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Outline

Many national surveys employ stratified cluster sampling, also known
as multistage sampling, so that’s where we’d like to get to.

In this lecture we will discuss:
I Simple Random Sampling (SRS).
I Stratified SRS.
I Cluster sampling.
I Multistage sampling.
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Main texts

I Lohr, S.L. (2010). Sampling Design and Analysis, Second
Edition. Brooks/Cole Cengage Learning. Very well-written and
clear mix of theory and practice.

I Lumley, T. (2010). Complex Surveys: A Guide to Analysis Using
R, Wiley. Written around the R survey package. Great if you
already know a lot about survey sampling.

I Korn, E.L. and Graubard, B.I. (1999). Analysis of Health
Surveys. Wiley. Well written but not as comprehensive as Lohr.

I Särndal, Swensson and Wretman (1992). Model Assisted
Survey Sampling. Springer. Excellent on the theory though steep
learning curve and hard to dip into if not familiar with the
notation. Also, anti- model-based approaches.
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The problem

We have a question concerning variables in a well-defined finite
population (e.g., 18+ population in Washington State).

What is required of a sample plan?

We want:
I Accurate answer to the question (estimate).
I Good estimate of the uncertainty of the estimate (e.g., variance).
I Reasonable cost for the study (logistics).

We may be interested in this particular finite population only, or in
generalizing to other populations/situations, i.e., the process.

If the former, then if we sample the complete population, we are
done! No statistics needed...
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The problem

A simple random sample (SRS) is almost always better than a
non-random sample, because the former allows more allows an
assessment of uncertainty.

We will focus on design-based inference: in this approach the
population values of the variable of interest, y1, . . . , yN are viewed as
fixed, what is random is the indices of the individuals who are
sampled.

This approach is frequentist, so that properties are based on
hypothetical replications of the data collection process; hence, we
require a formal description of the replication process.

A complex random sample may be:
I better than a SRS in the sense of obtaining the same precision at

lower cost,
I but may be worse in the sense of precision, but be required

logistically.
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Domains

Often estimation is required for sub-populations of interests, these
are known as domains.

Often the decision to study the domain occurs after the design, and
so the sample sizes in the domains are random, and may be small.

If the domains are defined geographically, then inference for these
domains is known as small area estimation (SAE).

Domains may also be defined as socio-demographic groups and
trying to obtain sufficient samples in some domains (e.g., based on
race), may lead to small sample sizes in others (e.g., states).
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Probability samples

Notation for random sampling, in a single population (and not
distinguishing areas):

I N, population size.
I n sample size.
I πk , sampling probability for a unit (which will often correspond to

a person) k , k = 1, . . . ,N.

Random does not mean “equal chance”, but means that the choice
does not depend on variables/characteristics (either measured or
unmeasured), except as explicitly stated1 via known sampling
probabilities.

In a simple random sample, the sampling probabilities are all equal,

πk =
n
N
.

1For example, in stratified random sampling, certain groups may have fixed
numbers sampled.
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Probability samples

For design-based inference, which we shall discuss in detail:
I To obtain an unbiased estimator every individual k in the

population to have a non-zero probability of being sampled; this
probability will be defined as πk , for k = 1, . . . ,N.

I To carry out inference, this probability πk must be known for
every individual in the sample (so not needed for the unsampled
individuals).

I To obtain a form for the variance of an estimator: for every pair of
individuals, k and l , in the sample, there must a non-zero
probability of being sampled together, call this probability, πkl , for
k = 1, . . . ,N, l = 1, . . . ,N, k 6= l .

I The probability πkl must be known for every pair in the sample2.

Lower case values will denote population values, y1, . . . , yN .

2in practice, these are often approximated, or the variance is calculated via a
resampling technique such as the jackknife
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Probability samples

The label probability sample is often used instead of random sample.

Non-probability sampling approaches include
I convenience (accidental, haphazard) sampling (e.g., asking for

volunteers);
I purposive (also known as judgmental) sampling in which a

researcher users their subject knowledge to select participants
(e.g, selecting an “average” looking individual).

I Quota sampling in which quotas in different groups are satisfied
(but unlike stratified sampling, probability sampling is not carried
out).

Non-probability samples cannot be analyzed with design-based
approaches, because there is no πk or πkl .
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Representative samples

Surveys are broadly of two types: questionnaire and interview.

A fundamental concept in sampling is whether the sample is
representative.

There is no perfect, “scaled down” version of the population for whom
we would like to make inference is available. Lohr (2010, p. 3) says,

“...a good sample will be representative in the sense that
characteristics of interest in the population can be estimated from the
sample with a known degree of accuracy”.

Post-stratification and raking are techniques for making a sample
more representative.
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When does having a representative sample matter?

Inference for population quantities such as means, totals, medians,
etc., are not reliable except with random samples.

Estimation of relationships between variables, for example, whether a
diet high in salt increases blood pressure, can often be estimated
from non-random samples, with careful modeling — called
model-based analysis.
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Definitions: Based on Lohr (2010, Section 1.2).

Definitions to allow the idea of a good sample to be make precise:
I Observation unit: An object on which a measurement is taken,

sometimes called an element. In human populations,
observation units are individuals.

I Target population: The complete collection of observations we
want to study.

I Sample: A subset of a population.
I Sampled population: The collection of all possible observation

units that might have been chosen in a sample; the population
from which the sample was chosen. The sampled population will
often not correspond to the target population; it may be a more
accessible version for example.

14 / 119



Definitions

I Sampling unit: A unit that can be selected for a sample. Although
we might want to study individuals, we may not have a list of
individuals in the target population. For example, households
may serve as the sampling units, with the individuals in the
household being the observation units.

I Sampling frame: A list, map or other specification of sampling
units in the population from which a sample may be selected.
i.e.. it allows access to the sampling units. For a multistage
survey, a sampling frame should exist for each stage of sampling.

Examples:
I In BRFSS, the sampling frame is a list of telephone numbers

(actually 2 lists, landline and cell).
I for the DHS, the sampling frame is often derived from the census

and corresponds to a list of enumeration areas (EAs); within each
EA, there should be a list of households;

I In NHANES the sampling frame is counties.
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Selection bias

I Selection bias occurs when some population units are sampled
at a different rate than intended by the investigator.

I Undercoverage can lead to selection bias, e.g., BRFSS is a
telephone survey; started in 1984 at which time many
households did not have landline telephones, and so such
people are not a random sample of the target population (over 18
years of age).

I Overcoverage includes population units in the sampling frame
that are not in the target population, e.g., desire over-18 year
olds by phone, but younger individuals are included.

I Multiplicity in lists, e.g., households with more than one phone
have a greater probability of being selected.

I Non-response frequently leads to selection bias since
non-responders often differ from responders. It is better to have
a small survey with a high response rate, than a large survey
with a low response rate.

I Surveys in which the participants volunteer (e.g., internet polls)
are fraught with selection bias.
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Common sampling designs

I Simple random sampling: Select each individual with probability
πk = n/N.

I Stratified random sampling: Use information on each individual
in the population to define strata h, and then sample nh units
independently within each stratum.

I Probability-proportional-to-size sampling: Given a variable
related to the size of the sampling unit, Zk , on each unit in the
population, sample with probabilities πk ∝ Zk .

I Cluster sampling: All units in the population are aggregated into
larger units called clusters, known as primary sampling units
(PSUs), and clusters are sampled initially, with units within
clusters then being sampled.

I Multistage sampling: Stratified cluster sampling, with multiple
levels of clustering.
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Measurement error

Measurement error reflects inaccurate responses.

Multitude of reasons; people:
I lie,
I do not understand the question,
I forget,
I respond how they think the interviewer would like them to

respond.

Interviewers may “cheat”.
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Nonsampling and sampling errors

Selection bias and measurement error are examples of nonsampling
errors.

Sampling ‘errors’ occur because we take a sample and not the
complete population of individuals; each potential sample we can
take will give a particular answer, and the sample to sample variability
can be expressed in probabilistic terms.

19 / 119



Design-Based Inference
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Overview of approaches to inference

In general, data from survey samples may be analyzed using:
1. Design-based inference.
2. Model-based inference.
3. Model-assisted inference.

We focus on 1. and 2.
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Inference
Suppose we are interested in a variable denoted y , with the
population values being y1, . . . , yN .

Random variables will be represented by upper case letters, and
constants by lower case letters.

Finite population view: We have a population of size N and we are
interested in characteristics of this population, for example, the mean

yU =
1
N

N∑
k=1

yk .

Infinite population view: The population variables are drawn from a
hypothetical distribution (the model) f (·) with mean µ.

In the latter (model-based) view, Y1, . . . ,YN are random variables and
properties are defined with respect to f (·); often we say Yk are
independent and identically distributed (iid) from f (·).
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Model-based inference

As an example, we take the sample mean:

Y =
1
n

n∑
k=1

Yk

is a random variable because Y1, . . . ,Yn are each random variables.

Assume Yk are iid observations from a distribution (f ) with mean µ
and variance σ2.

The sample mean is an ubiased estimator, and has variance σ2/n.
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Model-based inference

Unbiased estimator:

E[Y ] = E

[
1
n

n∑
k=1

Yk

]
=

1
n

n∑
k=1

E [Yk ]︸ ︷︷ ︸
=µ

=
1
n

n∑
k=1

µ = µ

Variance:

var(Y ) = var

(
1
n

n∑
k=1

Yk

)
=︸︷︷︸
iid

1
n2

n∑
k=1

var (Yk )︸ ︷︷ ︸
=σ2

=
1
n2

n∑
k=1

σ2 =
σ2

n
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Design-based inference
In the design-based approach to inference the y values are treated as
unknown but fixed3 (so we write y1, . . . , yN ), and the randomness,
with respect to which all procedures are assessed, is associated with
the particular sample of individuals that is selected, call the random
set of indices S.

Minimal reliance on distributional assumptions.

Sometimes referred to as inference under the randomization
distribution.

In general, the procedure for selecting the sample is under the control
of the researcher.

The basic estimator is the weighted form (Horvitz and Thompson,
1952; Hájek, 1971)

Ŷ U =

∑
k∈S wk yk∑

k∈S wk
.

3To emphasize: the y ’s are not viewed as random variables
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Simple Random Sampling
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Simple random sample (SRS)

The simplest probability sampling technique is simple random s
without replacement, or srswor.

Suppose we wish to estimate the population mean in a particular
population of size N.

In everyday language: consider a population of size N; a random
sample of size n ≤ N means that any subset of n people from the
total number N is equally likely to be selected.

This is known as simple random sampling.
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Simple random sample (SRS)
We sample n people from N, choosing each person independently at
random and with the same probability of being chosen:

πk =
n
N
,

k = 1, . . . ,N.

Note: sampling without replacement and the joint sampling
probabilities are

πkl =
n
N
× n − 1

N − 1
for k , l = 1, . . . ,N, k 6= l .

In this situation:
I The sample mean is an unbiased estimator.
I The uncertainty, i.e. the variance in the estimator can be easily

estimated.
I Unless n is quite close to N, the uncertainty does not depend on

N, only on n (see later for numerical examples).
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Design-based inference
Example: N = 4,n = 2 with SRS. There are 6 possibilities:

{y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, {y2, y4}, {y3, y4}.

The random variable describing this design is S, the set of indices of
those selected.

The sample space of S is

{(1,2), (1,3), (1,4), , (2,3), (2,4), (3,4)},

and under SRS, the probability of sampling one of these possibilities
is 1/6.

The selection probabilities are
πk = Pr( individual i in sample ) = 3

6 = 1
2 , which of course is n

N .

In general, we can work out the selection probabilities without
enumerating all the possibilities!
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Design-based inference

Fundamental idea behind design-based inference: An individual with
a sampling probability of πk can be thought of as representing 1/πk
individuals in the population.

Example: in SRS each person selected represents N
n people.

The value wk = 1/πk is called the sampling (or design) weight.
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Estimator of yU and properties under SRS

The weighted estimator is

Ŷ U =

∑
k∈S wk yk∑

k∈S wk

=

∑
k∈S

N
n yk∑

k∈S
N
n

=

∑
k∈S yk

n
= yS,

the sample mean.

This is an unbiased estimator (i.e., E[Ŷ U ] = Y U ), where we average
over all possible samples we could have drawn, i.e., S.
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Estimator of yU and properties under SRS
Variance is

var(yS) =
(

1− n
N

) S2

n
, (1)

where,

S2 =
1

N − 1

N∑
k=1

(yk − yU)
2.

Contrast this with the model-based variance which is σ2/n.

The factor
1− n

N
is the finite population correction (fpc).

Because we are estimating a finite population mean, the greater the
sample size relative to the population size, the more information we
have (relatively speaking), and so the smaller the variance.

In the limit, if n = N we have no uncertainty, because we know the
population mean!
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Estimator of yU and properties under SRS

The variance of the estimator depends on the population variance S2,
which is usually unknown, so instead we estimate the variance using
the unbiased estimator:

s2 =
1

n − 1

∑
k∈S

(yk − yS)
2.

Substitution into (1) gives an unbiased estimator of the variance:

v̂ar(yS) =
(

1− n
N

) s2

n
. (2)

The standard error is

SE(yS) =

√(
1− n

N

) s2

n
.

Note: S2 is not a random variable but s2 is.

33 / 119



Estimator of yU and properties under SRS

If n, N and N − n are “sufficiently large”4, a 100(1− α)% confidence
interval for yU is[

yS − zα/2

√
1− n

N
s√
n
, yS + zα/2

√
1− n

N
s√
n

]
, (3)

where zα/2 is the (1− α/2)th percentile of a standard normal random
variable.

The interval in (3) is random (across samples) because yS and s2

(the estimate of the variance) are random.

In practice therefore, if n� N, we obtain the same confidence
interval whether we take a design- or a model-based approach to
inference (though the interpretation is different).

4so that the normal distribution provides a good approximation to the sampling
distribution of the estimator
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Weighted estimator of yU

Recall that the sampling weights are wk = 1/πk where πk is the
inclusion probability, which for SRS is πk = n/N.

Hence, we can think of each sampled individual as representing N/n
individuals.

Sometimes the population size may be unknown and the sum of the
weights provides an unbiased estimator.

In general, examination of the sum of the weights can be useful as if it
far from the population size (if known) then it can be indicative of a
problem with the calculation of the weights.
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Weighted estimator of yU

The weighted sum of the sampled y ’s is the estimator of the total:∑
k∈S

wk yk =
∑
k∈S

N
n

yk = t̂

A weighted estimator of this form as known as a Horvitz-Thompson
estimator (Horvitz and Thompson, 1952).

For SRS: ∑
k∈S

wk =
∑
k∈S

N
n

= N

so the sum of the weights is exactly the population total.

This is true for more general sampling schemes, and is useful if the
population total is unknown (and is also often used if the population
total is known).
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Weighted estimator of yU

Hence, the mean estimator can be written as∑
k∈S wk yk∑

k∈S wk
=

t̂
N

= yS.

This form will reappear many times, for more general weighting
schemes.

Dividing by the estimated population total is known as the Hájek
estimator (Hájek, 1971).
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Stratified Simple Random Sampling
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Stratified simple random sampling

Simple random samples are rarely taken in surveys because they are
logistically difficult and there are more efficient designs for gaining the
same precision at lower cost.

Stratified random sampling is one way of increasing precision and
involves dividing the population into groups called strata and drawing
probability samples from within each one, with sampling from different
strata being independent.

The stratified simple random sampling without replacement design is
sufficiently popular to merit a ridiculous acronym, stsrswor.

An important practical consideration of whether stratified sampling
can be carried out is whether stratum membership is known (for
whatever variable is defining the strata) for every individual in the
population.

39 / 119



Reasons for stratified random sampling

I Protection from the possibility of a “really bad sample”, i.e., very
few or zero samples in certain stratum giving an
unrepresentative sample.

I Obtain known precision required for subgroups (domains) of the
population.

I Convenience of administration since sampling frames can be
constructed differently in different strata. The different stratum
may contain units that differ greatly in practical aspects of
response, measurement, and auxiliary information, and so being
able to treat each stratum individually in terms of design and
estimation, may be beneficial.
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Reasons for stratified random sampling

I More precise estimates can be obtained if stratum can be found
that are associated with the response of interest, for example,
age and gender in studies of human disease.

I The most natural form of sampling may be based on
geographical regions, and treating each region as a separate
stratum is then suggested.

I Due to the independent sampling in different stratum, variance
estimation straightforward (so long as within-stratum sampling
variance estimators are available).

See Lohr (2010, Section 3.1) for further discussion.
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Example: NMIHS

Korn and Graubard (1999) discuss the National Maternal and Infant
Health Survey (NMIHS) which collected information on live births,
fetal deaths and infant deaths that occurred in 1998 in the United
States (excluding Montana and South Dakota).

Six strata were used, as the cross of race (black/non-black) and
birthweight of the baby as reported on the birth certificate (<1500,
1500–2499, ≥2500 grams).

These strata include groups at risk for adverse pregnancy outcomes
and so they were oversampled in the NMIHS to increase the reliability
of estimates for these subdomains.
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Example: Washington State

According to

http://quickfacts.census.gov/qfd/states/53000.html

there were 2,629,126 households in WA in 2009–2013.

Consider a simple random sample of 2000 households, so that each
household has a

2000
2629126

= 0.00076,

chance of selection.

Suppose we wish to estimate characteristics of household in all 39
counties of WA.
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Example: Washington State
King and Garfield counties had 802,606 and 970 households so that
under SRS we will have, on average, about 610 households sampled
from King County and about 0.74 from Garfield county.

The probability of having no-one from Garfield County is about 22%,
(binomial experiment) and the probability of having more than one is
about 45%.

If we took exactly 610 from King and 1 (rounding up) from Garfield we
have an example of proportional allocation (but see later for problems
with samples of size 1).

Stratified sampling allows control of the number of samples in each
county.
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Notation

Stratum levels are denoted h = 1, . . . ,H, so H is total.

Let N1, . . . ,NH be the known population totals in the stratum with

N1 + · · ·+ NH = N,

where N is the total size of the population.

In stratified random sampling, the simplest from of stratified sampling,
we take a SRS from each stratum with nh samples being randomly
taken from stratum h, so that the total sample size is

n1 + · · ·+ nH = n.
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Notation

Population quantities:
I yhk value of k th unit in stratum h, h = 1, . . . ,H, k = 1, . . . ,Nh.
I th =

∑Nh
k=1 yhk = population total in stratum h.

I t =
∑H

h=1 th = population total.

I yhU = 1
Nh

∑Nh
k=1 yhk = population mean in stratum h.

I yU = 1
N

∑H
h=1

∑Nh
k=1 yhk = 1

N

∑H
h=1 NhyhU = population mean.

I S2
h = 1

Nh−1

∑Nh
k=1(yhk − yhU)

2 = population variance in stratum h.
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Estimators

We can view stratified random sampling as carrying out SRS in each
of the H stratum; we let Sh represent the probability sample in
stratum h.

We also let S refer to the overall probability sample.

Confusing notation: Sh is both the standard deviation and the random
probability sample, in strata h but hopefully clear which we are
referring to by the context.
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Estimators

Sample estimators:
I Stratum h mean (the S in the subscript emphasizes that this is a

random variable with respect to the random sample):

yhS =

∑
k∈Sh

yhk

nh
.

I Stratum h total:

t̂h = NhyhS =
Nh

nh

∑
k∈Sh

yhk .

Note that the nh are not random because the survey is defined with a
fixed nh in mind.
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Estimators

Sample estimators:
I Population total:

t̂strat =
H∑

h=1

t̂h =
H∑

h=1

NhyhS. (4)

I Population mean:

y strat =
t̂strat

N
=

H∑
h=1

Nh

N
yhS. (5)

I Stratum variance:

s2
h =

1
nh − 1

∑
k∈sh

(yhk − yhS)
2.
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Estimators

It is straigtforward to show that (4) and (5) are unbiased estimators,
since we have linear combinations of SRS estimators.

Since we are sampling independently from each stratum using SRS,
the variance of the mean and total estimators is simply the sum of the
variances within each stratum:

var(̂tstrat) =
H∑

h=1

var(̂th) =
H∑

h=1

(
1− nh

Nh

)
N2

h
s2

h
nh

(6)

var(y strat) =
var(̂tstrat)

N2 =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2 s2
h

nh
(7)
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Example: 1988 NMIHS

Table 1: Mother’s age, as reported on birth certificate, and other statistics, by
stratum (race and birthweight, in grams), from 1988 NMIHS. Data reproduced
from Korn and Graubard (1999, Table 2.2-1).

Estimated Sample Sampling Mean Standard
Population Size Fraction Age Deviation

Stratum h Size (Nh) (nh) (nh/Nh) (yhs) Age (sh)
1. Black, <1500 18,130 1295 1/14 24.64 5.84
2. Black, 1500–2499 65,670 1194 1/55 24.42 5.76
3. Black, ≥2500 559,124 4948 1/113 24.41 5.68
4. Non-Black, <1500 27,550 950 1/29 26.44 5.88
5. Non-Black, 1500–2499 150,080 938 1/160 26.11 5.85
6. Non-Black, ≥2500 2,944,800 4090 1/720 26.70 5.45
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Example: 1988 NMIHS

The target population is live births in the United States in 1988 from
mothers who were 15 years or older.

Using (4) we can estimate the mean as

y strat =
H∑

h=1

Nh

N
yhS

=
1

3765354
(18130× 24.64 + · · ·+ 2944800× 26.70)

= 26.28 years.

Notice that the mean is far closer to the non-black summaries, since
the oversampling of black mothers is accounted for.
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Example: 1988 NMIHS

The variance is estimated, from (7), as

v̂ar(y strat) =
1

(3765354)2

[
(18130)2

(
1− 1

14

)
(5.84)2

1295
+ · · ·

+ (2944800)2
(

1− 1
720

)
(5.45)2

4090

]
= 0.004647.

A 95% confidence interval for the average age (in years) of mothers
(15 years or older) of live births in the United States is

26.28± 1.96×
√

0.004647 = (26.15,26.41).
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Defining strata

Since we almost always gain in precision over SRS, why not always
use stratification?

A very good reason is that we need the stratification variable to be
available on all of the population.

Taking a stratified sample adds to complexity.

Stratification is best when the stratum means differ greatly; ideally we
would stratify on the basis of y , but of course these are unknown in
the population (that’s the point of the survey!).

Stratification should aim to produce strata within which the outcomes
of interest have low variance.
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Cluster Sampling
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References on cluster sampling

Lumley (2010, Chapter 3): not very extensive but describes the use of
the survey package.

Lohr (2010, Chapters 5 and 6): very good description.

Särndal et al. (1992, Chapter 4): concentrates on the estimation side.

Korn and Graubard (1999, Section 2.3): a brief overview.
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Motivation

Cluster sampling is an extremely common design that is often used
for government surveys.

Two main reasons for the use of cluster sampling:
I A sampling frame for the population of interest does not exist,

i.e., no list of population units.
I The population units have a large geographical spread and so

direct sampling is not logistically feasible to implement. It is far
more cost effective (in terms of travel costs, etc.) to cluster
sample.
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Motivation

The clusters can be:
I Genuine features of the populations, e.g., households, schools,

or workplaces.
I Subsets chosen for convenience, e.g., counties, zipcodes,

telephone number blocks.
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Terminology
In single-stage cluster sampling or one-stage cluster sampling, the
population is grouped into subpopulations (as with stratified
sampling) and a probability sample of these clusters is taken, and
every unit within the selected clusters is surveyed.

In one-stage cluster sampling either all or none of the elements that
compose a cluster (PSU) are in the sample.

The subpopulations are known as clusters or primary sampling units
(PSUs).

In two-stage cluster sampling, rather than sample all units within a
PSU, a further cluster sample is taken; the possible groups to select
within clusters are known as secondary sampling units (SSUs).

For example, if we take a SRS within each PSU sampled, we have a
two-stage cluster sampling design.

This can clearly be extended to multistage cluster sampling.
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Motivation: NHANES

Figure 1: Cartoon of sample design in NHANES I; a multistage stratified
clustered sample of civilian, non-institutionalized population.
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Motivation: NHANES

In NHANES, participants had an interview, clinical examination and
blood samples were taken and needed to be stored, and this carried
out mobile examination trailers.

27,000 individuals were sampled over 4 years and not practical to
move the trailers to thousands of locations.

Figure 2 shows what a SRS of 10,000 looks like; the sampled
individuals live in 1184 counties.

In NHANES III the design used involved sampling 81 PSUs locations
(clusters) with a plan to recruit multiple participants in each cluster.
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Motvation: NHANES

Figure 2: A SRS of 10,000 voter locations from the USA with circles at the
county centroids and areas proportional to the number sampled. Los Angeles
County contains the largest sample of 257.
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Differences between cluster sampling and stratified
random sampling

Stratified Random Sampling One-Stage Cluster Sampling
SRS is taken from every stratum Observe all elements only within the

sampled clusters
Variance of estimate of yU Cluster is sampling unit and the more
depends on within strata variability clusters sampled the smaller the variance.

The variance depends primarily on
between cluster means

For greatest precision, low within- For greatest precision, high within-cluster
strata variability but large variability and similar cluster means.
between-strata variability
Precision generally better than SRS Precision generally worse than SRS
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Heterogeneity

The reason that cluster sampling loses efficiency over SRS is that
within clusters we only gain partial information from additional
sampling within the same cluster, since within clusters two individuals
tend to be more similar than two individuals within different clusters.

The similarity of elements within clusters is due to unobserved (or
unmodeled) variables.
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Estimation: Unbiased estimation for one-stage cluster
sampling

There are two ways we might estimate totals and means: via an
unbiased estimator, or using ratio estimation; we briefly describe the
former.

We suppose that a SRS of n PSUs is taken.

The key idea is to realize that since all SSUs in the selected clusters
are observed, we can use results directly from SRS.

Reminder, for SRS:

t̂ =
N
n

∑
k∈S

yk

var(̂t) = N2
(

1− n
N

) S2

n

v̂ar(̂t) = N2
(

1− n
N

) s2

n
.
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Estimation: Unbiased estimation for one-stage cluster
sampling

To use the above results in the one-stage cluster sampling context,
replace yk by ti , the total in cluster i .

Then using the results for an SRS of n from N we have, for one-stage
sampling:

t̂unb =
N
n

∑
i∈S

ti (8)

var(̂tunb) = N2
(

1− n
N

) S2
t

n
(9)

v̂ar(̂tunb) = N2
(

1− n
N

) s2
t

n
, (10)

where S2
t is the variance of the PSU totals and s2

t is the estimate of
this variance (see Technical Appendix for more on notation).
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Estimation: Unbiased estimation for one-stage cluster
sampling

The probability of sampling a PSU is n/N, and since all the SSUs are
sampled in each selected PSU we have selection probabilities and
design weights

πik = Pr( SSU k in cluster i is selected ) =
n
N

wik = Design weight for SSU k in cluster i =
N
n
.

Hence, we can write (8)

t̂unb =
∑
i∈S

∑
k∈Si

wik yik

since ti =
∑

k∈Si
yik .
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Estimation: Unbiased estimation for one-stage cluster
sampling

We now turn our attention to estimation of the population mean yU .

Let M0 =
∑N

i=1 Mi be the total number of secondary sampling units
(SSUs) (i.e., elements in the population) so that

yU =
1

M0

N∑
i=1

Mi∑
k=1

yik

=
1

M0

N∑
i=1

ti =
t

M0

Then,

ŷ unb =
t̂unb

M0

v̂ar(ŷ unb) =
1

M2
0

v̂ar(̂tunb) =
N2

M2
0

(
1− n

N

) s2
t

n
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Two-stage cluster sampling with equal-probability
sampling

It may be wasteful to measure all SSUs in the selected PSUs, since
the units may be very similar and so there are diminishing returns on
the amount of information we obtain.

Here, we discuss the equal-probability two stage cluster design:
1. Select an SRS S of n PSUs from the population of N PSUs.
2. Select an SRS of mi SSUs from each selected PSU, the

probability sample collected will be denoted Si .
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Estimation for two-stage cluster sampling

Since we do not observe all the SSUs in the sampled PSUs we
estimate

t̂i =
∑
k∈Si

Mi

mi
yik = Miy i ,

to give the unbiased estimator of the population total:

t̂unb =
N
n

∑
i∈S

t̂i =
N
n

∑
i∈S

Miy i =
∑
i∈S

∑
k∈Si

N
n

Mi

mi
yik . (11)
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Estimation for two-stage cluster sampling using
weights

The inclusion probabilities are:

Pr( k th SSU in i th PSU selected ) = Pr( i th PSU selected )

× Pr( k th SSU | i th PSU selected )

=
n
N
× mi

Mi

Hence, the weights are

wik = π−1
ik =

N
n
× Mi

mi
.

The unbiased estimator (11) may then be written as

t̂unb =
∑
i∈S

∑
k∈Si

wik yik .

Variance calculation is not trivial, and requires more than knowledge
of the weights.
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Variance estimation for two-stage cluster sampling

With respect to (11), in contrast to one-stage cluster sampling we
have to acknowledge the uncertainty in both stages of sampling; in
one-stage cluster sampling the ti are known in the sampled PSUs,
whereas in two stage sampling we have estimates t̂i .

In Lohr (2010, Chapter 6) it is shown that

var(̂tunb) = N2
(

1− n
N

) S2
t

n︸ ︷︷ ︸
one-stage cluster variance

+
N
n

N∑
i=1

(
1− mi

Mi

)
M2

i
S2

i
mi︸ ︷︷ ︸

two-stage cluster variance
(12)

where
I S2

t is the population variance of the cluster totals,
I S2

i is the population variance within the i th PSU.
If all SSUs are included in the sampled PSU, i.e. mi = Mi , we return
to one-stage cluster sampling as the second term in (12) is zero.
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Variance estimation for two-stage cluster sampling

Again from Lohr (2010, Chapter 6), an unbiased variance estimate is

v̂ar(̂tunb) = N2
(

1− n
N

) s2
t

n
+

N
n

∑
i∈S

(
1− mi

Mi

)
M2

i
s2

i
mi

(13)

where

I s2
t = 1

n−1

∑
i∈S

(̂
ti − t̂unb

N

)2
is the sample variance of the

estimated PSU totals,
I s2

i = 1
mi−1

∑
k∈Si

(yik − y i)
2 is the sample variance of the sampled

SSUs within the i th PSU.
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Variance estimation for two-stage cluster sampling

If N is large, the first term in (13) dominates, and often software uses
this term only, even omitting the fpc to give the with replacement
estimator

v̂arwr(̂tunb) = N2 s2
t

n
.

As in one-stage cluster sampling with unequal cluster sizes,

s2
t =

1
n − 1

∑
i∈S

(
t̂i −

t̂unb

N

)2

=
1

n − 1

∑
i∈S

M2
i

(
ty i −

t̂unb

MiN

)2

can be very large since it is affected by both variation in the unit sizes
(the Mi ) and by variations in the y i .

If the cluster sizes are variable the variance can be large even if the
cluster means y i are relatively constant.
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Estimation of the mean for two-stage cluster sampling

If total number of units, M0, is known we can estimate the population
mean by

ŷ unb =
t̂unb

M0
,

with variance

v̂ar(ŷ unb) =
v̂ar(̂tunb)

M2
0
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Multistage Sampling
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Multistage Sampling in the DHS

A common design in national surveys is multistage sampling, in which
cluster sampling is carried out within strata.

We will not go into inference for this design, but basically weighted
estimates are readily available, and accompanying variance
estimates can be calculated.

DHS Program: Typically, 2-stage stratified cluster sampling:
I Strata are urban/rural and region.
I Enumeration Areas (EAs) sampled within strata (PSUs).
I Households within EAs (SSUs).

Information is collected on population, health, HIV and nutrition; more
than 300 surveys carried out in over 90 countries, beginning in 1984.
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Discussion

78 / 119



Discussion

The majority of survey sampling texts are based on design-based
inference, which is a different paradigm to model-based inference!

However, for the major designs (SRS, stratified SRS, cluster
sampling, multistage sampling), weighted estimates and their
variances are available within all the major statistical packages.

What is required in the data are the weights, and the design
information for each individuals, for example, the strata and cluster
membership.

We will exclusively use the survey package in R.

When the variance is large, we would like to use Bayesian methods to
smooth, but where’s the likelihood?
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Technical Appendix: Simple Random
Sampling
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Statistical details on SRS

Let y1, . . . , yN be the population values of a variable of interest and
suppose we carry out SRS without replacement (in practice N may
not always be known). Example: N = 1000,n = 50.

Approach:
1 Select with probability 1

N the first element from the N units.
Example: probability is 1

1000 .

2 Select with probability 1
N−1 the second element from the

remaining N − 1 units. Example: probability is 1
999

...
n Select with probability 1

N−n+1 the n-th element from the
remaining N − n + 1 units. Example: probability is 1

951
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Statistical details on SRS

Let U = {1, . . . ,N} be the index set of the finite population and s be
the index set of the sampled units, with S being the random variable
representing the sample selected.

Suppose S can take the values s1, . . . , sM , i.e. these are the possible
sample set of indices that could be selected; let p(s) be the
probability distribution over the possible sets that can be selected.

For SRS without replacement there are M =
(N

n

)
possible sets of n

elements that can be selected and

p(s) =

{
1
(N

n)
if s has n elements

0 otherwise

Example: N = 4 and n = 2 so that M =
(4

2

)
= 6. Write down the

possible samples and the probabilities of these samples.
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Statistical details

In general, the size of the sample is denoted nS, where we subscript
by S because the size of the sample may depend on the sample that
is (randomly) chosen.

When this is not the case we write n.

In Bernoulli sampling, each unit is selected independently with
probability 0 < q < 1.

The number of units selected, nS, is binomial with parameters N and
q.

Poisson sampling is a generalizaion of Bernoulli sampling in which
the probabilities associated with each unit can vary (see Särndal et
al. 1992, p. 85). Each sample has probability

p(s) =
∏
k∈s

πk

∏
k∈U−s

(1− πk ).
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Estimator of yU and properties under SRS

For estimating the population mean yU we use the sample mean yS;
note the dependence on S (the random variable representing the
probability sample).

yS =
1
n

∑
k∈S

yk (14)

The notation is a bit cumbsersome (and is not consistent in the
literature).

We write ys to be the estimate (i.e. a number, not a random variable).
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Estimator of yU and properties under SRS

The variance is

var(yS) =
(

1− n
N

) S2

n
=

(
1
n
− 1

N

)
S2 (15)

where S2 is the variance of the population values about the mean:

S2 =
1

N − 1

N∑
k=1

(yk − yU)
2.

The variance (15) measures the variability of estimates of yU over
different samples.
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Estimator of a proportion under SRS
Estimating a proportion is a special case of estimating a mean, with

pU =
1
N

N∑
k=1

yk = yU

and estimator
p̂S = yS =

1
n

∑
k∈S

yk ,

the proportion of 1’s in the sample.

Can show that

S2 =
1

N − 1

N∑
k=1

(yk − pU)
2 =

N
N − 1

pU(1− pU).

Hence, from (1), we have the estimator,

var(p̂S) =

(
N − n
N − 1

)
pU(1− pU)

n
.
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Estimator of a proportion under SRS

We have the unbiased estimator,

s2 =
1

n − 1

N∑
k=1

(yk − p̂S)
2 =

n
n − 1

p̂S(1− p̂S).

From (2), we therefore have the estimator,

v̂ar(p̂S) =
(

1− n
N

) p̂S(1− p̂S)

n − 1
.
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Estimator of population total and properties under
SRS

We can simply extend these results to the population total:

t =
N∑

k=1

yk = NyU .

We have the unbiased estimator

t̂ = NyS =
N
n

∑
k∈S

yk . (16)

From (1) we have variance

var( t̂ ) = N2var(yS) = N2
(

1− n
N

) S2

n
(17)

and estimated variance

v̂ar( t̂ ) = N2var(yS) = N2
(

1− n
N

) s2

n
. (18)
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Estimator of yU and properties under SRS

Lohr (2010, Section 2.5) provides an accessible discussion of the use
of confidence intervals in survey sampling, and notes that sample
sizes needed for (3) to be accurate are often larger than we are used
to in non-survey situations. A formula for a recommended “minimum
n for accuracy of CI” is provided.

The percentiles of a Student’s t distribution with n − 1 degrees of
freedom may replace the normal percentile points in (3).
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Technical Appendix: Stratified SRS
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Proportions

Using (4)–(7) with yhS = p̂hS and s2
h = nh

nh−1 p̂hS(1− p̂hS).

Then,

p̂strat =
H∑

h=1

Nh

N
p̂hS

and

v̂ar(p̂strat) =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2 p̂hS(1− p̂hS)

nh − 1
.

The total number possessing the attribute of interest is estimated as

t̂strat =
H∑

h=1

Nhp̂hS.

and v̂ar(̂tstrat) = N2v̂ar(p̂strat).
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Selection probabilities
πhk is the probability of selecting unit k in stratum h, k = 1, . . . ,Nh,
h = 1, . . . ,H.

πhkh′ l is the joint probability of selecting unit k in stratum h, and unit l
in stratum h′, k , l = 1, . . . ,Nh, k 6= l , h,h′ = 1, . . . ,H.

For SRS within each sample,

πhk =
nh

Nh

to give sampling weights, whk = π−1
hk = Nh/nh.

Joint probabilities, for k 6= l :

πhkh′ l = πhk × πh′ l

=
nh

Nh
× nh′

Nh′
for h 6= h′

=
nh

Nh
× nh′ − 1

Nh′ − 1
for h = h′
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Small samples

If a stratum has nh = 0 the sampling weight is infinite, so if you don’t
sample from every stratum you can’t get an unbiased estimate of the
population total or mean.

Recall we need πhk > 0 for everyone in the population.

If nh = 1 it is not possible to get an unbiased estimate of the standard
error (recall we need πhkh′ l > 0 for all k and l): to estimate the
variability within a stratum takes at least two observations in the
stratum.

If nh = 2 we are OK with respect to unbiasedness and variance
estimation; designs with nh = 2 are susceptible to non-response,
however, since this can be easily reduced to nh = 0 or nh = 1.

If Nh = nh = 1 then we are OK because we know the answer and so
the variance is zero!
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Small samples

Tricks for handling nh = 1:
I Collapse two strata (but NOT based on the observed values).
I Use the estimated population standard deviation instead of the

sample standard deviation in the standard error formula.
I Replace the standard error for that stratum by the average

standard error for all strata with nh > 1.
Collapsing the strata is popular.

If we don’t sample from all stratum (and we don’t collapse), we are
probably doing cluster sampling.
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Design issues

We need to consider what our objective is, to we wish to estimate a
total or a mean across the whole population, or do we want estimates
of the mean or total in each stratum (i.e., as in domain estimation).

In the latter case we can take nh sufficiently large to gain the required
precision in each stratum.

For design in the case of a population total or mean, we can think
about what the strata should be, and how many samples to pick in
each strata; we first consider the latter problem.
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Proportional allocation

We first consider proportional allocation which assigns nh ∝ Nh and
so makes the sample a small version of the population.

The inclusion probabilities are πhk = nh/Nh and are the same
(= n/N) for all strata h (self-weighting).

In a population of 2400 men and 1600 women a 10% proportional
allocation sample would sample 240 men and 160 women; sample
weights are 1/π1k = 1/π2k = 1/10 = 10.

It can be shown (Lohr, 2010, Section 3.4.1) that when the strata are
large enough, the variance of the mean (or the total) under
proportional allocation stratified sampling will almost always be less
than under SRS.
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Design: optimal allocation
If the variances S2

h are similar across strata, proportional allocation is
a good option for increasing precision (as we will see mathematically
below).

If S2
h vary greatly, optimal allocation can increase precision over

proportional allocation: we should sample a greater fraction of larger
units.

Let C represent total cost, c0 baseline costs, and ch the (known) cost
of sampling an observation in stratum h so that total cost is

C = c0 +
H∑

h=1

chnh.

A natural criteria is to minimize var(y strat) for a given C and it can be
shown (using Lagrange multipliers) that the optimal allocation is to
take nh proportional to

NhSh√
ch

.
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Design: optimal allocation

The optimal size is

nh =

 NhSh√
ch∑H

h=1
NhSh√

ch

n.

We sample more in a stratum if:
1. The stratum accounts for a large part of the population.
2. The variance within the stratum is large; larger samples

acknowledge the heterogeneity. If there were no heterogeneity
then we would only require a single sample from that stratum.

3. Sampling in the stratum is inexpensive.
Neyman allocation, so called because of the derivation in Neyman
(1934), is a special case in which nh is proportional to NhSh.
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Design: optimal allocation

The variances S2
h are not known, but in repeated survey there may be

estimates from previous surveys.

If the variances and costs are equal across stratum we obtain
proportional allocation.

The optimal allocations will vary if different variables (i.e. different y ’s)
are examined.

Given the potential non-response, will need to increase the numbers
beyond the optimal (see the NMIHS document).

A selected unit k in stratum h represents whk = Nh
nh

units in the
population, and for non-proportional allocation this will lead to
different sample weights in different strata (though constant within a
strata).
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Technical Appendix: Cluster Sampling
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Notation

PSU level, population quantities:
I N = number of PSUs in the population.
I Mi = number of SSUs in PSU i .
I M0 =

∑N
i=1 Mi = total number of SSUs in the population.

I ti =
∑Mi

k=1 yik = total in PSU i .

I t =
∑N

i=1 ti =
∑N

i=1
∑Mi

k=1 yik =population total.

I S2
t = 1

N−1

∑N
i=1

(
ti − t

N

)2
= population variance of the PSU

totals.
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Notation

SSU level, population quantities:
I yU = 1

M0

∑N
i=1
∑Mi

k=1 yik = population mean.

I y iU = 1
Mi

∑Mi
k=1 yik = ti

Mi
population mean in PSU i .

I S2 = 1
M0−1

∑N
i=1
∑Mi

k=1(yik − yU)
2 = population variance (per

SSU).
I S2

i = 1
Mi−1

∑Mi
k=1(yik − y iU)

2 = population variance within PSU i .
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Notation

Sample quantities:
I n = number of PSUs in the sample.
I mi = number of SSUs in the sample.
I S = the random variable describing the sampled PSUs.
I Si = the random variable describing the sample of SSUs in

cluster i .
I y iS =

∑
k∈Si

yik
mi

= sample mean (per SSU) for PSU i .

I t̂i =
∑

k∈Si

Mi
mi

yik = estimated total for PSU i .

I t̂unb =
∑

i∈S
N
n t̂i = unbiased estimator of population total.

I s2
t = 1

n−1

∑
i∈S

(̂
ti − t̂unb

N

)2
= population variance of the PSU

totals.
I s2

i = 1
mi−1

∑
k∈Si

(yik − y iS)
2 = sample variance within PSU i .

I wik = sampling weight for SSU j in PSU i .
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Notation

Notes:
I This notation is close to that introduced by Lohr (2010, Section

5.1).
I N denotes the number of clusters from which we may sample n

(by analogy with SRS).
I In one-stage cluster sampling the number of sampled is equal to

the number in the SSU, i.e. mi = Mi , if cluster i is selected.
I This notation will be used for one-stage, two-stage and

multistage sampling.
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Estimation: Unbiased estimation for one-stage cluster
sampling

There are two problems with the unbiased estimators:
1. We may only know Mi for the sampled clusters and M0 may not

be known.
2. The variance may be large because it depends on the variance

of the cluster totals

s2
t =

1
n − 1

∑
i∈S

(
ti −

t̂unb

N

)2

,

which may be large, particular if the Mi vary a lot (greater totals
will often be associated with greater numbers of units).

An alternative approach is provided by ratio estimation.
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A tangent on design-based (randomization) inference

Design-based inference is fundamentally frequentist and in its most
extreme form, model free.

The frequentist slant suggests that estimators will be judged in terms
of their frequentist properties, over repeat samples being taken.

Estimators are judged via mean-squared error and its two
components, bias and variance.

There is no universal prescription for deriving estimators, which may
be seen as a disadvantage, or as an advantage, depending on your
statistical convictions.

In the Bayesian approach, inference is completely prescriptive.

This is illustrated in this section where we derive two different
estimators, one unbiased and the other intended to be efficient (low
variance).
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Efficiency of sampling compared to SRS

We now compare the efficiency of stratified random sampling and
cluster sampling as compared to SRS.

We introduce the design effect (abbreviated to deff), which is defined
(Kish, 1965) as

deff =
var( estimator from sampling plan )

var( estimator from SRS )
(19)

where both designs use the same number of observations.

This is a very important summary that is often used to compare
designs.

The denominator in (19) is
(
1− n

N

) S2

n .
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Efficiency of stratified sampling compared to SRS

Table 2: ANOVA table for stratified sampling; SSB and SSW are the sums of
squares between and within strata and SSTO is the total sum of squares.

Source df Sum of Squares
Between strata H − 1 SSB =

∑H
h=1

∑Nh
k=1(yhU − yU)

2

=
∑H

h=1 Nh(yhU − yU)
2

Within strata N − H SSW =
∑H

h=1

∑Nh
k=1(yhk − yhU)

2

=
∑H

h=1(Nh − 1)S2
h

Total N − 1 SSTO =
∑H

h=1

∑Nh
k=1(yhk − yU)

2 = (N − 1)S2
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Efficiency of stratified sampling compared to SRS
In a stratified sample with proportional allocation (nh/Nh = n/N):

varstrat(̂t) =
H∑

h=1

(
1− nh

Nh

)
N2

h
S2

h
nh

=
(

1− n
N

) N
n

(
SSW +

H∑
h=1

S2
h

)
,

so that it is the within-strata variability that is key.
For SRS:

varSRS(̂t) =
(

1− n
N

)
N2 S2

n

= vstrat(̂t) +
(

1− n
N

) N
n(N − 1)

[
N × SSB−

H∑
h=1

(N − Nh)S2
h

]
Proportional allocation stratified sampling always gives smaller
variance than SRS unless

SSB <
H∑

h=1

(
1− Nh

N

)
S2

h .

The more unequal the stratum means, the more efficiency is gained.
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Inefficiency of cluster sampling compared to SRS

We saw that for stratified sampling the variance is small if SSW is
small relative to SSTO.

For simplicity consider one-stage cluster sampling with equal
numbers in each SSU (= M).

Table 3: ANOVA table for cluster sampling; SSB and SSW are the sums of
squares between and within PSUs and SSTO is the total sum of squares.

Source df Sum of Squares
Between PSUs N − 1 SSB =

∑N
i=1

∑M
k=1(y iU − yU)

2

Within PSUs N(M − 1) SSW =
∑N

i=1

∑M
k=1(yik − y iU)

2

Total NM − 1 SSTO =
∑N

i=1

∑Nh
k=1(yik − yU)

2 = (NM − 1)S2
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Inefficiency of cluster sampling compared to SRS
Note that

S2
t =

1
N − 1

N∑
i=1

(ti − tU)
2 =

1
N − 1

N∑
i=1

M2(yiU − yU)
2 = M × SSB

N − 1

Hence, for cluster sampling

varclust(̂t) = N2
(

1− n
N

) M
n
× SSB

N − 1

so that it is the between-cluster variability that is key.
For SRS with nM observations:

varSRS(̂t) = (NM)2
(

1− nM
NM

)
S2

nM

= N2
(

1− n
N

) M
n
× S2

So cluster sampling is less efficient than SRS if

SSB
N − 1

> S2.
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Intraclass correlation coefficient

We have seen that the efficiency of cluster sampling depends on the
between-cluster variability, in contrast to stratified sampling.

The intraclass (or intracluster) correlation coefficient (ICC) measures
the homogeneity within the clusters, i.e. how similar observations in
the same cluster are.

It is the Pearson correlation coefficient for the NM(M − 1) pairs
(yik , yil) for i = 1, . . . ,N and k 6= l and can be written

ICC = 1− M
M − 1

SSW
SSTO

. (20)

If the clusters are perfectly homogenous SSW= 0 and ICC= 1. From
(20),

SSB
N − 1

=
NM − 1

M(N − 1)
S2[1 + (M − 1)ICC].
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Intraclass correlation coefficient

Hence,

varclust(̂t)
varSRS(̂t)

=
SSB

N − 1
S2 =

NM − 1
M(N − 1)

[1 + (M − 1)ICC].

If the number of PSUs in the population N is large so that

NM − 1 ≈ M(N − 1)

then the ratio of the variances is approximately

1 + (M − 1)ICC.

So 1 + (M − 1)ICC SSUs, taken in a one-stage cluster sample, gives
us approximately the same amount of information as one SSU from
an SRS.
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Intraclass correlation coefficient

Example: If ICC = 0.5 and M = 5 then

1 + (M − 1)ICC = 3

and we would need to take 300 elements using a cluster sample to
get the same precision as 100 elements from an SRS.

But often it is much cheaper to logistically carry out cluster sampling.
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Ratio estimation for two-stage cluster sampling

The ratio estimator for the population mean is

ŷ r =

∑
i∈S t̂i∑

i∈S Mi
=

∑
i∈S Miy i∑

i∈S Mi

and an approximation to the variance is available (Lohr, 2010, p. 186).
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Technical Appendix: Lonely PSUs
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Strata with only one PSU (Lumley 2010, Section 3.2.1)

We have discussed multistage sampling scheme in which cluster
sampling is carried out within strata.

Consider a stratum with only one PSU (cluster); the sampling
probability for this stratum must be 1 under stratified sampling.

This stratum will not contribute to the first stage of the variance
calculation, but may contribute to later stages: in this case the first
stage of sampling may be ignored.

If the stratum contains more than one potential PSU, but only one is
sampled then this violates our requirement of probability, namely that
all pairs of units can be sampled (units in different PSUs in the
stratum cannot both be selected).

This situation occurs because of non-response, or because fine
stratification is carried out.
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Strata with only one PSU

The best way of dealing with a stratum with a ‘lonely’ PSU is to
combine with another stratum, based on population data (which is
available before sampling. Basing on sample data will lead to bias.

Some NHANES studies use this approach, taking one PSU per
stratum and then creating ‘pseudo-strata’, with two PSUs, for
analysis.

In the survey package, if a strata with a single PSU is detected the
default behavior is to report an error. Two solutions are also provided,
however.
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Strata with only one PSU

Setting options(survey.lonely.psu="adjust") gives a
conservative variance estimate that uses residuals from the
population mean rather than from the stratum mean.

Setting options(survey.lonely.psu="average") sets the variance
contribution to the average for all strata with more than one PSU, and
this is also conservative.

When there is only a single population PSU in a stratum it should be
clear from the fpc information that the sampling fraction is 100%; if
the population size information is not supplied, single-PSU strata can
be dropped from the variance calculation with
options(survey.lonely.psu="remove").

The same adjustments are applied to each level of sampling, e.g., to
second-stage strata with only a single SSU.
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