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Models with groups

Yesterday we talked about replicated random effects, where we
observed i.i.d. draws from the random effect distribution.

I Point patterns observed at different plots
I Annual rainfall observed during different years

But is this enough?



No it isn’t!

In a lot of applications, the assumptions that the repeated random
effects are independent is very restrictive.

I Monthly / daily rainfall data
I The results of nearby plots could be correlated

INLA provides the concept of a “group” that allows more
complicated dependence structures



Group dependence

Grouped random effects work as follows
I There is a within group correlation structure

I Any INLA latent model (iid, ar1, bym, spde etc)
I There is also a between group correlation model

I Not every model: "exchangeable" "ar1" "ar" "rw1" "rw2"
"besag"

If xg ,i is the ith element in group g , then

Cov(xg1,i1 , xg2,i2) = (cov between groups g1 and g2)

× (cov between elements i1 and i2)



The Kronecker structure

Grouped models are a special case of “Kronecker models”
I These models have covariance matrices of the form

Σbetween group ⊗Σwithin group

I We are working to implement the general structure (so you
can group any models in INLA together)

I We’re going to look through some examples...
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Correlated random effects

The simplest group model in INLA is the exchangeable model
I “Uniform correlation matrix”
I Corr(group i , group j) = ρ, −1 < ρ < 1
I This basically says that all of the groups are correlated in the

same way
I This is all you need for two correlated effects
I Allows for some dependence in other cases.



Graph for correlated RW2
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Multispecies point patterns

Think about trees
I Many species appear together
I We don’t really think that these patterns are independent
I We can fit bivariate patterns and take a look at the correlation



Maple and Hickory

Hickories (x) and Maples (o)



The Linear Model of Co-regionalisation (LMC)

The easiest way of modelling this is the LMC, which says
I Fit a common random effect for the two species
I For one species, add an independent random effect to “mop

up” the extra structure

ηmaple = (common effect)
ηhickory = β(common effect) + (extra hickory effect)



LMC in INLA

#Make indices
common_maple = c(1:n,rep(NA,n))
common_hickory = c(rep(NA,n), 1:n)
extra_hickory = c(rep(NA,n),1:n)

# Make formula

formula = y ~ ... + f(common_maple,model="rw2d")
+ f(common_hickory,copy="common_maple",

hyper = list(beta=list(fixed=FALSE)))
+ f(extra_hickory, model="rw2")



Results
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(b):
posterior mean for hickories, (c) post. mean for maples, (d) excess
effect



The grouped version

The other option is to model the random effect for each species
separately and let them be correlated.

I Advantage: A single parameter (ρ) that tells you about
correlation

I Disadvantage: You don’t get the pretty picture

#indices
effect = c(1:n,1:n)
group = rep(c(1,2), each=n)

#formula
formula = y~ ... + f(effect,model="rw2d",group=group,

control.group = list(model="exchangeble"))



Results with SPDE model

range hickory range maple correlation DIC
est 64 67 -0.69 -
group 70 (48, 98) - -0.63 (-0.77, -0.46) 5568.5
LMC 70 (42, 109) 110 (72, 178) -0.79 (-0.95, -0.53) 5566.3

I Fitted using SPDE models (not rw2d)
I This allows for estimation of the correlation range for each

parameter
I We see strong negative correlation
I In this case, the LMC fits better
I The better fit is attributed to the components having different

correlation ranges for different species
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Spatiotemporal models

I Data frequently has a temporal component
I Easy fixes:

I Treat them as independent (replicate)
I Add a temporal random effect

η = ...+ f (space) + f (time)

I Harder fix: Try to make space time models
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There are two types of space-time models:

I Separable models:
I Correlation between two points in space-time =

Corr in space× Corr in time
I This is easy to do and works well
I Doesn’t capture “spreading fronts”

I Non-separable models:
I Anything that isn’t separable!
I Much more flexible
I But harder to fit...
I Not in INLA (yet...)

We’re going to fit a separable model
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PM-10 concentration in Piemonte, Italy
Everything that I’m talking about today is described in Cameletti et
al. (2011) on r-inla.org. (It’s a really good paper!)

PM10 concentration:
I 24 monitoring stations
I Daily data from 10/05 to 03/06

r-inla.org


Covariates

I Daily mean wind speed (WS, m/s)
I Daily maximum mixing height (HMIX, m)
I Daily precipitation (P, mm)
I Daily mean temperature (TEMP, K ◦)
I Daily emissions (EMI, g/s)
I Altitude (A, m) Coordinates (UTMX and UTMY, km).



The latent field (state equation)

We use an AR(1) structure

ξt = aξt−1 + ωt ,

where a ∈ (0, 1) is a constant and

ωt
i.i.d.∼ N(0,Q−1),

is taken from a spatial SPDE model.



The measurement equation

We take the measurement equation to be

y t = X tβ + Aξt + εt ,

where X t is a matrix of covariates, β are the weights, A picks out
the appropriate values of ξt and

εt
i.i.d.∼ N(0, σ2I ).



Step 1: Make the mesh

mesh =
inla.mesh.2d(points =NULL,

points.domain=borders,
offset=c(10, 140),
max.edge=c(40,1000),
min.angle=21,
cutoff=0,
plot.delay=NULL
)

boundary = inla.mesh.boundary(mesh)[[1]]

nmesh = mesh$n
#select (the rows of) the position of the stations
mesh.idx = 1:nmesh



A mesh



Step 2: Make the latent model
In order to construct a kronecker product model in INLA, we use
the (experimental) group feature

spde = inla.create.spde(mesh,model="matern")

formula = y ~ WS + HMIX +...
+ intercept + f(field, model=spde,

group =time,
control.group=list(model="ar1")-1

)

I This tells INLA that the observations are grouped in a certain
way.

I control.group contains the grouping model (only ar1 and
exchangable) as well as their prior specifications.

I NB: intercept!



Step 3: Make an A matrix

There are two ways to construct the A matrix: A for loop or an
inbuilt function.

LocationMatrix = inla.spde.make.A(mesh = mesh,
loc =dataLoc, group=time, n.group=nT)

This locates the data points in each group=time level and stacks
the corresponding local A matrices in an appropriate way.



Step 4: Organising the data

We have a problem: we have the covariates at the data points, but
the latent field only defined their through the A matrix.

We need to make sure that A only applies to the random effect.

Solution: Padding by NAs.



Step 5: Organising the data with inla.stack

We can now put everything together.

stack = inla.stack( data = dat,
A = list(1, LocationMatrix),
effects = list( list(WS = cov$WS,...),

c(inla.spde.make.index("mesh.idx",n.field=nmesh,
n.group=T),

list(intercept=rep(1,mesh$n*nT)))
)

)
result = inla(formula, family = "gaussian",

data=inla.stack.data(stack).
control.predictor = list(A=inla.stack.A(stack)),
verbose=TRUE)



Posterior mean PM10 concentration for 30/01/2006 (log
scale)
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But did we answer the question?

I The question was not fit a space-time surface
I The limit value fixed by the European directive 2008/50/EC

for PM10 is 50µg/m3. The daily mean concentration cannot
exceed this value more than 35 days in a year.

I The question was “Does the PM-10 concentration exceed the
EU-mandated maximum levels?”

I So can we get the answer to this question?



Multiple comparisons

I The easiest thing is to compute, for each point, the probability
of exceeding the threshold

I We can do that with inla.pmarginal
I But this is bad...
I We want areas where everything exceeded the level... multiple

comparisons
I These sets are called excursion sets



Excursions and INLA

David Bolin (Chalmers) wrote an R package called excursions
that works with INLA to solve this problem.

I It’s pretty easy to use
excursions.inla(result.inla, ind=indices, alpha=0.99,

u=0, method=’QC’, type=’>’ )
I result.inla is the output from INLA
I You need to run INLA with the option

control.compute=list(config=TRUE)
I ind=indices tells it which indices of the model you’re

interested in
I u and alpha are the level and the confidence
I type=">" says you want the set of things above level u
I method=’QC’ tells the function how to deal with the

non-Gaussianity



PM10 in Piemonte: Where is PM10 > 50?
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PM10 in Piemonte: Where is PM10 > 50? Uncertainty?

4900

4950

5000

5050

5100

5150

350 400 450 500

−3

−2

−1

0

1

2

3

4



Example 1: Gaussian process with exponential covariance

I Gaussian process with exponential covariance function.
I The 95% excursion set is shown in red.
I The grey area contains {s : Pr(x(s) > 0) > 0.95}.
I The dark red set is the Bonferroni lower bound.
I The black curve is the kriging estimate of x(s).



Contours and excursions

I A contour curve of a reconstructed field can (almost) be found
from the pointwise marginal distributions.

I But they are uncertain...
I The uncertainty depends on the full joint distribution.
I A credible contour region is a region where the field transitions

from being clearly below, to being clearly above.
I This is the same problem as the excursion problem



Example 2: Gaussian Matérn field

I Gaussian Matérn field measured under Gaussian noise.
I Left panel shows the kriging estimate,
I The grey block on the right is the 95% contour for the zero

level
I i.e. The field is, with high probability, equal to zero somewhere

in that region.



PM-10: January 30, 2006

Spatial reconstruction

4900

4950

5000

5050

5100

5150

350 400 450 500

−3

−2

−1

0

1

2

3

4

Marginal probabilities

4900

4950

5000

5050

5100

5150

350 400 450 500

0.0

0.2

0.4

0.6

0.8

1.0



PM-10: January 30, 2006

Marginal probabilities
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PM-10: January 30, 2006

Contour function F c
50(s)
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