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INLA - Integrated nested Laplace approximations

Outline
I Describe the class of models INLA can be applied to.

I Look at simple examples in R-INLA.
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Two main paradigms for statistical analysis

I Let y denote a set of observations, distributed according to a
probability model π(y;θ).

I Based on the observations, we want to estimate θ.

The classical approach:

θ denotes parameters (unknown fixed numbers), estimated for
example by maximum likelihood.

The Bayesian approach:

θ denotes random variables, assigned a prior π(θ). Estimate θ
based on the posterior:

π(θ | y) =
π(y | θ)π(θ)

π(y)
∝ π(y | θ)π(θ).
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Example (Ski flying records)

Assume a simple linear regression model with Gaussian
observations y = (y1, . . . , yn), where

E(yi) = α+ βxi, Var(yi) = τ−1, i = 1, . . . , n
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The Bayesian approach

Assign priors to the parameters α, β and τ and calculate posteriors:
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Real-world datasets are usually much more complicated!

Using a Bayesian framework:

I Build (hierarchical) models to account for potentially
complicated dependency structures in the data.

I Attribute uncertainty to model parameters and latent variables
using priors.

Two main challenges:

1. Need computationally efficient methods to calculate
posteriors.

2. Select priors in a sensible way.
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MCMC: Markov chain Monte Carlo methods

Based on sampling. Construct Markov chains with the target
posterior as stationary distribution.

I Extensively used within Bayesian inference since the 1980’s.

I Flexible and general, sometimes the only thing we can do!

I Available for specific models using e.g. BUGS, JAGS, BayesX.

I In general, not straightforward to implement. Slow,
convergence issues, etc.



INLA: Integrated nested Laplace approximations

Introduced by Rue, Martino and Chopin (2009). Posteriors are
estimated using numerical approximations. No sampling needed!

I Unified framework for analysing a general class of statistical
models, named latent Gaussian models.

I Accurate and computationally superior to MCMC methods!

I Easily accessible using the R-interface R-INLA, see
www.r-inla.org.

Reference:
Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace approximations (with
discussion). Journal of the Royal Statistical Society, Series B, 71, 319–392.

http://www.r-inla.org
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What is a latent Gaussian model?

Classical multiple linear regression model

The mean µ of an n-dimensional observational vector y is given by

µi = E(Yi) = α+

nβ∑
j=1

βjzji, i = 1, . . . , n

where

α : Intercept

β : Linear effects of covariates z



Account for non-Gaussian observations

Generalized linear model (GLM)

The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nβ∑
j=1

βjzji, i = 1, . . . , n

where g(.) is a link function and

α : Intercept

β : Linear effects of covariates z



Account for non-linear effects of covariates

Generalized additive model (GAM)

The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nf∑
k=1

fk(cki), i = 1, . . . , n

where g(.) is a link function and

α : Intercept

{fk(·)} : Non-linear smooth effects of covariates ck



Structured additive regression models

GLM/GAM/GLMM/GAMM+++
The mean µ is linked to the linear predictor ηi:

ηi = g(µi) = α+

nβ∑
j=1

βjzji +

nf∑
k=1

fk(cki) + εi, i = 1, . . . , n

where g(.) is a link function and

α : Intercept

β : Linear effects of covariates z

{fk(·)} : Non-linear smooth effects of covariates ck

ε : Iid random effects



Latent Gaussian models

I Collect all parameters (random variables) in the linear
predictor in a latent field

x = {α,β, {fk(·)},η}.

I A latent Gaussian model is obtained by assigning Gaussian
priors to all elements of x.

I Very flexible due to many different forms of the unknown
functions {fk(·)}:

I Include temporally and/or spatially indexed covariates.

I Hyperparameters account for variability and length/strength
of dependence.
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Some examples of latent Gaussian models

I Generalized linear and additive (mixed) models

I Semiparametric regression

I Disease mapping

I Survival analysis

I Log-Gaussian Cox-processes

I Geostatistical models

I Spatial and spatio-temporal models

I Stochastic volatility

I Dynamic linear models

I State-space models

I +++



Unified framework: A three-stage hierarchical model

1. Observations: y

Assumed conditionally independent given x and θ1:

y | x,θ1 ∼
n∏
i=1

π(yi | xi,θ1).

2. Latent field: x

Assumed to be a GMRF with a sparse precision matrix Q(θ2):

x | θ2 ∼ N
(
µ(θ2),Q−1(θ2)

)
.

3. Hyperparameters: θ

= (θ1,θ2)
Precision parameters of the Gaussian priors:

θ ∼ π(θ).
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Model summary

The joint posterior for the latent field and hyperparameters:

π(x,θ | y) ∝ π(y | x,θ)π(x,θ)

∝
n∏
i=1

π(yi | xi,θ)π(x | θ)π(θ)

Remarks:

I m = dim(θ) is often quite small, like m ≤ 6.

I n = dim(x) is often large, typically n = 102 – 106.



Target densities are given as high-dimensional integrals

We want to estimate:

I The marginals of all components of the latent field:

π(xi | y) =

∫ ∫
π(x,θ | y)dx−idθ

=

∫
π(xi | θ,y)π(θ | y)dθ, i = 1, . . . , n.

I The marginals of all the hyperparameters:

π(θj | y) =

∫ ∫
π(x,θ | y)dxdθ−j

=

∫
π(θ | y)dθ−j , j = 1, . . .m.
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An MCMC case-study

I Study a seemingly trivial hierarchical model
I Latent temporal Gaussian, with

I Binary observations

I Develop a “standard” MCMC-algorithm for inference
I Auxiliary variables

I (Conjugate) single-site updates

I ..and study empirically its properties.



Auxillary aims

I Give a “historical” development of the ideas in INLA

I Show how to make good proposal distributions for latent
Gaussian models

I Remind you not to make bad Gibbs samplers



Tokyo rainfall data

Stage 1 Binomial data

yi ∼

{
Binomial(2, p(xi))

Binomial(1, p(xi))



Tokyo rainfall data

Stage 2 Assume a smooth latent x,

x ∼ RW2(κ), logit(pi) = xi



Tokyo rainfall data

Stage 3 Gamma(α, β)-prior on κ



Model summary

π(x | κ) π(κ)
∏
i

π(yi | xi)

where

I x | κ is Gaussian (Markov) with dimension 366

I κ is Gamma

I yi|xi is Binomial with p(xi)



Construction of nice full conditionals

A popular approach is to introduce auxiliary variables w, so that

x | the rest

is Gaussian.



Example: Binary regression

GMRF x and Bernoulli data

yi ∼ B(g−1(xi))

g(p) = Φ(p) probit link

Equivalent representation using auxiliary variables w

εi
iid∼ N (0, 1)

wi = xi + εi

yi =

{
1 if wi > 0

0 otherwise.

for the probit-link.



Single-site Gibbs sampling

Auxiliary variables can be introduced for the logit-link1, to achieve
this sampler:

I κ ∼ Γ(·, ·)
I for each i

I xi ∼ N (·, ·)

I for each i
I wi ∼ W(·)

It is fully automatic; no tuning!!!

1Held & Holmes (2006)



Results: hyper-parameter log(κ)
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Results: latent node x10



Results: latent node x10



Results: density for latent node x10
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Discussion

Single-site sampler with auxiliary variables:

I Even long runs shows large variation

I “Long” range dependence

I Very slowly mixing

But:

I Easy to be “fooled” running shorter chains

I The variability can be underestimated.



What is causing the problem?

Two issues

1. Slow mixing within the latent field x

2. Slow mixing between the latent field x and θ.

Blocking is the “usual” approach to resolve such issues, if possible.

Note: blocking mainly helps within the block only.



Strategies for blocking

Slow mixing due to the latent field x only:

I Block x

Slow mixing due to the interaction between the latent field x and
θ:

I Block (x,θ).

In most cases: if you can do one, you can do both.



Blocking scheme I

I κ ∼ Γ(·, ·)

I x ∼ N (·, ·)

I w ∼ W(·) (conditional independent)



Results



Results

6 7 8 9 10 11

0.0
0.2

0.4
0.6

0.8

density of log(kappa)

N = 101804   Bandwidth = 0.04667

De
ns

ity



Results



Results

0.1 0.2 0.3 0.4

0
2

4
6

8

density of x[10]

N = 101804   Bandwidth = 0.003815

De
ns

ity



Blocking scheme II

I Sample
I κ′ ∼ q(κ′;κ)

I x′ | κ′,y ∼ N (·, ·)
and then accept/reject (x′, κ′) jointly

I w ∼ W(·) (conditional independent)

Remarks

I If the normalising constant for x|· is available, then this is an
EASY FIX of scheme I.

I Usually makes a huge improvement

I Automatic “reparameterisation”

I Doubles the computational costs



Results



Removing the auxiliary variables

I The auxiliary variables makes the full conditional for x
Gaussian

I If we do not use them, the full conditional for x looks like

π(x | . . .) ∝ exp

(
−1

2
xTQx+

∑
i

log(π(yi|xi))

)

≈ exp

(
−1

2
(x− µ)T (Q+ diag(c))(x− µ)

)
= πG(x| . . .)

I The Gaussian approximation is constructed by matching the
I mode, and the

I curvature at the mode.



Improved one-block scheme

I κ′ ∼ q(·;κ)

I x′ ∼ πG(x | κ′,y)

I Accept/reject (x′, κ′) jointly

Note: πG(·) is indexed by κ′, hence we need to compute one for
each value of κ′.



Results



Independence sampler

We can construct an independence sampler, using πG(·).
The Laplace-approximation for κ|x:

π(κ | y) ∝ π(κ) π(x|κ) π(y|x)

π(x|κ,y)

≈ π(κ) π(x|κ) π(y|x)

πG(x|κ,y)

∣∣∣∣∣
x=mode(κ)

Hence, we do first

I Evaluate the Laplace-approximation at some “selected” points

I Build an interpolation log-spline

I Use this parametric model as π̃(κ|y)



Independence sampler

I κ′ ∼ π̃(κ|y)

I x′ ∼ πG(x|κ′,y)

I Accept/reject (κ′,x′) jointly

Note:
Corr(x(t+ k), x(t)) ≈ (1− α)|k|

In this example, α = 0.83...



Results



Can we improve this sampler?

I Yes, if we are interested in the posterior marginals for κ and
{xi}.

I The marginals for the Gaussian proposal πG(x| . . .), are know
analytically.

I Just use numerical integration!



Deterministic inference

Posterior marginal for κ:

I Compute π̃(κ|y)

Posterior marginal for xi:

I Use numerical integration

π(xi | y) =

∫
π(xi | y, κ) π(κ | y) dκ

≈
∑
k

N (xi; µκk , σ
2(κk)) × π̃(κk | y) × ∆k



Results: Mixture of Gaussians
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Results: Improved....
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What can be learned from this exercise?

For a relative simple model, we have implemented

I single-site with auxiliary variables (looong time; hours)

I various forms for blocking (long time; many minutes)

I independence sampler (long time; many minutes)

I approximate inference (nearly instant; one second)



What can be learned from this exercise? ...

Single-site Gibbs samplers don’t work for when there’s correlation.
This is completely unsurprising!
But they still get used. Which implies

I Most probably, the results would be not correct.

I They “accept” the long running-time.

I Trouble: such MCMC-schemes is not useful for routine
analysis of similar data.



What can be learned from this exercise? ...

I In many cases, the situation is much worse in practice; this
was a very simple model.

I Single-site MCMC is still the default choice for the non-expert
user.

I Hierarchical models are popular, but they are difficult for
MCMC.

Perhaps the development of models is not in sync with the
development of inference? We cannot just wait for more powerful
computers...



The integrated nested Laplace approximation (INLA) I

Step I Explore π̃(θ|y)

I Locate the mode

I Use the Hessian to construct new variables

I Grid-search

I Can be case-specific
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The integrated nested Laplace approximation (INLA) II

Step II For each θj
I For each i, evaluate the Laplace approximation

for selected values of xi

I Build a Skew-Normal or log-spline corrected
Gaussian

N (xi; µi, σ
2
i )× exp(spline)

to represent the conditional marginal density.



The integrated nested Laplace approximation (INLA) III

Step III Sum out θj
I For each i, sum out θ

π̃(xi | y) ∝
∑
j

π̃(xi | y,θj)× π̃(θj | y)

I Build a log-spline corrected Gaussian

N (xi; µi, σ
2
i )× exp(spline)

to represent π̃(xi | y).



Computing posterior marginals for θj (I)

Main idea

I Use the integration-points and build an interpolant

I Use numerical integration on that interpolant



Computing posterior marginals for θj (II)

Practical approach (high accuracy)

I Rerun using a fine integration grid

I Possibly with no rotation

I Just sum up at grid points, then interpolate



Computing posterior marginals for θj (II)

Practical approach (lower accuracy)

I Use the Gaussian approximation at the mode θ∗

I ...BUT, adjust the standard deviation in each direction

I Then use numerical integration
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How can we assess the error in the approximations?

Tool 1: Compare a sequence of improved approximations

1. Gaussian approximation

2. Simplified Laplace

3. Laplace



How can we assess the error in the approximations?

Tool 3: Estimate the “effective” number of parameters as defined
in the Deviance Information Criteria:

pD(θ) = D(x;θ)−D(x;θ)

and compare this with the number of observations.

Low ratio is good.

This criteria has theoretical justification.



Important observation

If y|x,θ is Gaussian, the
“approximation” is exact.
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Anyone can use INLA!



Getting started with R-INLA

I Only once:

> source("http://www.math.ntnu.no/inla/givemeINLA.R")

I Load package and upgrade:

> library(INLA)

> inla.upgrade(testing = TRUE)

I Help and examples at www.r-inla.org

http://www.r-inla.org


Basic structure to run a model

I Define the formula, specifying non-linear functions using f(.),
including the latent model and priors for hyperparameters:

> formula = y ~ 1 + z

+ f(c, model = "...",

hyper = list(theta =

list(prior = "...", param = ...)))

I Call inla(.), where you specify the relevant likelihood

> inla(formula, data=data.frame(...), family = "...")



Implemented models

Different likelihoods, latent models and (hyper)priors:

> names(inla.models()$likelihood)

> names(inla.models()$latent)

> names(inla.models()$prior)

Documentation (not complete):

> inla.doc("....")



Example: Logistic regression, 2× 2 factorial design

Example (Seeds)

Consider the proportion of seeds that germinates on each of 21
plates. We have two seed types (x1) and two root extracts (x2).

> data(Seeds)

> head(Seeds)

r n x1 x2 plate

1 10 39 0 0 1

2 23 62 0 0 2

3 23 81 0 0 3

4 26 51 0 0 4

5 17 39 0 0 5

6 5 6 0 1 6



Summary data set

Number of seeds that germinated in each group:

Seed types
x1 = 0 x1 = 1

Root extract
x2 = 0 99/272 49/123

x2 = 1 201/295 75/141



Statistical model

I Assume that the number of seeds that germinate on plate i is
binomial

ri ∼ Binomial(ni, pi), i = 1, . . . , 21,

I Logistic regression model:

logit(pi) = log

(
pi

1− pi

)
= α+ β1x1i + β2x2i + β3x1ix2i + εi

where εi ∼ N(0, σ2ε ) are iid.

Aim:

Estimate the main effects, β1 and β2 and a possible interaction
effect β3.
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Using R-INLA

> formula = r ~ x1 + x2 + x1*x2 + f(plate, model="iid")

> result = inla(formula, data = Seeds,

family = "binomial",

Ntrials = n,

control.predictor =

list(compute = T, link=1),

control.compute = list(dic = T))

Default priors

Default prior for fixed effects is

β ∼ N(0, 1000).

Change using the control.fixed argument in the inla-call.



Output

> summary(result)

Call:

"inla(formula = formula, family = \"binomial\", data = Seeds, Ntrials = n)"

Time used:

Pre-processing Running inla Post-processing Total

0.1354 0.0911 0.0347 0.2613

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant kld

(Intercept) -0.5581 0.1261 -0.8076 -0.5573 -0.3130 0e+00

x1 0.1461 0.2233 -0.2933 0.1467 0.5823 0e+00

x2 1.3206 0.1776 0.9748 1.3197 1.6716 1e-04

x1:x2 -0.7793 0.3066 -1.3799 -0.7796 -0.1774 0e+00

Random effects:

Name Model

plate IID model

Model hyperparameters:

mean sd 0.025quant 0.5quant 0.975quant

Precision for plate 18413.03 18280.63 1217.90 13003.76 66486.29

Expected number of effective parameters(std dev): 4.014(0.0114)

Number of equivalent replicates : 5.231

Marginal Likelihood: -72.07



Estimated germination probabilities

> result$summary.fitted.values$mean
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More in the practicals . . .

> plot(result)

> result$summary.fixed

> result$summary.random

> result$summay.linear.predictor

> result$summay.fitted.values

> result$marginals.fixed

> result$marginals.hyperpar

> result$marginals.linear.predictor

> result$marginals.fitted.values



Example: Semiparametric regression

Example (Annual global temperature anomalies)
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Estimating a smooth non-linear trend

I Assume the model

yi = α+ f(xi) + εi, i = 1, . . . , n,

where the errors are iid, εi ∼ N(0, σ2ε ).

I Want to estimate the true underlying curve f(·).



R-code

I Define formula and run model

> formula = y ~ f(x, model = "rw2", hyper = ...)

> result = inla(formula, data = data.frame(y, x))

I The default prior for the hyperparameter of rw2:

hyper = list(prec =

list(prior = "loggamma",

param = c(1, 0.00005)))

http://www.math.ntnu.no/inla/r-inla.org/doc/latent/rw2.pdf


Output

I > summary(result)

> plot(result)

I The mean effect of x:

> result$summary.random$x$mean

Note that this effect is constrained to sum to 0.

I Resulting fitted curve

> result$summary.fitted.values$mean



Estimated fit using the default prior

Example (Annual global temperature anomalies)
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Estimated fit using R-INLA compared with smooth.spline

Example (Annual global temperature anomalies)
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Using different priors for the precision

Example (Annual global temperature anomalies)
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Default prior choices in R-INLA is about to change

The smoothness of the estimated curve is tuned by the prior for
the precision of the rw2 model.

New way to construct priors - More later!

I Penalised complexity priors!

I Smoothness is tuned in terms of an intuitive scaling
parameter.

http://www.math.ntnu.no/inla/r-inla.org/doc/latent/rw2.pdf
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R-INLA

Summary



Summary

I INLA is used to analyse a broad class of statistical models,
named latent Gaussian models.

I Unified computational framework with three levels:

- Likelihood for the observations.

- Latent field, model dependency structures.

- Hyperparameters, tune smoothness.

I Efficient and accurate. Easily available using R-INLA.
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