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Statistics in space!

Spatial data comes in essentially two different forms
I Point-referenced data

I GPS tracking
I Fixed measuring devices
I “High resolution” satelites

I Region-based data
I Census data
I Plot data
I Region-based counts
I Historical data

Today, we’re going to talk about regions.



Let’s think about data-gathering

A reasonably common way of getting spatial data is
I Break the area of interest up into smaller regions
I Get a team to survey the region

I Completely
I Partially

How do we model this statistically?
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How do we model this?

Imagine we have animal counts in each region. We can model them
as Poisson

yi = Po (eηi ) .

How do we model the linear predictor ηi?
I We could model the number of animals in each region

independently
I ηi ∼ N(intercept+ (covariates)i , σ2

i )
I Regional differences accounted through “random effect”
I But... what if the distribution is inhomogeneous?
I If there’s an area where the animal is rare, we’ll get lots of zero

counts
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How do we model this?

Imagine we have animal counts in each region. We can model them
as Poisson

yi = Po (eηi ) .

How do we model the linear predictor ηi?
I We could model some dependence across regions

I “Nearby regions” should have similar counts
I ηi = intercept+ (covariates)i + ui
I Now the random effect ui ∼ N(0,Q−1) is correlated
I How should we do this?
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Modelling spatial similarity

The easiest model of spatial similarity is the Besag model, which
says that

xi − xj ∼ N(0, σ2)

if i and j are “neighbours”.

I This really does say nearby things are similar
I It says that the value at neighbouring sites is most probably

not more than 3σ apart
I We need to choose neighbours.



Everybody needs good neighbours

How do we choose which points should be neighbours?

I Physical nearest points are often a good place to start
I Physical neighbours are not necessarily the best
I This is modelling, so you should consider your process
I Consider, for instance, the problem of Tromsø...



A theory diversion: The Markov property

Models based on neighbourhood have a name in statistics: they are
Markovian models

I Markovian models are specified entirely through
“neighbourhood structures”

I It is easier to than specifying a full covariance
I For a first example, let’s consider time



Example: AR(1) process

xt | xt−1 = φxt−1 + εt , t > 1, εt ∼ N (0, τ−1)

x1 ∼ N
(
0,

1
1− φ2

)

I The values at t is proportional to the value at t plus some
extra variability

I φ is the lag-one autocorrelation
I εt is the innovation noise
I τ is the precision of the innovation
I The distribution for x1 ensures the process is stationary.



The AR(1) process in pictures

AR(1):
x1 x2 x3 x4 x5

I The circles represent the values of x at individual time points
I There is a line between them if they are conditionally

dependent



Markov in Space!
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I The model above is called a first order conditional
autoregressive model or a CAR(1) model.

I Every node is conditionally dependent on its four nearest
neighbours

I This is also called a First Order Random Walk or RW(1)
model.



(Informal) definition of a GMRF

I A GMRF is a Gaussian distribution where the non-zero
elements of the precision (inverse covariance) matrix are
defined by the graph structure.

I In the previous example the precision matrix is tridiagonal
since each variable is connected only to its predecessor and
successor.

x1 x2 x3 x4 x5



Uses for the simple 1-dimensional processes in R-INLA

I The AR(1) process can be used for time simple time effects
I A random walk (RW) process for “smooth effects”

xi − xi−1 ∼ N(0, σ2)

I A second-order random walk (RW2) for even “smoother”
effects

(xi − xi−1)
2 ∼ N(0, σ2)



Random walk

Can be used with a

formula = Y ~ ... + f(covariate, model="rw1")
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Second-order random walk

Can be used with a

formula = Y ~ ... + f(covariate, model="rw2")



Larynx cancer relative risk
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Larynx cancer relative risk

Use a simple count model

yi ∼ Poisson(Eieνi ),

where the log-relative risk νi is modelled as

νi = Covariates+ Spatial+ Noise.

In R-INLA

inla(formula = Y~...+f(region, model="besag",
graph.file=g),

family="poisson",...)



The Markov property on a Graph

Let x be a GMRF wrt G = (V, E).

The global Markov property:

xA ⊥ xB | xC

for all disjoint sets A, B and C where C separates A and B , and A
and B are non-empty.



Use a (undirected) graph G = (V, E) to represent the CI properties,
V Vertices: 1, 2, . . . , n.
E Edges {i , j}

I No edge between i and j if xi ⊥ xj | x−ij .
I An edge between i and j if xi 6⊥ xj | x−ij .

Key point: A graph defines the sparsity structure of Q!



Definition of a GMRF

Definition (GMRF)

A random vector x = (x1, . . . , xn)
T is called a GMRF wrt the graph

G = (V = {1, . . . , n}, E) with mean µ and precision matrix Q > 0,
iff its density has the form

x ∼ N(µ,Q−1)

and
Qij 6= 0 ⇐⇒ {i , j} ∈ E for all i 6= j .



Full graph
Connecting all the neighbouring areas give the following graph

 

 



Sub graph

Let us focus on one small part of the graph
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Besag model

We apply a Besag model where each region conditionally has a
Gaussian distribution with mean equal to the average of the
neighbours and a precision proportional to the number of
neighbours

x9|x−9 ∼ N
(
1
6
(x7 + x11 + x12 + x13 + x14 + x15),

1
6τ

)
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Precision matrix of sub graph

The sub graph leads to a precision matrix with 21.6% non-zero
elements.
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Precision matrix of full graph

The full graph leads to a precision matrix with 0.1% non-zero
elements.
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Intrinsic GMRFs

I The Besag model is not proper
I There are linear combinations of the variables that have

infinite variance or zero precision.
I This is not allowed in a proper distribution.
I In the Besag model it is caused by the fact that the

conditional distributions give no information about the “mean”.



Intrinsic GMRFs

I Distributions of this type (usually) become proper when one
introduces observations

I Identifiability issues: for a Besag model with an intercept in
the model introduce a constraint to stop the Besag from
stealing the effect of the intercept.

I R-INLA uses
∑

i xi = 0.
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It turns out the Besag model doesn’t fit very well!

I The problem is that it only accounts for similarities between
regions

I But it doesn’t take into account that every region will have a
little bit of individual spice

I The solution is to add an i.i.d. random effect in each region (a
random intercept)

I This was the work of Besag, York and Mollié, so we call this
the BYM model.



Disease mapping: The BYM-model

I Data yi ∼ Poisson(Eiexp(ηi ))

I Log-relative risk
ηi = µ+ ui + vi + f (ci )

I Structured/spatial component u
I Unstructured component v
I f (c) is the non-linear effect of a

covariate c .
I Precisions τu and τv ; smoothing

parameter τf
I Common to use independent

Gamma-priors
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Complicated model components

yi

ηi µ

uif (ci ) vi

τuτf τv

λuλf λv

i = 1, . . . , n

Does this make sense?



Think of the variance

I The variance not explained by the covariate is modelled with
ui and vi

I This amount of variance we can have is controlled by the
independent precision parameters τu and τv

I This is ugly!
I It would be much easier to have one parameter controlling the

scale of the random effect, and another controlling its makeup
I This is implemented as the bym2 model in INLA



Disease mapping (II)

Rewrite the model as

η =
1√
τ

(√
1− γv +

√
γu
)

I Marginal precisions τ .
I γ gives it interpretation: independence (γ = 0), maximal

dependence (γ = 1)]
I PC prior on γ depends on the graph!
I Parameters control different features. Use the PC priors

(later!) for τ and γ separately.
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Building a better BYM

yi

ηi τη

λη

µ

uif (ci ) vi

ω1, ω2

λw

i = 1, . . . , n

This re-parameterisation in terms of "meaningful" parameters
makes it easier to set priors and leads to more stable inference.
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Model choice

Chose/compare various model is important but difficult
I Bayes factors (general available)
I Deviance information criterion (DIC) (hierarchical models)
I Conditional predictive ordinances (CPO)



Never forget

Your model doesn’t fit!

“All models are wrong, some models are useful” — George Box



Bayesian model comparison

I There is no gold standard
I It depends on what you want to do
I Basically two types

I Ones that look at the posterior probability of the data under
the model

I Ones that look at how model the data fits the data

I The best hope is to have a model that represents data that
wasn’t used to fit it...



Marginal likelihood

Marginal likelihood is the normalising constant for π̃(θ|y),

π̃(y) =
∫
π(θ)π(x |θ)π(y |x , θ)

π̃G(x |θ, y)

∣∣∣∣∣
x=x?(θ)

dθ. (1)

I many hierarchical GMRF models the prior is intrinsic/improper, so
this is difficult to use.
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Deviance Information Criteria

Based on the deviance

D(x ;θ) = −2
∑

i

log(yi | xi ,θ)

and
DIC = 2×Mean (D(x ;θ))− D(Mean(x);θ∗)

This is quite easy to compute



Example

Will a linear effect be sufficient?



Bayesian Cross-validation

Easy to compute using the INLA-approach

π(yi | y−i ) =

∫
θ

{∫
xi

π(yi | xi ,θ) π(xi | y−i ,θ) dxi

}
π(θ | y−i ) dθ

where
π(xi | y−i ,θ) ∝

π(xi |y ,θ)
π(yi |xi ,θ)

I If it is very small, this point may be an “outlier” under the
model

I We can use this to define a score (bigger is better)

LCPO =
∑

i

log(π(y = yi |y−1))



Automatic detection of “surprising” observations

Compute
piti = Prob(ynew

i ≤ yi | y−i )

I piti shoew how well the ith data point is predicted by the rest
of the data

I If the model is true, these PIT values are uniformly distributed
I We can use this to inspect the model fit



Good and Bad PIT plots
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