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Spatial interpolants

(observed value)i = (true value at location i) + (error)i

I We treat the observed covariates as being measured with error
I The errors are usually assumed to be independent and

identically distributed (i.i.d.)
I Usually, we take them to be Gaussian
I If we think there may be outliers, we might use something else

(e.g. a Student-T distribution)
I The only change in R-INLAis in the family argument in the

INLA call



So how does that help us fill in the field?

(observed value)i = (true value at location i) + (error)i

or
yi = x(si ) + εi

We need priors!
I We have chosen the error distribution to be εi ∼ N(0, σ2)

I A zero mean means that there is no systemic measurement
error

I A common variance means that everything was measured the
same way

I Now we need a prior on the truth...



Gaussian random fields

If we have a process that is occurring everywhere in space, it is
natural to try to model it using some sort of function.

I This is hard!
I We typically make our lives easier by making everything

Gaussian.
I What makes a function Gaussian?



Gaussian random fields

If we are trying to model x(s) what sort of things do we need?
I We don’t ever observe a function everywhere.
I If x is a vector of observations of x(s) at different locations,

we want this to be normally distributed:

x = (x(s1), . . . , x(sp))T ∼ N(0,Σx(s1),...,x(sp))

I This is actually quite tricky: the covariance matrix Σ will need
to depend on the set of observation sites and always has to be
positive definite.

I It turns out you can actually do this by setting Σij = c(s i , s j)
for some covariance function c(·, ·).

I Not every function will ensure that Σ is positive definite!
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A good “first model”

Stationary random fields
A GRF is stationary if:

I has mean zero.
I the covariance between two points depends only on the

distance and direction between those points.
It is isotropic if the covariance only depends on the distance
between the points.

I Zero mean −→ remove the mean
I Stationarity is a mathematical assumption and may have no

bearing on reality
I But it makes lots of things easier.
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The three typical parameters for a GRF

I The variance (or precision) parameter:
I This controls how wildly the function can deviate from its

mean
I The range parameter

I This controls the range over which the correlation between
x(s) and x(s + h) is essentially zero

I Often the “range” parameter is some transformation of this
distance

I The smoothness parameter
I Controls how differentiable the field is.
I This essentially controls how similar nearby points are
I Often not jointly identifiable with the range

For isotropic random fields, these parameters are constant.
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Gaussian random fields

Defn: Gaussian random fields
A Gaussian random field x(s) is defined by a mean function µ(s)
and a covariance function c(s1, s2). It has the property that, for
every finite collection of points {s1, . . . , sp},

x ≡ (x(s1), . . . , x(sp))T ∼ N(0,Σ),

where Σij = c(si , sj).

I Σ will almost never be sparse.
I It is typically very hard to find families of parameterised

covariance functions.
I It isn’t straightforward to make this work for multivariate,

spatiotemporal, or processes on non-flat spaces.



How big is the problem?

Let’s do a quick operation count!

I Parameter estimation: Requires the field at N data points:
Must factor an N × N matrix

I Spatial prediction (Kriging): Requires the field at m points,
probably densely through the domain: Must factor an m ×m
matrix.

I Joint parameter and spatial estimation: Needs it at both.
Must factor a (N + m)× (N + m).



Working with dense matrices

I Storage:
I O(N2)
I 2500 points for 20 years requires ∼ 20 Gbytes

I Computation:
I Each sample, solve, or determinant costs O(N3).
I We always need quite a few of these (likelihood, VB, INLA)
I If we use MCMC we need a gargantuan number!

I Remember 1, 000, 000 samples give ∼ 3 decimal places of
accuracy.

Clearly this won’t work if N is large.
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What if our matrices magically became sparse?

Sparse covariance matrices can be formed using covariance tapering
or compactly supported covariance functions.

I Storage:
I O(N)
I 2500 points for 20 years requires ∼ 400 Kilobytes

I Computation:
I Each sample, solve, or determinant costs ∼ O(N3/2).

Question: Can we find random field that ‘magically’ give us sparse
matrices?
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The Goldilocks principle

So modelling directly with GRFs is too hard, while GMRFs can be
difficult when they’re not on a lattice.

Is there something “just right”?

It is instructive to consider another “awkward” method that aims to
fix the computational problems of GRFs while keeping a continuous
specification (hence avoiding the lattice problem).

Combining this method with GMRFs will lead to (finally!) a stable,
flexible, computationally feasible method.



Reducing the dimension

Most of the methods aimed at reducing the “big N problem” in
spatial statistics is based on some sort of low-dimensional
approximation:

x(s) ≈
n∑

i=1

wiφi (s),

where w is jointly Gaussian and φi (s) are a set of known
deterministic functions.

If w ∼ N(0,Σ), then the covariance function of x(s) is

c(s1, s2) = Φ(s1)TΣΦ(s2),

where Φ(s) is a vector with the φi functions evaluated at point s.



Kernel methods

We will take a close look at Kernel methods and, in particular,
when they fail.

I They are popular!
I They are easy to analyse!
I They are prototypical of this low-dimensional (please don’t say

“low-rank”!!) approach.



Kernel representations
Most GRFs can be represented as

x(s) =

∫
R2

k(s, t) dW (t),

where W (t) is white noise, and k(s, t) is a deterministic “kernel”
function.

I It is often suggested that we model k(·, ·) directly.
I We can approximate the integral by a sum (Higdon, ’98)

x(s) ≈
n∑

i=1

k(x , ti )ξi ,

where ξi are i.i.d. normals.
I This does not work well. (S, Lindgren, Rue, ’10, Bolin and

Lindgren ’10)
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So what happens?
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Approximation properties

Realisations of Gaussian Random Fields are functions.

Appropriate question
How well can realisations of x(·) be approximated by functions of
the form

∑n
i=1 wiφi (s).

I This is not an asymptotic question! n never goes to infinity.
I Without considering these questions, you cannot know how a

method will work!



Best Kernel approximation to a constant
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Figure 1: A comparison of the standard kernel function (solid lines) and the
smoothed kernel function (dotted lines) for α = 2 (η = 1/2) and κ = 20.
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Figure 2: This figure shows the error in the approximations to x(s) ≡ 1 for all
three sets of basis functions for α = 2 and κ = 20. The dash-dotted line shows
the simple kernel approximation. The smoothed kernel approximation (solid
line) behaves much better, although it does demonstrate edge effects. The finite
element basis used for the GMRF representation of the SPDE (dashed line),
which is discussed in the next section, reproduces constant functions exactly.
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Why did kernel methods perform badly?

I Kernel methods performed badly because there weren’t enough
points.

I Kernel methods performed badly because the range was
smaller than the grid spacing.

I Kernel methods performed badly because the basis functions
depend on the parameter being inferred!

This is a common problem and leads to “spotty” spatial predictions
and bad uncertainty estimates.
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Piecewise linear approximation of surfaces

NB: The basis functions are only non-zero on a small part of the
domain.



Known approximation properties



How can we use these functions?

There is no obvious way to use piecewise linear functions...
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SPDE models

In this section we’re going to look at a class of flexible,
computationally efficient spatial models.

I These models will give you a lot of the flexibility of GRFs
without the pain

I They have the good computational properties of GMRFs, but
with more flexibility

I They are defined continuously like Kernel methods, but are
stable

I Don’t focus too much on the theory (unless you want to!)
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The secret is in the Markov property
Intro B, W, M, & R SPDE/GMRF Example End CAR Matérn Markov Whittle

The continuous domain Markov property

S is a separating set for A and B : x(A) ⊥ x(B) | x(S)

A

S

B

Finn Lindgren - finn.lindgren@math.ntnu.no Matérn/SPDE/GMRF



How does this translate to maths?

General Result
The power spectrum of a stationary Markovian Gaussian random
field has the form R(k) = 1/p(k), where p(k) is a positive,
symmetric polynomial.

Oh dear!



Can we salvage something from this?

Sometimes it’s useful to be an engineer!

An engineering calculation
Let L be a differential operator. Then the solution to

Lx(s) = W (·)

is a Gaussian random field and it has the Markov property.

I “Prove” it using Fourier transforms.
I The derivatives (local) produce the Markov property (local)
I Now we’re solving (partial) differential equations: standard!
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What does this remind us of?

I Recall our SAR(1) model (slightly re-written)

4xi − (xn + xs + xe + xw ) ∼ N(0, σ2).

I Also remember that

−d2x

ds2 ≈
−x(s + h) + 2x(s)− x(s − h)

h2

I So if we scale our SAR(1) model and let the lattice spacing
h→ 0, we get

−∆x(s) ≡ −
(
d2x

ds2
1

+
d2x

ds2
2

)
d
= W (s)



In the context of GMRFs

In this context, this was first noted by Whittle in the 50s (!!) who
noted that Matérn fields, which have covariance function of the
form

c(x , y) ∝ (κ ‖x − y‖)ν Kν (κ ‖x − y‖) ,
are the stationary solutions to the SPDE

(κ2 −∆)
ν+d/2

2 x(s) = W (s),

where
I ∆ =

∑d
i=1

∂2

∂s2i
is the Laplacian

I W (s) is spatial white noise.
I The parameter ν controls the smoothness.
I The parameter κ controls the range.



Practical interpretation of the parameters

We have
(κ2 −∆)

α
2 (τx(s)) = W (s),

where α = ν + d/2 is an integer.
I κ2 is a range parameter. The approximate range is

range ≈
√
8ν
κ

.

I The variance of the model is

σ2 =
Γ(ν)

γ(ν + d/2)(4π)d/2κ2ντ2 .



So which models do we get?

So, according to the Whittle characterisation of the Matérn
covariance functions, we get a Markovian random field when
α = ν + d/2 is an integer. When d is odd, Matérn models with
ν ∈ 1/2N.

I This include the Thin Plate Spline model (ν = 1)
I And the exponential covariance (ν = 1/2).



So which models do we get?

When d is even, we get Matérn models with ν ∈ N
I This include the Thin Plate Spline model (ν = 1)
I But not the exponential covariance (ν = 1/2).



So which models do we get?

When d is even, we get Matérn models with ν ∈ N
I This include the Thin Plate Spline model (ν = 1)
I But not the exponential covariance (ν = 1/2).



Let’s simplify things: set ν + d/2 = 2

The SPDE becomes

(κ2 −∆)x(s) = W (s),

which only involves second derivatives, which are nice.

I Connection to thin plate splines!



Approximating the SPDE

We are looking for the piecewise linear random field

xn(s) =
n∑

i=1

wiφi (s)

for piecewise linear functions φi (s) that best approximates the
solution to (κ2 −∆)x(s) = W (s).



Step 1: The ‘weak’ solution

White noise is weird, but if we integrate it, it becomes nicer. So we
require that for every suitable function φ(s),∫

Ω
ψ(s)(κ2 −∆)x(s) ds

D
=

∫
Ω
ψ(s) dW (s).

I White noise integrals aren’t scary!∫
Ω
ψ(s) dW (s) ∼ N(0,

∫
Ω
ψ(s)2 ds)



Step 2: Plug in the basis functions

Replace x(s) with the basis function expansions and chose φ(s) to
be the set of basis functions

We get the system of linear equations∫
Ω
φj(s)(κ2 −∆)

(∑
i

wiφi (s)

)
ds

D
=

∫
Ω
φj(s) dW (s)

This is good— LHS has things we can compute, RHS has integrals
of white noise.
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What comes out?

We get two matrices:
I Cii =

∫
Ω φi (s) ds (the constant terms)

I Kij =
∫

Ω∇φi (s) · ∇φj(s) ds (the Laplacian term)

The (scary) SPDE becomes the (normal) equation

(κ2C + K)w ∼ N (0,C)

and therefore w is a GMRF with precision matrix

Q =
(
κ2C + K

)T C−1 (κ2C + K
)
.
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Notes

I This works for any Matérn field where α = ν − d/2 is an
integer.

I More importantly, this works for any SPDE Lx = W .
I More importantly, if we Q = L∗L, this method can be applied

directly to the precision operator Q.
I We can approximate non-Markov fields by Markovian fields by

approximating 1/R(k) by a polynomial.
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Leukaemia survival

Leukaemia survival data (Henderson et al, 2002, JASA), 1043 cases.



Survival models

Survival models are different for many models in statistics. There
are two types of observations: an event (death) or we stop
measuring (censoring).

Rather than directly modelling the hazard (instantaneous risk)

h(y) dy = Prob(y ≤ Y < y + dy |Y > y)

h(y) = f (t)
S(t)



Cox proportional hazards model

Write the hazard function for each patient as:

h(yi |wi , x i ) = h0(yi ) wi exp(cT
i β) exp(x(si )); i = 1, . . . , 1043

where

h0(·) is the baseline hazard function
wi is the log-Normal frailty effect associated with patient i
c i is the vector of observed covariates for patient i
β is a vector of unknown parameters

x(si ) is the value of the spatial effect x(s) for patient i .



Spatial survival: example

log(hazard) = log(baseline)

+f (age)

+f (white blood cell count)
+f (deprivation index)

+f (spatial)
+sex



R-code (regions)

data(Leuk)
g = system.file("demodata/Leuk.graph", package="INLA")

formula = inla.surv(Leuk$time, Leuk$cens) ~ sex + age +
f(inla.group(wbc), model="rw1")+
f(inla.group(tpi), model="rw2")+
f(district, model="besag", graph = g)

result = inla(formula, family="coxph", data=Leuk)

source(system.file("demodata/Leuk-map.R", package="INLA"))
Leuk.map(result$summary.random$district$mean)
plot(result)



2 4 6 8 10 12 14

−
1

0
1

2

baseline.hazard

PostMean  0.025% 0.5% 0.975% 



−11.0 −10.0 −9.0 −8.0

0.
0

0.
5

1.
0

1.
5

PostDens [(Intercept)]

Mean = −9.401 SD = 0.261

−0.2 0.0 0.2 0.4
0

1
2

3
4

5

PostDens [sex]

Mean = 0.077 SD = 0.069

0.025 0.035 0.045

0
50

10
0

15
0

PostDens [age]

Mean = 0.036 SD = 0.002



0 100 200 300 400 500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

inla.group(wbc)

PostMean  0.025% 0.5% 0.975% 



−5 0 5 10

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

inla.group(tpi)

PostMean  0.025% 0.5% 0.975% 



 

 
−0.2

−0.12
−0.03
0.06
0.14
0.23
0.32



Continuous spatial effect

Easting

N
or
th
in
g

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4



SPDE models

We call spatial Markov models defined on a mesh SPDE models.

SPDE* models have 3 parts
I A mesh
I A range parameter κ
I A precision parameter τ

SPDE=Stochastic Partial Differential Equation



The mesh

Meshes can be created using two different functions:
I inla.mesh.create: The workhorse function. An interface to

the meshing code written by Finn Lindgren.
I inla.mesh.2d: A slightly more user friendly interface for

creating practical meshes (we will focus on this one).



Typical use

mesh <- inla.mesh.create.helper(points.domain=iceland_ISN,
max.edge=c(40,800),
offset=c(50,150),
min.angle=25)

Constrained refined Delaunay triangulation

mesh



inla.mesh.create.helper

inla.mesh.create.helper(loc = NULL,
loc = NULL,

loc.domain = NULL,
offset = NULL,
n = NULL,

boundary = NULL,
interior = NULL,
max.edge,
min.angle = NULL,
cutoff = 0,
plot.delay = NULL)

This function contains a mesh with two regions: the interior mesh,
which is where the action happens; and the exterior mesh, which is
designed to alleviate the boundary effects.



Arguments

I loc: Points to be included as vertices in the triangulation.
I loc.domain: Points not in the mesh, but that are used to

define the internal mesh section (taken as the convex hull of
these points).

I offset=c(a,b): Distance from the points to the inner (outer)
boundary. Negative numbers = relative distance.

I boundary: Prescribed boundary. (inla.mesh.segment type)
I max.edge = c(a,b): Maximum triangle edge length in the

inner (outer) segment.
I min.angle = c(a,b): Minimum angle for the inner and

outer segments (bigger angles are better, but harder to make)
I cutoff: Minimum distance between two distinct points.



Good and bad meshes



Between the mesh and the data

I So a good mesh probably doesn’t have vertices at the data
locations

I This means we need to have a way to get between values of
the field at the vertices and the value of the field at the data
points

I The trick is that the SPDE model is linear on the triangles, so
the value of the field at any point is a weighted sum of the
vertices of the triangle the point is in.

I In maths speak, we are observing Ax rather than x
I We call A the "A-matrix" or the "observation matrix"



Making observation matrices in INLA

When the observations don’t occur at mesh points, we need some
way to map between the latent field and the observation process.

I inla.spde.make.A constructs the matrix Aij = φj(si ) that
maps a field defined on the mesh to the observation locations
si .

I The function will also automatically deal with space-time
models and replicates.

I A related function (inla.mesh.projector) builds an A-matrix for
projecting onto a lattice. This is useful for plotting.



The inla.spde.make.A call

inla.spde.make.A(mesh = NULL,
loc = NULL,
index = NULL,
group = NULL,
repl = 1L,
n.mesh = NULL,
n.group = max(group),
n.repl = max(repl),
group.mesh = NULL,
group.method = c("nearest", "S0", "S1"),
weights = NULL)

I The first two arguments are needed.
I group is needed to build space-time models
I The other arguments are fairly advanced!



Other mesh commands

I inla.mesh.segment: Constructs an object that can be given
to inla.mesh.create as a boundary or interior segment

I inla.mesh.boundary: Extracts a boundary segment from a
mesh.

I inla.mesh.project and inla.mesh.projector: Projects
results from a mesh to a lattice. Useful for plotting.

I inla.mesh.basis: Constructs a B-spline basis of a given
degree on a mesh.

I inla.mesh.query: Extracts information about the topology
of the mesh (advanced!)



Constructing SPDE models

For historical reasons there are two different SPDE classes (spde1
and spde2)

I spde1 is the “classic” SPDE model!
I The spde2 class is more flexible and defines non-stationarity in

a more natural way.
I The primary difference between the two models is in the prior

specification.
I At some point there will probably be an spde3 class: We are

interested in backwards-compatability!
I For “stationary” models, these are fairly much the same (up to

prior specification)



The spde1 call

inla.spde.create(mesh,
model = c("matern", "imatern","matern.osc"),
param = NULL)

I “imatern” is the intrinsic model (κ2 = 0).
I “matern.osc” is an oscillating Matérn model.
I param is a list that contains alpha (1 or 2) and stuff about

non-stationarity.



Why does spde2 exist?

The problem with the spde1 comes when specifying
non-stationarity.

I Suppose we want to model τ(s) =
∑k

i=1 θ
τ
i bi (s) for some

basis functions {bi (s)}. (Similar for κ2(s))
I The spde1 model put i.i.d. log-normal priors on the θi .
I This is not a good idea: what if we want a smooth

effect—should have a spline prior...
I We also penalise the (log) variance directly:

log(σ2) = const.− 2 log(κ)− 2 log(τ)

I spde2 fixes this by putting a multivariate normal prior on

log(τ ) = Bτθ, log(κ2) = Bκθ

with the same θ ∼ N(µ,Q−1).
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The spde2 call

inla.spde2.matern(mesh,
alpha = 2,
B.tau = matrix(c(0,1,0),1,3),
B.kappa = matrix(c(0,0,1),1,3),
prior.variance.nominal = 1,
prior.range.nominal = NULL,
prior.tau = NULL,
prior.kappa = NULL,
theta.prior.mean = NULL,
theta.prior.prec = NULL,

fractional.method = c("parsimonious", "null"))



Arguments

I mesh: An inla.mesh object. (Necessary)
I alpha =2: The smoothness. Exact fields if it’s an integer,

approximate fields for non-integer α
I B.tau: The matrix Bτ use to define non-stationary τ(s)

I B.kappa: As above, but for κ2(s)

I prior.variance.nominal, prior.range.nominal: Helps
the automatic prior know the scale of the variance and the
range

I prior.tau, prior.kappa: Prior specification for τ and κ2.
(not often used)

I theta.prior.mean, theta.prior.prec: Mean vector and
precision matrix for θ prior.

I fractional.method: Method for constructing fractional α
approximation
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A few more useful commands

I inla.spde.precision(spde,tau=...,kappa2=...)—
computes precision matrix. Less straightforward for spde2
models

I inla.qsample(n,Q,...)—Computes a sample and various
other quantities needed for MCMC for precision matrix Q

I inla.qreordering—Computes a fill-in reducing reordering.
I inla.qsovle—Solve a linear system
I inla.qinv(Q)—Calculates the elements of the inverse

corresponding to the non-zero elements of Q. Needed for
computing derivatives of Gaussian likelihoods.
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Useful features

I replicate and group
I more than one “family”
I copy
I linear combinations
I A matrix in the linear predictor
I values
I remote computing



Feature: replicate

“replicate” generates iid replicates from the same f()-model with
the same hyperparameters.

If x | θ ∼ AR(1), then nrep=3, makes

x = (x1, x2, x3)

with mutually independent x i ’s from AR(1) with the same θ
Arguments

f(..., replicate = r [, nrep = nr ])

where replicate are integers 1, 2, . . . , etc



Example: replicate



NAs in INLA

What do NAs do?
I In the covariates, an NA is treated as a zero.
I In the random effect, NAs indicate that the effect does not

contribute to the likelihood
I In the data, an NA indicates a location for prediction.



Feature: copy

This feature fixes a limitation in the formula-formulation of the
model

The model

formula = y ~ f(i, ...) + ...

Only allow ONE element from each sub-model, to contribute to the
linear predictor for each observation.

Sometimes/Often this is not sufficient.
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Feature: copy

Suppose
ηi = ui + ui+1 + ...

Then we can code this as

formula = y ~ f(i, model="iid") +
f(i.plus, copy="i") + ...

I The copy-feature, creates internally an additional sub-model
which is ε-close to the target

I Many copies allowed, and copies of copies



Feature: copy

Suppose
ηi = ui + βui+1 + ...

Then we can code this as

formula = y ~ f(i, model="iid") +
f(i.plus, copy="i",

hyper = list(
beta = list(fixed = FALSE))) + ...



Feature: copy

Suppose that
ηi = ai + bizi + ....

where
(ai , bi )

iid∼ N2(0,Σ)





Multiple likelihoods

In many situations, you need to combine data from different
sources and need to be able to handle multiple likelihoods.

Examples:
I Joint modelling of longitudinal and event time data (Guo and

Carlin, 2004)
I Preferential sampling (Diggle et al, 2010)
I “Marked” point processes
I Animal breeding modelling with multiple traits
I Combining data from multiple experiments
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Examples:
I Joint modelling of longitudinal and event time data (Guo and

Carlin, 2004)
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How to do this in INLA

I Make response y a matrix rather than a vector.
> Y = matrix(NA, N, 2)
> Y[1:n, 1] = y[1:n]
> Y[1:n + n, 2] = y[(n + 1):(2 * n)]

I NAs are used to select components in the formula
> cov1 = c(cov, rep(NA,n))
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Back to covariates

Consider a model with a linear predictor that looks like

ηi = . . .+ βc(si ) + . . .

where c is an unknown spatial covariate.

I ci is unknown, but we have some measurements {c ′j} at points
{s ′j}

I We can model the true covariate field as above

c ′j |c(·) = c(s ′j ) + εj

c(·) ∼ SPDE model



Joint modelling of the covariate

We can then fit these models at the same time!

Likelihood:

yi | ηi ∼ Any INLA likelihood with latent field η

c ′j |c(·) ∼ N(ξj , τ
−1
c )

Latent field:

ηi = . . .+ βc(si ) + . . .

ξj = c(s ′j )

I We have two likelihoods (data and covariate)
I We use the covariate field c(s) twice −→ copy



Setting up the likelihood

We begin by putting the observations and the observed covariates
together as data

> Y = matrix(NA, N, 2)
> Y[1:n, 1] = y
> Y[(n+1):(2*n), 2] = obs_covariate



Setting up the formula

We need to set up the formula carefully to separate out the two
things. The trick is NAs in indices

> covariate_first_lik = c(1:spde$n.spde,
rep(NA, spde$n.spde))

> covariate_second_lik = c(rep(NA, spde$n.spde),
1:spde$n.spde)

The formula is then

> formula = Y ~ ...+ f(covariate_first_lik, model=spde)
+ f(covariate_second_like, copy=covariate_first_lik) + ...



The INLA call

Finally, we need to make an inla call for this model.

> result = inla(formula, family = c("_____", "gaussian"),
data = list(Y=Y,
covariate_first_lik=covariate_first_lik,
covariate_second_lik=covariate_second_lik),
verbose=TRUE)

where _____ is the data likelihood.



This model in practice

I Joint modelling the covariate adds 3 hyperparameters (range,
precision, noise precision)

I This can be done any type of data (eg point patterns)
I If there is misalignment, it can get tricky
I In this case, you need A-matrices



Organising data, latent fields and A matrices

Real life is hard!
I In complicated models, we will have multiple sources of data

occurring in different places with different likelihood.
I The latent field may also be composed of sections defined at

different resolutions (grid for a spatial covariate, mesh for
random field, etc).

I So we need a function that takes these components and chains
them together in a way that makes sense.

I (You can “roll your own” here, but I really don’t recommend
it!)

We are rescued by inla.stack!



The inla.stack call

stack = inla.stack(data = list(...),
A = list(...),
effects = list(...),
tag = NULL, ...)

I The trick here is lists!
I The first element of the effects list is mapped to the first

element of the data list by the first element for the A list.
I Slightly more tricky when there are replicates and grouping

(time!)
I The functions inla.stack.data(stack) and

inla.stack.A(stack) are used to extract the data.frame and
the A-matrix for use in the inla call.
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