2018 PAA Short Course on "Bayesian Small Area Estimation using Complex Data" Introduction and Overview

Sam Clark¹, Zehang Richard Li², Jon Wakefield^{2,3}

¹Department of Sociology, Ohio State University, ²Departments of Statistics, University of Washington, ³Departments of Biostatistics, University of Washington

Introductions

Sam is a demographer with interest in population health in Africa

- Mortality and its determinants
- Epi-demographic transitions
- Experience with demographic surveillance system data collection
- Interests in population indicator measurement
- Richard is a statistician, completing his thesis at UW, with interests in
 - Verbal autopsy
 - Bayesian methods and computation
 - Estimation of subnational variation in U5MR
 - Has lead the computational aspects of the U5MR project, including the creation of the SUMMER package

Jon is a statistician with longstanding interests in

- Bayesian statistics
- Geospatial models and applications in spatial epidemiology
- Survey sampling and design effects
- Small-area estimation

All three work with IGME group on estimating subnational variation in U5MR.

Demonstrations of methods via R implementations will be carried out in class. Students are encouraged to follow along.

Code and other materials (course notes, papers) are available at the course website:

http://faculty.washington.edu/jonno/PAA-SAE.html

Tatala and average for a surge	1
	Lecture
	1
Surveys with a complex design.	Lectures
If small or no samples in some	5,6
areas, there is high instability	
To reduce instability, use the to-	Lectures
tality of data to smooth both lo-	3, 4
cally and globally over space	
Is convenient/designed for	Lecture
smoothing	1
Required to describe and ana-	Lectures
lyze the sample	5, 6, 7
In R programming environment,	Lecture
with survey and INLA packages.	2
Maps of uncertainty, accompa-	Lectures
nied with uncertainty, GIS	2, 8
	areas, there is high instability To reduce instability, use the to- tality of data to smooth both lo- cally and globally over space Is convenient/designed for smoothing Required to describe and ana- lyze the sample In R programming environment, with survey and INLA packages. Maps of uncertainty, accompa-

DAY 1:

- 9.00–10.30 Lecture 1: Bayesian Statistics (Wakefield). Motivation; Bayesian learning, Probability and Bayes theorem; Standard distributions and conjugacy (binomial and normal distributions in detail).
- 10.30–11.00 Coffee Break
- 11.00–12.30 Lecture 2: Introduction to R (Li): Introduction to R and RStudio. Examples of normal and binomial sampling, introduction to GIS in R.
- 12.30–1.30 Lunch Break
- 1.30–2.15 Lecture 3A: Hierarchical Bayes Modeling (Wakefield). Motivation; Non-spatial hierarchical models for normal data; Non-spatial hierarchical models for binomial data.
- 2.15–3.00 Lecture 3B: Hierarchical Bayes Modeling in R (Li). R component: estimation and mapping for hierarchical Bayes models. Introduction to INLA. Simple SAE.
- 3.00–3.30 Coffee Break
- 3.30–4.30 Lecture 4A: Hierarchical Spatial Bayes Modeling (Wakefield). Spatial hierarchical models for normal data; Spatial hierarchical models for binomial data; Overview of spatial random effects models; normal and binomial examples.
- 4.30–5.00 Lecture 4B: Hierarchical Spatial Bayes Modeling in R (Li). R component: Discrete spatial modeling with INLA.

DAY 2:

- 9.00–10.00 Lecture 5A: Survey Sampling (Wakefield). Overview; Simple random sampling; Stratified simple random sampling; Cluster sampling.
- 10.00–10.30 Lecture 5B: Survey Sampling in R (Li): Survey sampling in R, the survey package.
- 10.30–11.00 Coffee Break
- 11.00–12.00 Lecture 6A Introduction to SAE: (Wakefield): Overview of SAE models; Multistage sampling; Simple SAE Models.
- 12.00–12.30 Lecture 6B: Introduction to SAE in R (Li): Simple SAE in R using the SUMMER package.
- 12.30–1.30 Lunch Break
- ▶ 1.30-2.15 Lecture 7A: SAE (Wakefield). More complex modeling and BRFSS example.
- 2.15–3.00 Lecture 7B: SAE in R (Li). BRFSS example. More on the SUMMER package (simple binary outcome, no time).
- 3.00–3.30 Coffee Break
- 3.30–4.30 Lecture 8A: Advanced SAE (Wakefield). Space-time modeling illustrated with Kenya U5MR example. Continuous spatial models and estimation at the pixel level.
- 4.30–5.00 Lecture 8B: Advanced SAE in R (Li) U5MR SUMMER package example.