
Bayesian SAE using Complex Survey Data
Lecture 1: Bayesian Statistics

Jon Wakefield

Departments of Statistics and Biostatistics
University of Washington

1 / 101



Outline

Motivation

Bayesian Learning

Probability and Bayes Theorem

Standard Distributions and Conjugacy
Binomial Distribution
Normal Distribution

Technical Appendix: Details of Calculations for the Binomial Model

2 / 101



Motivation
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Introduction

I In this lecture we will first consider generic Bayesian learning.
I Background reading: Chapters 1 and 2 of Hoff (2009)1.
I Simulated continuous responses and count data will be used to

motivate normal and binomial models, respectively.
I After introducing these examples, we give a brief review of

probability theory.
I Conjugate priors will be introduced.

1Background Text on Bayes: P.D. Hoff (2009), A First Course in Bayesian Statistical
Methods, Springer.
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Motivating Example: Binomial Count Data

As a motivating example, consider the 48 health reporting areas
(HRAs) of King County.

Later, we will analyze data from BRFSS (which uses a complex
sampling design), but for now we look at simulated data in which in
each of the HRAs, samples of size ni in HRA i are taken using simple
random sampling (SRS) from the total population Ni , i = 1, . . . ,48.

For each sampled individual, let d represent their diabetes status and
z their weight.

The objective is to estimate, in each HRA i , the:
I True number with diabetes, say Di , and the true fractions with

diabetes qi = Di/Ni .
I The average weight over the HRA, µi .

These are simple examples of small area estimation (SAE).
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Motivating Examples: Normal and Binomial Data
To illustrate techniques, we simulate data in HRAs using simple
random sampling in each area.

20

40

60

sample size

Figure 1: Sample sizes of simulated survey.
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Motivating Examples: Normal and Binomial Data
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Figure 2: Sample mean weights (left) and fractions with diabetes (right).
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Motivating Examples: Normal and Binomial Data
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Figure 3: Standard errors of: mean weights (left) and fractions with diabetes
(right). Gray areas in the right map correspond to areas with zero counts, and
hence an estimated standard error of zero.
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Motivating Examples: Normal and Binomial Data
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Figure 4: Number of individuals in the sample with diabetes; zero counts are
indicated in gray.
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Bayesian Learning
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Probability and information

We often use “probability” informally to express belief.

If we have strong belief that an event will occur, then we would assign
a high probability to the event.

When probabilities are assigned in everyday life there is an implicit
link with the information that the assigner has available to him/her.

This can be made mathematically formal via Bayesian theory:
I Probability can numerically quantify rational beliefs
I There is a relationship between probability and information
I Bayes theorem is a rational method for updating uncertainty

based on information
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Bayesian methods

Bayesian methods are data analysis tools that are derived from the
principles of Bayesian inference.

Bayesian methods provide:
I parameter estimates with good statistical properties;
I parsimonious descriptions of observed data;
I predictions for missing data and forecasts of future data;
I a framework for model estimation, selection and validation;
I a means by which prior information can be incorporated.
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Statistical induction

Induction: Reasoning from specific cases to a general principle.

Statistical induction: Using a data sample to infer population
characteristics.

Notation:
Parameter: θ denotes unknown population characteristics.

Data: y is the outcome of a survey or experiment.

In the SAE experiments, our goal is to make inference about (in a
generic area):

I Diabetes outcome: the unknown θ corresponds to q, the
probability of diabetes, and the data y to d , and we want to learn
about q given d .

I Weight outcome: the unknown θ corresponds to µ, the average
weight, and the data y to z, and we want to learn about µ given z.
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Ingredients of a Bayesian analysis

Parameter and sample spaces:
Sample space: Y is the set of all possible datasets.
Parameter space: Θ is the set of all possible θ-values

For the SAE examples, in one area:
Sample space for diabetes: Y = {0,1, . . . ,n} is the set of all possible

outcomes (=y ).
Parameter space for diabetes: Θ = [0,1] is the set of all possible

values of the probability θ (=q).
Sample space for weight: Y = (0,∞) is the set of all possible

outcomes (=z).
Parameter space for weight: Θ = (0,∞) is the set of all possible

values of the probability θ (=µ).
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Ingredients of a Bayesian analysis

Quantifying information:
Prior distribution: p(θ), defined for all θ ∈ Θ, describes our

probabilistic beliefs about θ, the true value of the population
parameter.

Sampling model: p(y |θ), defined for θ ∈ Θ, y ∈ Y, describes our
probabilistic beliefs that y will be the experimental outcome, for
each θ.

Updating information:
Bayes theorem: After obtaining data y , the posterior distribution is

p(θ|y)︸ ︷︷ ︸
Posterior

=
p(y |θ)p(θ)

p(y)
∝ p(y |θ)︸ ︷︷ ︸

Likelihood

p(θ)︸︷︷︸
Prior

,

where
p(y) =

∫
Θ

p(y |θ)p(θ) dθ

is the normalizing constant (to ensure the posterior is legal
probabilistically).
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Ingredients of a Bayesian analysis

For the SAE diabetes data (in a generic area):
Prior distribution: p(q) describes our beliefs about the unknown

probability q of an individual having diabetes, before we look at
the data.

Sampling model: p(d |q), describes the probabilities of all of the
possible outcomes d = 0,1, . . . ,n given we (hypothetically)
know the value of the probability q. When viewed as a function
of q, p(d |q) is known as the likelihood.

Posterior distribution: p(q|d) describes our beliefs about the
unknown probability q, after we combine the data (via the
sampling model) and the prior.
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Role of prior information

There is a theoretical justification (e.g., Bernardo and Smith 1994)
that tells us that probabilities should express uncertainties and how
beliefs should change after seeing new information (via Bayes
theorem!).

Bayes theorem does not tell us what our beliefs should be.

Adherents of frequentist inference might question the optimality of
Bayesian inference, given the imperfect manner in which beliefs (in
both the sampling model and the prior) are specified – clear we need
to be careful in how we specify the model.
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SAE Example

A natural choice for the number of individuals (out of n) with diabetes
is:

Y |θ ∼ Binomial(n, θ).

The maximum likelihood estimate (MLE) is

θ̂ =
y
n

= ȳ

with standard error √
θ(1− θ)

n
which is estimated by √

θ̂(1− θ̂)

n
.

Suppose for a particular area y = 0, then θ̂ = 0 with standard error 0.
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Comparison to non-Bayesian methods in the SAE
setting

Non-Bayesian 95% confidence (Wald) interval:

ȳ ± 1.96
√

ȳ(1− ȳ)/n

If we have y = 0, then the interval is 0± 0, which is clearly
unacceptable.

“Adjusted Wald interval”: Agresti and Coull (1998) discuss the use of:

θ̃ ± 1.96
√
θ̃(1− θ̃)/n , where

θ̃ =
4

n + 4
1
2

+
n

n + 4
ȳ ,

as an approximation to an earlier suggestion of Wilson (1927).

Can be seen as approximately Bayesian, with a beta(2,2) prior for θ
(see later).
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Probability and Bayes Theorem
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The Big Picture

I Statistics: Probability models for data.
I Data: May be represented as real numbers.
I Probability Theory: Starting with sample spaces and events we

consider a function (the probability) that measures “size” of the
event. Mathematically, probabilities are measures of uncertainty
obeying certain properties.

I Random Variables: Provide the link between sample spaces and
data.
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Basic Probability Review

Set notation:
I A ∪ B represents union, “A or B”.
I A ∩ B represents intersection, “A and B”.
I ∅ is the empty set.
I A1,A2, . . . , are mutually exclusive (disjoint) events if Ai ∩ Aj = ∅,

for all pairs i , j , i 6= j .
I Ω is the sample space, and F be a suitable collection2 of subsets

of Ω.
I Ac is the complement of A, so that A ∪ Ac = Ω.

Axioms of Probability:
P1 Pr(Ω) = 1,
P2 Pr(A) ≥ 0 for any event A ∈ F ,
P3 Pr (∪∞i=1Ai ) =

∑∞
i=1 Pr(Ai ) for mutually exclusive events

A1,A2, · · · ∈ F .

2Technically, a σ-algebra
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Basic Probability Review

Definition: For events A and B in Ω, with Pr(A) > 0 the conditional
probability that B occurs, given that A occurs, is

Pr(B|A) =
Pr(A ∩ B)

Pr(A)
.

Important point: Pr(·|A) satisfies the axioms of probability, but Pr(B|·)
does not!

In particular, it is always true that: Pr(A|B) + Pr(Ac |B) = 1.

In contrast, in general: Pr(B|A) + Pr(B|Ac) 6= 1.
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Basic Probability Review

Often confused, for example, the prosecutor’s fallacy:

Pr( evidence | guilt ) 6= Pr( guilt | evidence ).

Example: {evidence = blue plaid shirt} and we know crime was
committed by someone with a blue plaid shirt, so

Pr( evidence | guilt ) = 1

but
Pr( guilt | evidence ) < 1.
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Example

P3 with two events: Pr(A1 ∪ A2) = Pr(A1) + Pr(A2) if A1 ∩ A2 = ∅

Example:
I Suppose we have data on deaths by age, up to age 18, in years,

in a certain population
I A1 = { death in first year }, A2 = { death at ages 2–5 },

A3 = { death at ages 6–18}
I Pr(A1) = 0.04, Pr(A2) = 0.01, Pr(A3) = 0.003.
I A1 and A2 are disjoint, and so the probability of death in first 5

years is

Pr(death in first 5 years) = Pr(A1 ∪ A2)

= Pr(A1) + Pr(A2)

= 0.04 + 0.01
= 0.05
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Events and partitions

Definition: A collection of sets {H1, . . . ,HK} is a partition of another
set H if

1. the events are disjoint, which we write as Hi ∩ Hj = ∅ for i 6= j ;
2. the union of the sets is H, which we write as ∪K

k=1Hk = H.

If H is the set of all possible truths (i.e., H = Ω) and {H1, . . . ,HK} is a
partition of H, then exactly one out of {H1, . . . ,HK} contains the truth.

Example: H=someone’s number of children

I {0, 1, 2, 3 or more};
I {0, 1, 2, 3, 4, 5, 6, . . . }.
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Events and partitions

Example: H= the strata of a household in the Kenya 2008–2009 DHS:

1. {Western, Rural }
2. {Western, Urban }
3. { Nyanza, Rural }
4. { Nyana, Urban }
5. { Rift Valley, Rural }
6. { Rift Valley, Urban }
7. { Eastern, Rural }
8. { Eastern, Urban }
9. { North Eastern, Rural }

10. { North Eastern, Urban }
11. { Coast, Rural }
12. { Coast, Urban }
13. { Central, Rural }
14. { Central, Urban }
15. { Nairobi, Urban }
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Bayes theorem

For a partition {H1, . . . ,HK}, the axioms of probability imply the
following:

Rule of total probability :
K∑

k=1

Pr(Hk ) = 1

Rule of marginal probability : Pr(E) =
K∑

k=1

Pr(E ∩ Hk )

=
K∑

k=1

Pr(E |Hk ) Pr(Hk )
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Bayes theorem

Bayes theorem : Pr(Hj |E) =

“Likelihood”︷ ︸︸ ︷
Pr(E |Hj )

“Prior”︷ ︸︸ ︷
Pr(Hj )

Pr(E)︸ ︷︷ ︸
Normalizing Constant

=
Pr(E |Hj ) Pr(Hj )∑K

k=1 Pr(E |Hk ) Pr(Hk )

for j = 1, . . . ,K .

Anticipating Bayesian inference:
I One begins with (prior) beliefs about events Hj , Pr(Hj ), and
I updates these to (posterior) beliefs Pr(Hj |E), given that an event

E occurs.
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Bayes theorem: the classic example
Set up:

I 1% of people have a certain genetic defect.
I 90% of tests for the gene detect the defect (true positives).
I 5% of the tests are false positives.

If a person gets a positive test result, what are the odds they actually
have the genetic defect?

First, define events and translate the above:
I A = event of having the defective gene, so that Pr(A) = 0.01. A

and Ac form a partition so the probability of not having the gene
is Pr(Ac) = 0.99.

I Y = event of a positive test result; this can happen in two ways,
via either a true positive (for an A person) or a false positive (for
an Ac person).

From the information above:
I Pr(Y |A) = 0.9 is the chance of a positive test result given that

the person actually has the gene.
I Pr(Y |Ac) = 0.05 is the chance of a positive test if the person

doesn’t have the gene.
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Bayes theorem: the classic example

Bayes theorem allows us to calculate the probability of the gene
defect, given the test results:

Pr(A|Y ) =
Pr(Y |A) Pr(A)

Pr(Y )

First, let’s consider the denominator, the probability of a positive test
result:

Pr(Y ) = Pr(Y |A) Pr(A) + Pr(Y |Ac) Pr(Ac)

= 0.9× 0.01︸ ︷︷ ︸
Positive and defective gene

+ 0.05× 0.99︸ ︷︷ ︸
Positive and non-defective gene

= 0.009 + 0.0495
= 0.0585.

It is clear that the event of a positive test result is dominated by false
positives.
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Bayes theorem: the classic example

The (posterior) probability of interest is:

Pr(A|Y ) =
0.9× 0.01

0.0585
=

0.009
0.0585

= 0.154,

so there is a 15.4% chance that a person with a positive test result
has the defective gene.

At first sight, this low probability may seem surprising but the
posterior to prior odds is

Pr(A|Y )

Pr(A)
=

0.154
0.01

= 15.4,

so that we have changed our beliefs by quite a large amount.

32 / 101



Bayes theorem
A more accurate representation acknowledges that all probabilities
are also conditional on all current relevant knowledge/information, I.

Bayes theorem : Pr(Hj |E , I) =
Pr(E |Hj , I) Pr(Hj |I)

Pr(E |I)

=
Pr(E |Hj , I) Pr(Hj |I)∑K

k=1 Pr(E |Hk , I) Pr(Hk |I)

Usually the conditioning on I is suppressed for notational ease, but
one should always keep it in mind...

Different individuals, have different information, and so it should be no
surprise that the required elements of Bayes theorem (likelihood and
prior) may differ between individuals.

Note: all of the above is unambiguous, it’s just a bunch of math, but it
doesn’t tell us how to assign prior probabilities or specify sampling
models (likelihoods).
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The meaning of probability

I Mathematically speaking probability is a function that obeys
certain properties and, from this standpoint, one need not worry
too much about the interpretation of probability.

I When it comes to statistical inference, however, we will see that
the interpretation given to probabilities influences the criteria by
which procedures are judged.

I In the frequentist view, probabilities are interpreted as limiting
frequencies observed over (hypothetical) repetitions in identical
situations (we will encounter this when we discuss design-based
inference).

I In the subjective view, probabilities are purely personal. One way
of assigning probabilities is the following.

I The probability of an event E is the price one is just willing to pay to
enter a game in which one can win a unit amount of money if E is
true.

I For example, if I believe a coin is fair and I am to win 1 unit if a
head (the event E) arises, then I would pay 1

2 a unit of money to
enter the bet.
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Standard Distributions and Conjugacy
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Discrete random variables

Let Y be a random variable, an unknown numerical quantity.

Let Y be the set of all possible values of Y .

Y is discrete if the set of possible outcomes is countable, meaning
that Y can be expressed as Y = {y1, y2, . . .}.

Examples
I Y = number of people in a population with diabetes.
I Y = number of children of a randomly sampled person.
I Y = number of under-5 deaths in a particular area and time

period.
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Discrete random variables

For a discrete random variable Y , Pr(Y = y) is the probability that the
outcome Y takes on the value y .

Pr(Y = y) = p(y) is often called the probability mass function or
probability distribution of Y .

Requirements of a probability distribution to be probabilistically legal:

1. 0 ≤ p(y) ≤ 1 for all y ∈ Y;
2.
∑

y∈Y p(y) = 1.
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Discrete random variables

We can derive various probabilities from p(y):

Pr(Y ∈ A) =
∑
y∈A

p(y)

If A and B are disjoint subsets of Y, then

Pr(Y ∈ A or Y ∈ B) ≡ Pr(Y ∈ A ∪ B) = Pr(Y ∈ A) + Pr(Y ∈ B)

=
∑
y∈A

p(y) +
∑
y∈B

p(y).
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Continuous random variables

If (to a rough approximation) Y = R, then we cannot define Pr(Y ≤ 5)
as equal to

∑
y≤5 p(y) because the sum does not make sense.

Instead, we define a probability density function (pdf) p(y) such that

Pr(Y ∈ A) =

∫
A

p(y) dy

Example:

Pr(Y ≤ 5) =

∫ 5

−∞
p(y) dy .

Requirements of a pdf to be probabilistically legal:
1. p(y) ≥ 0 for all y ∈ Y;
2.
∫
R p(y) dy = 1.
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Continuous random variables

If A and B are disjoint subsets of Y, then

Pr(Y ∈ A or Y ∈ B) ≡ Pr(Y ∈ A ∪ B) = Pr(Y ∈ A) + Pr(Y ∈ B)

=

∫
y∈A

p(y) dy +

∫
y∈B

p(y) dy .
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Continuous random variables

Unlike the discrete case,
I p(y) can be larger than 1;
I p(y) is not “the probability that Y = y .”

This is a bit weird, because we use pdfs as models for data. The
rationale is that all “continuous” measurements are actually examples
of discrete random variables (finite number of decimal places).

Suppose we observe Y = y :

Pr(Y = y)
Actually

= Pr(Y ∈ (y − ε, y + ε)) =

∫ y+ε

y−ε
p(y) dy ,

which is a probability.

We approximate these discrete distributions by pdfs.

Regardless, if p(y1) > p(y2) we will sometimes informally say that y1
“has a higher probability” than y2.
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The Bernoulli distribution

Let Y = {0,1}, so the outcome can be 0 or 1.

The outcome Y has a Bernoulli distribution with probability θ if

Pr(Y = y |θ) = p(y |θ) =

{
θ if y = 1
1− θ if y = 0

Alternatively, we can write

Pr(Y = y |θ) = p(y |θ)

= θy (1− θ)1−y .
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Conditionally independent binary outcomes

Suppose the prevalence of diabetes in a population is θ.

Let Y1, . . . ,Yn indicate the presence of diabetes for n individuals
randomly sampled from the population.

The probability of observing the sequence of n is:

Pr(Y1 = y1, . . . ,Yn = yn|θ) = p(y1, . . . , yn|θ)

= θy1 (1− θ)1−y1 × · · · × θyn (1− θ)1−yn

= θ
∑

yi (1− θ)n−
∑

yi

where we can go from lines 1 to 2 by conditional independence.

Note that p(y1, . . . , yn|θ) depends only on
∑n

i=1 yi .

Often, we only record n and the number of events: y =
∑n

i=1 yi .
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The binomial distribution

What is the probability that y people in a sample of size n will have
diabetes?

Consider all n-sequences with y 1’s:

Pr(Y1 = 0,Y2 = 1,Y3 = 0, . . . ,Yn = 1|θ) = θy (1− θ)n−y

...
...

Pr(Y1 = 1,Y2 = 0,Y3 = 1, . . . ,Yn = 0|θ) = θy (1− θ)n−y

There are
(n

y

)
such sequences, so

Pr

(
n∑

i=1

Yi = y |θ

)
=

(
n
y

)
θy (1− θ)n−y .
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The binomial distribution

Let Y = {0,1,2, . . . ,n} for some positive integer n. The outcome
Y ∈ Y has a binomial distribution with probability θ, denoted
Y |θ ∼ Binomial(n, θ), if

Pr(Y = y |θ) =

(
n
y

)
θy (1− θ)n−y .

For example, if θ = 0.25 and n = 4, we have 5 possibilities:

Pr(Y = 0|θ = 0.25) =
(4

0

)
(0.25)0(0.75)4 = 0.316

Pr(Y = 1|θ = 0.25) =
(4

1

)
(0.25)1(0.75)3 = 0.422

Pr(Y = 2|θ = 0.25) =
(4

2

)
(0.25)2(0.75)2 = 0.211

Pr(Y = 3|θ = 0.25) =
(4

3

)
(0.25)3(0.75)1 = 0.047

Pr(Y = 4|θ = 0.25) =
(4

4

)
(0.25)4(0.75)0 = 0.004 .
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The beta posterior

What prior should we choose for θ?

The posterior is the normalized product of the prior times the
likelihood:

p(θ|y) ∝ p(y |θ)× p(θ).

And summarization of the posterior distribution requires integration,
e.g., the mean of the posterior is

E[θ|y ] =

∫
θ

θp(θ|y) dθ.

In general, numerical, analytical or simulation techniques are required
to carry out Bayesian inference.

We give an example of a conjugate Bayesian analysis in which the
prior is in the same family as the posterior, unfortunately for most
models such computationally convenient analyses are not possible.
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The beta posterior

To carry out a Bayesian analysis with a binomial θ, we need a
distribution on [0,1].

A beta prior fulfills these requirements, and has two parameters a and
b.

A beta(a,b) prior has mean

E[θ] =
a

a + b

and variance
var(θ) =

E[θ](1− E[θ])

a + b + 1
.

Different choices of a and b lead to distributions with different
locations and concentration.
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The beta posterior

It can be shown (in detail in the Technical Appendix) that if:
I the prior is θ ∼ beta(a,b); a and b are picked in advance to

reflect our beliefs.
I the sampling model is Y |θ ∼ Binomial(n, θ)

I then the posterior is
θ|y ∼ beta(a + y ,b + n − y).

The posterior distribution is also beta, but the parameters have been
updated to a + y ,b + n − y .
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Figure 5: Different beta distributions, beta(a, b), the red lines indicate the
means.
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The beta posterior

To summarize the posterior distribution for θ, we could use the
posterior mean:

E [θ|y ] =
a + y

a + b + n

=
a

a + b

(
a + b

a + b + n

)
+

y
n

(
n

a + b + n

)
= E[θ]

(
a + b

a + b + n

)
︸ ︷︷ ︸
Weight on Prior

+ȳ
(

n
a + b + n

)
︸ ︷︷ ︸
Weight on Data

,

a weighted combination of the prior mean and the sample mean.
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The beta posterior

Recall, from earlier, the adjusted Wald interval:

θ̃ ± 1.96

√
θ̃(1− θ̃)

n
,

where

θ̃ =
1
2

4
4 + n

+ ȳ
n

4 + n
.

θ̃ is equal to the posterior mean when we have a beta(2,2) prior
(which has mean 1/2).
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Beta Prior, Likelihood and Posterior
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Figure 6: The prior is beta(2,3) the likelihood is binomial with n = 10, y = 7,
and so the posterior is beta(7+2,3+3).

52 / 101



The normal distribution

Let the sample space be Y = (−∞,∞) and assume the outcome
Y ∈ Y has a normal distribution with mean θ and variance σ2,
denoted

y |θ ∼ N(θ, σ),

if

p(y |θ, σ2) =
1√
2πσ

exp

{
−1

2

(
y − θ
σ

)2
}
.
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The normal posterior distribution with known variance
σ2

For a sample Y1, . . . ,Yn from a normal distribution, the sampling
model (likelihood) is

Y1, . . . ,Yn|θ ∼ N(θ, σ2).

The MLE is
µ̂ = y ,

and the variance of this estimator is

var(µ̂) =
σ2

n
.

If:
I the prior on the mean is θ ∼ N(µ0, τ

2
0 ) and

I the sampling model (likelihood) is again Y1, . . . ,Yn|θ ∼ N(θ, σ2).

Then, the posterior is also normal:

θ|y1, . . . , yn ∼ N(µn, τ
2
n ).
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The normal posterior distribution
The posterior mean is,

E[θ|y1, . . . , yn] = µn

= µ0(1− w) + ȳw

where the weight on the data is

w =

(
τ2

0

τ2
0 + σ2/n

)
.

So the posterior mean is a weighted combination of the prior mean
and the sample mean.

The posterior variance is,

var(θ|y1, . . . , yn) = τ2
n

= w
σ2

n

≤ σ2

n
= var(µ̂)︸ ︷︷ ︸

Variance of MLE
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The normal posterior distribution

We see that the precisions (inverse variances) are additive:

1/τ2
n︸︷︷︸

Posterior Precision

= 1/τ2
0︸︷︷︸

Prior Precision

+ n/σ2︸ ︷︷ ︸
Data Precision

.

so precision (or information) is additive.

We will consider the normal model for continuous responses for an
area; in a generic area let yk be the weight of sampled person k .

Then a starting model (the likelihood) is

yk = µ+ εk ,

with
εk ∼ N(0, σ2

ε ),

for k = 1, . . . ,n.

A Bayesian analysis would put priors on µ and σ2
ε .
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Simple Normal Example
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Figure 7: Normal likelihood (ȳ=1.5,n=10,σ=1), normal prior (m=1, k=5) and
the resultant normal posterior.
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Describing posterior location

When carrying out frequentist inference for a parameter θ, we may
report the MLE as point estimate; in a Bayes analysis there are a
number of ways of summarizing the posterior with a single number.

The posterior mean expectation of an unknown quantity θ is given by

E[θ|y ] =

∫
θ∈Θ

θp(θ|y) dθ.

The mean is the center of mass of the distribution.

However, it is not in general equal to either of
I the mode: “the most probable value of θ,” or
I the median: “the value of θ in the middle of the distribution.”

For skewed distributions the mean can be far from a “typical” sample
value.

If in doubt, use the posterior median!
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Describing posterior uncertainty

In frequentist inference we might report a confidence interval.

What about expressing uncertainty? Posterior credible intervals!

For example, a 90% interval (θL, θU) can be reported by finding values∫ ∞
θL

p(θ|y) dθ∫ θL

−∞
p(θ|y) dθ

The Bayesian analog of the standard error is the posterior standard
deviation.
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Summary

We have reviewed basic probability theory and began the discussion
of how Bayes theorem can be used for statistical inference.

Probability distributions encapsulate information:
I p(θ) describes prior information
I p(y |θ) describes information about y for each θ
I p(θ|y) describes posterior information

Posterior distributions can be calculated via Bayes theorem

p(θ|y) =
p(y |θ)p(θ)∫

p(y |θ)p(θ) dθ
.

Conjugate analyses are computationally convenient but rarely
available in practice.

Historically, the philosophical standpoint of Bayesian statistics was
emphasized, now pragmatism is taking over.
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Overview of Bayesian Inference

Simply put, to carry out a Bayesian analysis one must specify a
likelihood (probability distribution for the data) and a prior (beliefs
about the parameters of the model).

And then do some computation... and interpretation...

The approach is therefore model-based, in contrast to approaches in
which only the mean and the variance of the data are specified
(e.g., weighted least squares, quasi-likelihood).
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Conclusions

Benefits of a Bayesian approach:
I Inference is based on probability and output is very intuitive.
I Framework is flexible, and so complex models can be built.
I Can incorporate prior knowledge!
I If the sample size is large, prior choice is less crucial.

Challenges of a Bayesian analysis:
I Require a likelihood and a prior, and inference is only as good as

the appropriateness of these choices.
I Computation can be daunting, though software is becoming

more user friendly and flexible; later we will describe the INLA

method for carrying out Bayesian inference.
I One should be wary of model becoming too complex – we have

the technology to contemplate complicated models, but do the
data support complexity?
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Technical Appendix: Details of Calculations
for the Binomial Model
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Elements of Bayes Theorem for a Binomial Model
We assume independent responses with a common “success”
probability θ.

In this case, the contribution of the data is through the binomial
probability distribution:

Pr(Y = y |θ) =

(
n
y

)
θy (1− θ)n−y (1)

and tells us the probability of seeing Y = y , y = 0,1, . . . ,n, given the
probability θ.

For fixed y , we may view (1) as a function of θ – this is the likelihood
function.

The maximum likelihood estimate (MLE) is that value

θ̂ = y/n

that gives the highest probability to the observed data, i.e. maximizes
the likelihood function.
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Figure 8: Binomial distributions for two values of θ with n = 10.
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Figure 9: Binomial likelihoods for values of y = 5 (left) and y = 10 (right),
with n = 10. The MLEs are indicated in red.
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The Beta Distribution as a Prior Choice for Binomial θ

I Bayes theorem requires the likelihood, which we have already
specified as binomial, and the prior.

I For a probability 0 < θ < 1 an obvious candidate prior is the
uniform distribution on (0,1): but this is too restrictive in general.

I The beta distribution, beta(a,b), is more flexible and so may be
used for θ, with a and b specified in advance, i.e., a priori. The
uniform distribution is a special case with a = b = 1.

I The form of the beta distribution is

p(θ) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

for 0 < θ < 1, where Γ(·) is the gamma function3.
I The distribution is valid4 for a > 0,b > 0.

3Γ(z) =
∫∞

0 tz−1e−t dt
4A distribution is valid if it is non-negative and integrates to 1
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The Beta Distribution as a Prior Choice for Binomial θ

How can we think about specifying a and b?

For the normal distribution the parameters µ and σ2 are just the mean
and variance, but for the beta distribution a and b have no such
simple interpretation.

The mean and variance are:

E[θ] =
a

a + b

var(θ) =
E[θ](1− E[θ])

a + b + 1
.

Hence, increasing a and/or b concentrates the distribution about the
mean.

The quantiles, e.g. the median or the 10% and 90% points, are not
available as a simple formula, but are easily obtained within software
such as R using the function qbeta(p,a,b).
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Figure 10: Beta distributions, beta(a, b), the red lines indicate the means.
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Samples to Summarize Beta Distributions

Probability distributions can be investigated by generating samples
and then examining histograms, moments and quantiles.

In Figure 11 we show histograms of beta distributions for different
choices of a and b.
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Figure 11: Random samples from beta distributions; sample means as red
lines.
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Samples for Describing Weird Parameters

I So far the samples we have generated have produced
summaries we can easily obtain anyway.

I But what about functions of the probability θ, such as the odds
θ/(1− θ)?

I Once we have samples for θ we can simply transform the
samples to the functions of interest.

I We may have clearer prior opinions about the odds, than the
probability.

I The histogram representation of the prior on the odds θ/(1− θ)
when θ is beta(10,10).
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Odds with θ from a beta(10,10)
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Figure 12: Samples from the prior on the odds θ/(1− θ) with
θ ∼ beta(10, 10), the red line indicates the sample mean.
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Issues with Uniformity
We might think that if we have little prior opinion about a parameter
then we can simply assign a uniform prior, i.e. a prior

p(θ) ∝ const.

There are two problems with this strategy:
I We can’t be uniform on all scales since, if φ = g(θ):

pφ(φ)︸ ︷︷ ︸
Prior for φ

= pθ(g−1(φ))︸ ︷︷ ︸
Prior for θ

×
∣∣∣∣ dθdφ

∣∣∣∣︸ ︷︷ ︸
Jacobian

and so if g(·) is a nonlinear function, the Jacobian will be a
function of φ and hence not uniform.

I If the parameter is not on a finite range, an improper distribution
will result (that is, the form will not integrate to 1). This can lead
to an improper posterior distribution, and without a proper
posterior we can’t do inference.
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Are Priors Really Uniform?

I We illustrate the first (non-uniform on all scales) point.
I In the binomial example a uniform prior for θ seems a natural

choice.
I But suppose we are going to model on the logistic scale so that

φ = log

(
θ

1− θ

)
is a quantity of interest.

I A uniform prior on θ produces the very non-uniform distribution
on φ in Figure 13.

I Not being uniform on all scales is not necessarily a problem, and
is correct probabilistically, but one should be aware of this
characteristic.
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Log Odds φ

Fr
eq

ue
nc

y

−10 −5 0 5

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 13: Samples from the prior on the odds φ = log[θ/(1− θ)] with
θ ∼ beta(1, 1), the red line indicates the sample mean.
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Posterior Derivation: The Quick Way

I When we want to identify a particular probability distribution we
only need to concentrate on terms that involve the random
variable.

I For example, if the random variable is X and we see a density of
the form

p(x) ∝ exp(c1x2 + c2x),

for constants c1 and c2, then we know that the random variable X
must have a normal distribution.
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Posterior Derivation: The Quick Way

I For the binomial-beta model we concentrate on terms that only
involve θ.

I The posterior is

p(θ|y) ∝ Pr(y |θ)× p(θ)

= θy (1− θ)n−y × θa−1(1− θ)b−1

= θy+a−1(1− θ)n−y+b−1

I We recognize this as the important part of a
beta(y + a,n − y + b) distribution.

I We know what the normalizing constant must be, because we
have a distribution which must integrate to 1.
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Posterior Derivation: The Long (Unnecessary) Way

I The posterior can also be calculated by keeping in all the
normalizing constants:

p(θ|y) =
Pr(y |θ)× p(θ)

Pr(y)

=
1

Pr(y)

(
n
y

)
θy (1− θ)n−y Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1. (2)

I The normalizing constant is

Pr(y) =

∫ 1

0
Pr(y |θ)× p(θ)dθ

=

(
n
y

)
Γ(a + b)

Γ(a)Γ(b)

∫ 1

0
θy+a−1(1− θ)n−y+b−1dθ

=

(
n
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(n − y + b)

Γ(n + a + b)

I The integrand on line 2 is a beta(y + a,n− y + b) distribution, up
to a normalizing constant, and so we know what this constant
has to be.
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Posterior Derivation: The Long (and Unnecessary)
Way

I The normalizing constant is therefore:

Pr(y) =

(
n
y

)
Γ(a + b)

Γ(a)Γ(b)

Γ(y + a)Γ(n − y + b)

Γ(n + a + b)

I This is a probability distribution, i.e.
∑n

y=0 Pr(y) = 1 with
Pr(y) > 0.

I For a particular y value, this expression tells us the probability of
that value given the model, i.e. the likelihood and prior we have
selected: this will reappear later in the context of hypothesis
testing.

I Substitution of Pr(y) into (2) and canceling the terms that appear
in the numerator and denominator gives the posterior:

p(θ|y) =
Γ(n + a + b)

Γ(y + a)Γ(n − y + b)
θy+a−1(1− θ)n−y+b−1

which is a beta(y + a,n − y + b).
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The Posterior Mean: A Summary of the Posterior
I Recall the mean of a beta(a,b) is a/(a + b).
I The posterior mean of a beta(y + a,n − y + b) is therefore

E[θ|y ] =
y + a

n + a + b

=
y

n + a + b
+

a
n + a + b

=
y
n
× n

n + a + b
+

a
a + b

× a + b
n + a + b

= MLE×W + Prior Mean× (1-W).

I The weight W is
W =

n
n + a + b

.

I As n increases, the weight tends to 1, so that the posterior mean
gets closer and closer to the MLE.

I Notice that the uniform prior a = b = 1 gives a posterior mean of

E[θ|y ] =
y + 1
n + 2

.
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The Posterior Mode

I First, note that the mode of a beta(a,b) is

mode(θ) =
a− 1

a + b − 2
.

I As with the posterior mean, the posterior mode takes a weighted
form:

mode(θ|y) =
y + a− 1

n + a + b − 2

=
y
n
× n

n + a + b − 2
+

a− 1
a + b − 2

× a + b − 2
n + a + b − 2

= MLE×W? + Prior Mode× (1-W?).

I The weight W? is
W? =

n
n + a + b − 2

.

I Notice that the uniform prior a = b = 1 gives a posterior mode of

mode(θ|y) =
y
n
,

the MLE. Which makes sense, right?
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Other Posterior Summaries

I We will rarely want to report a point estimate alone, whether it be
a posterior mean or posterior median.

I Interval estimates are obtained in the obvious way.
I A simple way of performing testing of particular parameter values

of interest is via examination of interval estimates.
I For example, does a 95% interval contain the value θ0 = 0.5?

83 / 101



Other Posterior Summaries

I In our beta-binomial running example, a 90% posterior credible
interval (θL, θU) results from the points

0.05 =

∫ θL

0
p(θ|y) dθ

0.95 =

∫ θU

0
p(θ|y) dθ

I The quantiles of a beta are not available in closed form, but easy
to evaluate in R:

y <− 7; n <− 10; a <− b <− 1
qbeta ( c ( 0 . 0 5 , 0 . 5 , 0 . 9 5 ) , y+a , n−y+b )
[ 1 ] 0.4356258 0.6761955 0.8649245

I The 90% credible interval is (0.44,0.86) and the posterior median
is 0.68.
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Prior Sensitivity

I For small datasets in particular it is a good idea to examine the
sensitivity of inference to the prior choice, particularly for those
parameters for which there is little information in the data.

I An obvious way to determine the latter is to compare the prior
with the posterior, but experience often aids the process.

I Sometimes one may specify a prior that reduces the impact of
the prior.

I In some situations, priors can be found that produce point and
interval estimates that mimic a standard non-Bayesian analysis,
i.e. have good frequentist properties.

I Such priors provide a baseline to compare analyses with more
substantive priors.

I Other names for such priors are objective, reference and
non-subjective.

I We now describe another approach to specification, via
subjective priors.
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Choosing a Prior, Approach One

I To select a beta, we need to specify two quantities, a and b.
I The posterior mean is

E[θ|y ] =
y + a

n + a + b
.

I Viewing the denominator as a sample size suggests a method for
choosing a and b within the prior.

I We need to specify two numbers, but rather than a and b, which
are difficult to interpret, we may specify the mean
mprior = a/(a + b) and the prior sample size nprior = a + b

I We then solve for a and b via

a = nprior ×mprior

b = nprior × (1−mprior).

I Intuition: a is like a prior number of successes and b like the prior
number of failures.
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An Example

I Suppose we set nprior = 5 and mprior = 2
5 .

I It is as if we saw 2 successes out of 5.
I Suppose we obtain data with N = 10 and y

n = 7
10 .

I Hence W = 10/(10 + 5) and

E[θ|y ] =
7

10
× 10

10 + 5
+

2
5
× 5

10 + 5

=
9

15
=

3
5
.

I Solving:

a = nprior ×mprior = 5× 2
5

= 2

b = nprior × (1−mprior) = 5× 3
5

= 3

I This gives a beta(y + a,n− y + b) = beta(7 + 2,3 + 3) posterior.
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Beta Prior, Likelihood and Posterior
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Figure 14: The prior is beta(2,3) the likelihood is proportional to a beta(7,3)
and the posterior is beta(7+2,3+3).
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Choosing a Prior, Approach Two

I An alternative convenient way of choosing a and b is by
specifying two quantiles for θ with associated (prior) probabilities.

I For example, we may wish Pr(θ < 0.1) = 0.05 and
Pr(θ > 0.6) = 0.05.

I The values of a and b may be found numerically.
I For example, we may solve

[p1 − Pr(θ < q1|a,b)]2 + [p2 − Pr(θ < q2|a,b)]2 = 0 (3)

for a,b.
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Beta Prior Choice via Quantile Specification
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Figure 15: beta(2.73,5.67) prior with 5% and 95% quantiles highlighted.
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Bayesian Sequential Updating

I We show how probabilistic beliefs are updated as we receive
more data.

I Suppose the data arrives sequentially via two experiments:
1. Experiment 1: (y1, n1).
2. Experiment 2: (y2, n2).

I Prior 1: θ ∼ beta(a,b).
I Likelihood 1: y1|θ ∼ binomial(n1, θ).
I Posterior 1: θ|y1 ∼ beta(a + y1,b + n1 − y1).
I This posterior forms the prior for experiment 2.
I Prior 2: θ ∼ beta(a?,b?) where a? = a + y1, b? = b + n1 − y1.
I Likelihood 2: y2|θ ∼ binomial(n2, θ).
I Posterior 2: θ|y1, y2 ∼ beta(a? + y2,b? + n2 − y2).
I Substituting for a?,b?:

θ|y1, y2 ∼ beta(a + y1 + y2,b + n1 − y1 + n2 − y2).
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Bayesian Sequential Updating

I Schematically:

(a,b)→ (a + y1,b + n1− y1)→ (a + y1 + y2,b + n1− y1 + n2− y2)

I Suppose we obtain the data in one go as y? = y1 + y2 successes
from n? = n1 + n2 trials.

I The posterior is

θ|y? ∼ beta(a + y?,b + n? − y?),

which is the same as when we receive in two separate instances.
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Predictive Distribution

I Suppose we see y successes out of N trials, and now wish to
obtain a predictive distribution for a future experiment with M
trials.

I Let Z = 0,1, . . . ,M be the number of successes.
I Predictive distribution:

Pr(z|y) =

∫ 1

0
p(z, θ|y)dθ

=

∫ 1

0
Pr(z|θ, y)p(θ|y)dθ

=

∫ 1

0
Pr(z|θ)︸ ︷︷ ︸
binomial

×p(θ|y)︸ ︷︷ ︸
posterior

dθ

where we move between lines 2 and 3 because z is conditionally
independent of y given θ.
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Predictive Distribution
Continuing with the calculation:

Pr(z|y) =

∫ 1

0
Pr(z|θ)× p(θ|y)dθ

=

∫ 1

0

(
M
z

)
θ

z (1− θ)M−z

×
Γ(n + a + b)

Γ(y + a)Γ(n − y + b)
θ

y+a−1(1− θ)n−y+b−1dθ

=

(
M
z

)
Γ(n + a + b)

Γ(y + a)Γ(n − y + b)

∫ 1

0
θ

y+a+z−1(1− θ)n−y+b+M−z−1dθ

=

(
M
z

)
Γ(n + a + b)

Γ(y + a)Γ(n − y + b)

Γ(a + y + z)Γ(b + n − y + M − z)

Γ(a + b + n + M)

for z = 0,1, . . . ,M.

A likelihood approach would take the predictive distribution as
binomial(M, θ̂) with θ̂ = y/n: this does not account for estimation
uncertainty.

In general, we have sampling uncertainty (which we can’t get away
from) and estimation uncertainty.
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Predictive Distribution
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Figure 16: Likelihood and Bayesian predictive distribution of seeing
z = 0, 1, . . . ,M = 10 successes, after observing y = 2 out of n = 20
successes (with a = b = 1).
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Predictive Distribution

The posterior and sampling distributions won’t usually combine so
conveniently.

In general, we may form a Monte Carlo estimate of the predictive
distribution:

p(z|y) =

∫
p(z|θ)p(θ|y)dθ

= Eθ|y [p(z|θ)]

≈ 1
S

S∑
s=1

p(z|θ(s))

where θ(s) ∼ p(θ|y), s = 1, . . . ,S, is a sample from the posterior.

This provides an estimate of the predictive distribution at the point z.
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Predictive Distribution

Alternatively, we may sample from p(z|θ(s)) a large number of times
to reconstruct the predictive distribution:

θ(s)|y ∼ p(θ|y), s = 1, . . . ,S Sample from posterior
z(s)|θ(s) ∼ p(z|θ(s)), s = 1, . . . ,S Sample from predictive

To give a sample z(s) from the posterior, this is illustrated in Figure 17.
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Figure 17: Sampling version of prediction in Figure 16, based on S = 10, 000
samples.
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Difference in Binomial Proportions

I It is straightforward to extend the methods presented for a single
binomial sample to a pair of samples.

I Suppose we carry out two binomial experiments:

Y1|θ1 ∼ binomial(n1, θ1) for sample 1
Y2|θ2 ∼ binomial(n2, θ2) for sample 2

I Interest focuses on θ1 − θ2, and often in examing the possibitlity
that θ1 = θ2.

I With a sampling-based methodology, and independent beta
priors on θ1 and θ2, it is straightforward to examine the posterior
p(θ1 − θ1|y1, y2).
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Difference in Binomial Proportions

I Savage et al. (2008) give data on allele frequencies within a
gene that has been linked with skin cancer.

I It is interest to examine differences in allele frequencies between
populations.

I We examine one SNP and extract data on Northern European
(NE) and United States (US) populations.

I Let θ1 and θ2 be the allele frequencies in the NE and US
population from which the samples were drawn, respectively.

I The allele frequencies were 10.69% and 13.21% with sample
sizes of 650 and 265, in the NE and US samples, respectively.

I We assume independent beta(1,1) priors on each of θ1 and θ2.
I The posterior probability that θ1 − θ2 is greater than 0 is 0.12

(computed as the proportion of the samples θ(s)
1 − θ

(s)
2 that are

greater than 0), so there is little evidence of a difference in allele
frequencies between the NE and US samples.

100 / 101



Binomial Two Sample Example
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Figure 18: Histogram representations of p(θ1|y1), p(θ2|y2) and
p(θ1 − θ2|y1, y2). The red line in the right plot is at the reference point of zero.
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