+γc
nc∑

i=1

eβxc i ,

where xc i are the exposures of individuals
within stratum c, i = 1, . . . , nc , and γ c is the
baseline risk in stratum c. A naive semiecologic
model is

Semi-Ecologic Risk in stratum c = eαe +γe c +βe x,

10.
where x is some summary exposure measure.
Kunzli & Tager (40) argue that semiecologic
studies are free of ecologic bias, but there are
two possible sources of bias here: The first
is that we have pure specification bias be-
cause we have not acknowledged within-area
variability in exposure; the second is that we
have not allowed the exposure to vary by con-
founder stratum, so we have not controlled for
within-area confounding. In an air pollution
study in multiple cities, x may correspond to
a monitor average or an average over several
monitors. In this case, Model 10 will provide
an approximately unbiased estimate of β if
there is small exposure variability in cities and
if this variability is similar across confounder
strata.

Semiecologic studies frequently have sur-
vival as an endpoint, but there has been less
focus on the implications of aggregation in the
context of survival models. References 1 and
33 discuss some of the implications.

Spatial Dependence and Hierarchical
Modeling

When data are available as counts from a set
of contiguous areas, we might expect residual
dependence between the counts, particularly
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for small-area studies, owing to the presence
of unmeasured variables with spatial structure.
The use here of the word “residual” acknowl-
edges that variables known to influence the
outcome have already been adjusted for in
the mean model. Analysis methods that ig-
nore the dependence are strictly not applica-
ble, with inappropriate standard errors being
the most obvious manifestation. A great deal
of work has focused on models for spatial de-
pendence (3, 5, 10–12, 15, 38, 43); Richardson
(55) provides an excellent review of this liter-
ature. Regarding ecological bias, the most im-
portant message is that unless the mean model
is correct, adjustment for spatial dependence
is a pointless exercise (75).

In a much-cited book, King (39) proposed
a hierarchical model to analyze ecologic data
in a political science context as “a solution to
the ecological inference problem.” Identifia-
bility in this model is imposed through the
random effects prior, however, and we cannot
check the appropriateness of this prior from
the ecological data alone (23, 74).

COMBINING ECOLOGIC
AND INDIVIDUAL DATA

As we saw in the previous section, the only
solution to the ecologic inference problem
that does not require uncheckable assump-
tions is the supplementation of ecologic-level
with individual-level data. We stress that eco-
logic data can also supplement already avail-
able individual data to improve power. Here
we briefly review some of the proposals for
such an endeavor. The obvious approach
is to collect a random sample of individu-
als within areas. For a continuous outcome,
Raghunathan et al. (54) show that moment
and maximum likelihood estimates of a com-
mon within-group correlation coefficient will
improve when aggregate data are combined
with individual data within groups, and Glynn
et al. (24) derive optimal design strategies for
the collection of individual-level data when
the model is linear. With a binary nonrare out-

come, the benefits have also been illustrated
(68, 74).

For a rare disease few cases will be present
in the individuals within the sample, and so
only information on the distribution of ex-
posures and confounders will be obtained via
a random sampling strategy (which is there-
fore equivalent to using a survey sample of
covariates only). This prompted the deriva-
tion of the so-called aggregate data method of
Prentice & Sheppard (53, 65, 66) (Table 2).
Inference proceeds by constructing a model
based on the sample of m ≤ n individuals
in each area and estimates the mean (which
is given by Model 3 for the case of a single
exposure), based on the empirical averages.
This is an extremely powerful design because
estimation is not based on any assumptions
with respect to the within-area distribution of
exposures and confounders [though this dis-
tribution may not be well characterized for
small samples (62)]. Ecologic bias is reduced
to a greater extent than in the semiecologic
study because within-area variability in expo-
sures and confounders is acknowledged.

An alternative approach is to assume a
parametric distribution for the within-area
distribution of exposures and confounders
(57, 76), although this implicitly assumes that
a sample of these is available (see also 34, 35).
As an example, if we assume that exposures
in an area are normally distributed with mean
x̄ and variance s2, then the implied ecologic
risk is eα+β x̄+β2s 2/2, and this model may be fit-
ted to ecologic data if x̄ and s2 are available in
each area (4). More recently investigators have
suggested an approach that takes the mean as
a combination of these two approaches, with
the parametric approach dominating for small
samples (for which the aggregate data method
can provide unstable inference) (62).

A different approach in the context of a
rare disease is outcome-dependent sampling,
which avoids the problem of zero cases en-
countered in random sampling. Inferential
approaches have been developed for when
ecologic data are supplemented with individ-
ual case-control information gathered within
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the constituent areas (30–32). The case-
control data remove ecologic bias, whereas
the ecologic data provide increased power and
constraints on the sampling distribution of the
case-control data, which improves the preci-
sion of estimates.

Two-phase methods have a long history
in statistics and epidemiology (7, 8, 77, 79)
and are based on an initial crossclassifica-
tion by outcome and confounders and expo-
sures; this classification provides a sampling
frame within which additional covariates may
be gathered via the sampling of individuals.
Such a design may be used in an ecologic set-
ting, where the initial classification is based
on one or more area(s), confounder strata,
and possibly error-prone measures of expo-
sure ( J. Wakefield & S. Haneuse, submitted
manuscript).

In all these approaches it is clearly vital
to avoid response bias in the survey samples
or selection bias in outcome-dependent sam-
pling, and establishing a relevant sampling
frame is essential.

CONCLUDING REMARKS

The use of ecological data is ubiquitous. This
article has concentrated on area-aggregated
data, but many other variables can be col-
lapsed. For example, it is common practice
to collapse continuous age into five-year age
bands; this results in a loss of information, but
within each age bands the changes in risk are
small and so ecologic bias will be ignorable.

A skeptic might conclude from the litany
of potential biases described in the ecologic
bias section, above, that ecologic inference
should never be attempted, but this would
be too pessimistic a view. A useful starting
point for all ecologic analyses is to write down
an individual-level model for the outcome-
exposure association of interest, including
known confounders. Ecologic bias may be
small when within-area variability in expo-
sures and known confounders is small, and for
small-area studies in particular this may be
approximately true. A serious source of bias

is that caused by confounding because eco-
logic data on exposure are rarely stratified by
confounder strata within areas. If a small area
study has been carried out with a correctly ag-
gregated individual-level model, then param-
eter estimates can be cautiously interpreted at
the individual level and compared with other
studies at the individual level, and hence add
to the totality of evidence for a hypothesis.
When comparing ecologic and semiecologic
estimates with individual-level estimates, it is
clearly crucial to have a common effect mea-
sure (e.g., a relative risk or a hazard ratio). So,
for example, it will be difficult to compare an
ecologic correlation coefficient, which is an
often-reported measure, with an effect esti-
mate from an individual-level study.

Less well-designed ecologic studies can
be suggestive of hypotheses to investigate if
strong ecologic associations are observed. An
alternative to the pessimistic view often ap-
plied to ecological analyses is that when a
strong ecological association, such as that ob-
served in Figure 1, is seen, one should attempt
to explain how such a relationship could have
arisen if it is not due to the ecologic predictor.

We have not discussed a number of is-
sues. Care should be taken in determining the
effects of measurement error in an ecologic
study because the directions of bias may not
be predictable. For example, in the absence
of pure specification and confounder bias for
linear and log-linear models, if there is non-
differential measurement error in a binary ex-
posure, there will be overestimation of the
effect parameter, in contrast with individual-
level studies (6). We refer interested readers
to alternative sources (19, 71) for other issues
such as consideration of migration, latency pe-
riods, and the likely impacts of inaccuracies in
population and health data.

Studies that investigate the acute effects of
air pollution are another common situation
in which ecologic exposures are used. For ex-
ample, daily disease counts in a city are often
regressed against daily and/or lagged concen-
tration measurements taken from a monitor
or the average of a collection of monitors to
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estimate the acute effects of air pollution. If
day-to-day exposure variability is greater than
within-city variability, then we would expect
ecologic bias to be relatively small.

With respect to data availability, exposure
information is generally not aggregate in na-
ture (unless the “exposure” is a demographic
or socioeconomic variable), and in an envi-
ronmental epidemiological setting the mod-
eling of pollutant concentration surfaces will
undoubtedly grow in popularity. However, an
important insight is that in a health-exposure
modeling context it may be better to use mea-

surements from the nearest monitor, rather
than model the concentration surface, because
the latter approach may be susceptible to large
biases particularly when, as is usually the case,
the monitoring network is sparse (72). A re-
maining challenge is to diagnose when the
available data are of sufficient abundance and
quality to support the use of complex models.

We have described a number of proposals
for the combination of ecologic and individual
data. Such endeavors will no doubt increase,
and will hopefully allow the reliable exploita-
tion of ecologic information.

SUMMARY POINTS

1. Ecologic bias, defined as the difference between associations obtained from individual
and ecologic data, occurs because of within-group variability in exposures and/or
confounders.

2. To understand the implications of the use of ecologic data in any setting, it is useful
to write down the individual-level model that would be fitted if individual-level data
were available. Aggregation of an individual-level model allows the characterization
of ecologic bias and reveals the individual-level data that would reduce the chance of
ecologic bias.

3. Ecologic bias can be safely removed only by combining ecologic- and individual-level
data.

4. Semiecologic studies are less susceptible to ecologic bias because some components
of bias are not possible, but again the implications of aggregation should be carefully
examined.
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Figure 3

Maps of the proportion of nonwhite births and risk of SIDS (� 1000) across 100 counties of North
Carolina in the years 2001–2004.
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