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1. Modeling Framework. In this section we discuss the overview of the modeling
framework. The excess is defined as the observed all-cause mortality (ACM) minus the ex-
pected ACM. Modeling is required to obtain the latter. If ACM data were available for all
countries during historic and pandemic then we would only need to model the historic data
to produce expected numbers (assuming that there were no issues of undercount or late reg-
istration).

One approach, for countries have full ACM data, would be to model the historic and pan-
demic data simultaneously. For example, one could include in a model seasonable terms and
a long-term trend, and then have an indicator for pandemic times. However, the aim of our
modeling of pandemic data (for those countries that have it), is to construct a predictive model
for those countries who have not provided ACM data in the pandemic, using country-specific
covariates. Many of these covariates vary by month, and we wish the “signal” during the
pandemic to be attributed to the covariates, rather than country-specific seasonality terms.
Hence, we first model the historic period data (to create expected numbers), and then, condi-
tional on the expected numbers, model the pandemic data. The expected numbers modeling
is done for all countries, regardless of the data they have available in the pandemic. Recall,
the excess

δc,t = yc,t −Ec,t,
and the first term on the RHS is known for countries with full data, in which case the posterior
for δc,t is based on the posterior for Ec,t only.

Full Data Subnational Data Annual Data No Data All Data
Historic yhf yhs yha yhn yh

Pandemic ypf yps ypa ypn yp

Expected Ef Es Ea En E

Covariates xf Not used xa xn x

TABLE 1
Notation by data types in historic and pandemic times; ypn is unobserved.

Table 1 summarizes the notation for the data we have available. We let φ represent the pa-
rameters of the models that are used to calculate the expected numbers and λ the parameters
that are used to model the pandemic data. The posterior for the unknown parameters is:

π(φ,λ|yh,yp,E,x)∝ p(yh,yp|φ,λ,E,x)× π(φ,λ)

= p(yh|φ)π(φ)× p(yp|λ,E,x)π(λ)
1
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where E = E(φ,yh). We next discuss the modeling of each of the historic and pandemic
data.

The posterior for the parameters φ in the expected numbers model is:

p(φ|yh)∝ p(yh|φ)︸ ︷︷ ︸
Expecteds Model

×π(φ).

This posterior is approximated using the mgcv library gam function (Wood, 2017, Section
6.10).

We let λ= (θ,p) where θ are the parameters of the covariate model and p the parameters
of the subnational multinomial model. For the annual data we use a mulitnomial model with
the probabilities depending on the covariate model. The posterior is,

π(θ,p|ypf,yps,ypa,Ef,Ea,xf,xa)∝ p(ypf,yps,ypa|θ,p,Ef,Ea,xf,xa)× π(θ,p)
= p(ypf|θ,Ef,xf)× π(θ)︸ ︷︷ ︸

Covariate Model

× p(yps|p)× π(p)︸ ︷︷ ︸
Subnational Model

× p(ypa|θ,Ea,xa)︸ ︷︷ ︸
Annual Model

.

We can factor the above into two pieces: the θ parameters from the covariate model and an-
nual models, and the p parameters from the subnational model. Note that there are very few
annual data countries and for practical reasons we estimate the θ parameters from the covari-
ate model, and then used samples from the posterior to estimate the monthly contributions to
the annual data. Predictive distributions are constructed for the total ACM counts for the no
data countries, using

p(ypn|θ,xn),

which is a negative binomial distribution.
To obtain the posterior for the excess δf,δs,δa,δn for countries with full, subnational,

annual and no data, respectively, note that δf = δ(φ), δs = δ(φ,p),δa = δ(φ,θ) and δn =
δ(φ,θ). With sampling-based methods (including INLA, which allows samples to be taken
from the posterior), it is straightforward to obtain samples for δf,δs,δa,δn using samples
from φ,θ, respectively.

Notes:

• For the multinomial within-year expected mortality model we use temperature only to ac-
count for seasonality of deaths. This is a simple model and so the month to month variation
in the excess for the countries that use this model will not be as accurate as the cumulative
yearly totals that use the observed mortality counts.

• For the subnational model, we emphasize that do not use any covariates.
• The above is slightly simplified, because in reality many countries switch between data

types, such as having full data for part of the pandemic and then annual data only or no data.
We could write down a more detailed posterior distribution but it would be complicated and
no insight would be gained. As described in Section 4 of the main paper, we “benchmark"
the join between full and no data, so that there are no sudden jumps.

• In a similar vein, China has subnational and annual national data, and we could write down
the posterior, but it would not be useful.

Figure 1 summarizes, via a decision tree, how the models are chosen for the different types
of data, and Figure 2 shows the relationship between the different models, and how they feed
into the excess calculation.
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FIG 1. Flowchart of ACM model choices based on data availability. The bottom box corresponds to the “No Data
situation”.
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2. Supplementary Materials: Evidence from Countries without All-Cause Mortality
Data. We briefly review preliminary evidence from researchers, journalists and various offi-
cials of significant excess mortality in many of the countries for which we have no ACM data.
This includes, but is not limited to, evidence from Honduras (EFE, 2021), Haiti (DeGennaro
et al., 2021), Pakistan (Kirmani et al., 2020), Tanzania (Parkinson, 2021), Bangladesh (Hanifi
et al., 2021; Rahman et al., 2021a,b), Zambia (Mwananyanda et al., 2021; Hamukale et al.,
2021), Syria (Watson et al., 2021), Yemen (Besson et al., 2021), Sudan (News, 2020; Moser
et al., 2021) and Papua New Guinea (Jorari, 2021). Also, evidence from territories which are
not member countries show significant excess that tracks reported COVID-19 deaths. These
territories neighbor many countries for which we lack data and are suggestive of similar
patterns in their regions. This includes territories in the Pacific such as New Caledonia and
French Polynesia, in the Caribbean such as Aruba, Guadeloupe, Martinique and Guadeloupe,
and in Africa such as Réunion and Mayotte (Karlinsky and Kobak, 2021).
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3. Supplementary Materials: Poisson-Multinomial Trick. Multinomial data cannot
be directly fitted in INLA but can be modeled using the Poisson-Multinomial trick (Baker,
1994). For the multinomial model we use in Section 3.4 of the paper we can fit the Poisson
model:

Yc,v,m|λc,v, β ∼ Poisson(λc,v exp(zc,v,mβ)),

with the default prior (normal distribution with large variance) for β and the improper prior
1/lambdac,v for λc,v . We let gc,v,m = gc,v,m(β) = exp(zc,v,mβ) and Gc,v =

∑
m′ gc,v,m′ .

Then

Pr(Y |β) =
∏
c

∏
v

∫ ∏
m

exp(−λc,v × gc,v,m)(λc,vgc,v,m)yc,v,m × λ−1c,v dλc,v × gyc,v,m
c,v,m

∝
∏
c

∏
v

G−yc,v,+
c,v

∏
m

gyc,v,m
c,v,m

=
∏
c

∏
v

∏
m

(
gc,v,m
Gc,v

)yc,v,m

,

i.e., a multinomial with probabilities gc,v,m/Gc,v , which is the model we wish to fit.

4. Supplementary Materials: Subnational Model Simulation Study. To examine the
behavior of the Multinomial model that we use for subnational modeling in Section 5.1 of
the paper, we perform a simulation study. We simulate ACM national data in month t from
the model

Y+,t = 1000 + 0.1× [1 + sin (Wt)] ,

for t= 1, . . . ,24 where Wt = 0, π6 ,
π
3 , . . . ,4π. Then from this underlying true total mortality

we simulate subnational counts for K = 5 regions from our Multinomial model where,

Y t|pt ∼MultinomialK+1(Yt,+,pt),

with pt = {pt,k, k ∈ S},

pt,k =Pr( death in region k | period t, death ),

and

log
(

pt,k
pt,K+1

)
= αk + εt,

where the error term is given by εt ∼N(0,0.52) and the αk parameters are given in Table 2.

Region 1 Region 2 Region 3 Region 4 Region 5
αk -0.25 -1.3 -1.15 -2.5 1.75

TABLE 2
Values of αk used in the simulation study for the subnational model, k = 1, . . . ,5.

Next, we randomly sample a number J of region-time points to remove as missing sub-
national values, to replicate a random pattern of missingness, similar to what we see in the
subnational data for India. We choose J = 20 region-time observations, from the available
total of 24× 5 = 120. Finally, we fit the multinomial model described above using this data
with the first t= 1, . . . ,18 time points as observed subnational and total national mortality for
fitting the model, and the remaining t= 19, . . . ,24 time points for prediction and validation.
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We then compare the predicted values from this subnational model to the true values of Y+,t
which are known in this simulation setting.

In Figure 3, we show the data that are available, along with the predictions and truth in the
final 6 time periods. In Figure 4, we show the observed national ACM in the last 6 months,
along with the point and interval estimate from our model. The model captures the trend in
the mortality well, though the interval estimates are quite wide.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0

250

500

750

1000

1250

Time

D
ea

th
s

Type
Estimated

Region1

Region2

Region3

Region4

Region5

True

FIG 3. Simulated regional and national data across all 24 time points, with the last 6 time points showing the
estimated and true deaths.
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FIG 4. Subnational simulation: True and predicted national deaths during the prediction window (6 time points),
along with 95% credible interval.
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5. Supplementary Materials: Gamma Expected Numbers. In Section 3 of the paper
we describe how the expected numbers are modeled using a negative binomial spline model.
From this model we obtain Monte Carlo samples from the predictive distribution of the ex-
pected numbers in pandemic months. Note that we obtain the predicted for the mean count
(so that we do not include negative binomial uncertainty). We approximate the distribution
of the Monte Carlo samples using gamma distributions, which can then be marginalized over
in our predictive log-linear Poisson model (since they are conjugate) – see Section 4 of the
main paper for details.

In Figure 5 we show the gamma fits to the predicted distribution of the expected numbers,
in December 2021, for a selection of countries. The differences between the predictions and
the gamma approximations are small in all cases. This is a randomly chosen month, and is
representative of the accuracy of the approximation.
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FIG 5. Gamma fits to the predictive distributions of the expected numbers, for a range of countries, in December
2021.
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6. Supplementary Materials: Further Results.

6.1. Global Summaries. We first discuss the estimates for the association parameters in
the log-linear model described in Section 4 of the paper:

log θc,t = α+

B∑
b=1

βbtXbct +

G∑
g=1

γgZgc + εc,t.(1)

Apart from the high income indicator, all covariates are standardized to have mean 0 and
standard deviation 1, which aids in prior specification and when comparing estimated coeffi-
cients. This should be borne in mind as associations are examined.

We first look at empirical univariate associations. We model the temperature associa-
tion as time-varying and so in Figure 6 we plot log(Yc,t/Ec,t) versus temperature xc,t (for
countries with observed data) and for each month t = 1, . . . ,24. Starting with the simpler
model Yc,t|θc,t ∼ Poisson(Ec,tθc,t) we derive the variance for log(Yc,t/Ec,t) as proportional
to Y 2

c,t/Ec,t and we take the reciprocal of this in a weighted least squares analysis. In Fig-
ure 7, we plot the exponentiated slopes from simple linear models fitted to each month, to
give an indication of the associations. We see a clear time-varying association. The pattern
is consistent with the bottom left panel of Figure 16, where the exponentiated fit from the
overdispersed Poisson model is shown, albeit smoothed which is induced by the RW2 prior
on the log relative rates associated with temperature.
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FIG 6. Association between log(Y/E) by month and temperature, with smoothers.

In Figures 8 and 9 we see the time-varying associations with the sqrt COVID-19 death
rate, for high income and low/middle income countries. The associations are strong and the
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FIG 7. Estimates of relative rate parameters associated with temperature, by month.

smoothed versions from the full covariate model can be seen in the top right panel of Figure
16.
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FIG 8. Association between log(Y/E) by month and sqrt COVID-19 death rate, with smoothers.

Figures 10 and 11 show the COVID-19 positive test associations, and we see similar and
positive though weak associations in both income groups.

Figures 12 and 13 show the containment associations, and we see again similar and nega-
tive relationships in both income groups.
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FIG 9. Estimates of relative rate parameters associated with sqrt COVID-19 death rate, by month.
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FIG 10. Association between log(Y/E) by month and positive COVID-19 test rate, with smoothers.

Finally, the two constant covariate associations are given in Figure 14. A high historic dia-
betes rate is associated with a lower rate. Figure 15 summarizes the fixed effects. In general,
for the variables with interactions, the associations are stronger and the intervals narrower, for
low/middle income countries, where the pandemic produced more excess deaths (see Figure
18).

In Figure 15 we summaries the fixed effect parameters – we parameterize the model so that
the time-varying associations have an overall (average) association and then variation around
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FIG 11. Estimates of relative rate parameters associated with positive COVID-19 test rate, by month.
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FIG 12. Association between log(Y/E) by month and containment, with smoothers.

this with a RW2 (with a sum-to-zero constraint). The strongest association is with the sqrt
COVID-19 death rate in low- and middle-income countries, in the expected direction. The
test positivity rate in low- and middle-income countries is also positivity, as is the tempera-
ture association. The sqrt COVID-19 death rate in high-income countries is in the opposite
direction to that expected. Containment in low- and middle-income countries has a negative
association, as does the historic diabetes rate.
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FIG 13. Estimates of relative rate parameters associated with containment, by month.
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diabetes rates from 2019.
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FIG 15. Fixed association coefficients, with 95% interval estimates. We plot the multiplicative change in the
relative rate of the excess associated with a 1-unit increase in the relevant covariate.
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The fitting of the covariate model to the monthly ACM data resulted in the association
parameters in Figure 16. We see that the time-varying aspect seems merited in all cases,
apart perhaps from test positivity which is relatively constant, and close to 1. We could have
removed this covariate from the model, but we wanted to minimize model changes. The
containment and test positivity follow qualitatively similar shape; initially the association
is lower so that higher containment and test positivity rates are associated with a relatively
reduced mortality rate, relative to that expected. And then, from July 2020, the associations
are relatively constant.

We did consider models using lagged covariates, but the fits were similar to the ones shown
here. We will continue to explore this issue in future extensions. In general, in future work we
would like to investigate flexible yet principled model-building strategies, with an enhanced
set of country-level variables.
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FIG 16. Time-varying associations versus month, with 95% interval estimates. We plot the multiplicative change
in the relative rate of the excess associated with a 1-unit increase in the relevant covariate, against month.
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Using samples from the posterior (available from INLA), we can obtain rankings of the
countries, in terms of the excess mortality rate. We show these rankings in Figure 17. The
posterior probability that Peru has the highest excess rate is very close to 1. Similarly, the
second highest rank is for Bulgaria, again with high probability. From the 3rd highest on it
is less definitive but Bolivia also clearly has a high excess rate, as do the Russian Federation,
North Macedonia, Armenia and Montenegro. The posterior distribution for Saint Vincent and
the Grenadines is very wide, and so its probabilities are sprinkled across the rankings. After
the first two ranks, there is a lot of ambiguity in the rankings, showing that it is deceptive to
simply rank in terms of a single posterior summary such as the median.

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Ranking

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Country

Andorra

Armenia

Azerbaijan

Belarus

Bolivia (Plurinational State of)

Bulgaria

Georgia

Guyana

Indonesia

Lithuania

Montenegro

Niue

North Macedonia

Peru

Romania

Russian Federation

Saint Vincent and the Grenadines

San Marino

Serbia

FIG 17. Posterior probability of particular countries having high ranks for the greatest excess mortality rate.



16

In Figure 18, we show the cumulative excess deaths, by income status. The majority of the
excess deaths occur in low/middle income countries.
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FIG 18. Cumulative excess deaths over 2020–2021, by high and low/medium income.

In Figure 19 we plot cumulative excess deaths over 2020–2021, by region. The most
startling change is how large the SEARO contribution becomes, because of the addition of
India.
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6.2. Argentina. We now describe each of the analyses carried out for countries with sub-
national data, starting with Argentina.

We first describe the available data. For 2019 and 2020, we have total national deaths and
deaths in the province of Cordoba, both by month. For 2021, there are subnational data for
Cordoba. In Figure 20 we plot the fraction of Cardoba deaths to national deaths in 2019 and
2020. There is some variation, and perhaps a small uptick in the fraction toward the end of
2020, but overall the fraction is quite constant, and there is not a drastic change in the first
year of the pandemic, as compared to the previous year.
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FIG 20. Fractions of the total deaths in Cordoba, for 2019 and 2020, with smoother.

In Figure 21 we plot the predictions for 2021 from the subnational binomial model and
from the predictive covariate model which is estimated from the countries with national
monthly data. There are some differences between the results, with the covariate model giv-
ing wider intervals and higher estimates from April 2020. In the reported results we use the
subnational estimates.
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6.3. China. For China, we have two main data sources. First, the annual national ACM
from 2015 to 2021, as reported by the National Bureau of Statistics of China in the 2021 sta-
tistical yearbook (National Bureau of Statistics of China, 2021) and a January 2022 press re-
lease (National Bureau of Statistics of China, 2022). Second, we may potentially utilize data
on the daily number of deaths registered by the nationally representative Disease Surveillance
Points (DSP) system in January–August 2019 and January–August 2020, as reported by Qi
et al. (2022). The DSP registered about 18% of total deaths in China in 2019 (Zeng et al.,
2020) and we aggregate the DSP data to monthly national counts. The data collection sites
are constant over time so that the fraction of the population covered is constant also. To use
the subnational model described in Section 5.1 of the main paper we impute monthly national
ACM counts, based on a 12-cell multinomial, conditioned on the annual national ACM, The
monthly probabilities are modeled as a log-linear function of temperature, as we did in the
modeling of the expected numbers (described in Section 3 of the main paper).

To make inference for this model we needed to write our own Markov chain Monte Carlo
(MCMC) algorithm (the model is not of the form allowed in INLA, and it requires the gener-
ation of discrete counts, which cannot be done in Stan). We denote the apportioned counts
in 2019 as the 12× 1 vector Y 2019, and treat as known (so that we ignore the fact that we
imputed these counts). We let z2019 and z2020 represent the monthly DSP counts in years
2019 and 2020, and pt be the fraction of deaths from the DSP in month t. We model pt as,
logit(pt) = α+ εt, with εt ∼N(0, σ2ε ) and let a2020 be the collection (across months) of fixed
covariate predictions based on the global covariate model.

The unknown monthly ACM counts in 2020 are denoted Y 2020. The posterior is,

p(Y 2020, α,σ2ε |z2019,z2020,Y 2019, Y 2020
+ ,a2020)∝ p(α,σ2ε |z2019,Y 2019)

× p(Y 2020|α,σ2ε ,z2019,z2020, Y 2020
+ )

An MCMC scheme alternates between sampling from the conditionals for p and for Y 2020.
The conditional for α,σ2ε is

p(α,σ2ε |z2019,Y 2019)∝ p(z2019|α,σ2ε ,Y 2019)

∼
8∏
t=1

Binomial(Y 2019
t , pt)× π(α)π(σ2ε ),

where pt = pt(α,σ
2
ε ). The conditional for Y 2020 is more involved:

p(Y 2020|α,σ2ε ,z2019,z2020, Y 2020
+ ,a2020)∝ p(z2020|Y 2020, α,σ2ε )︸ ︷︷ ︸

Product of Binomials

×p(Y 2020|Y 2020
+ ,a2020)︸ ︷︷ ︸

Multinomial

For the proposal for the vector Y 2020 we need to ensure that the total Y 2020
+ is respected. The

MCMC algorithm we use, is in the spirit of algorithms described in Wakefield et al. (2011),
and is given by:

1. Draw K from a discrete distribution on 1,2, . . . ,6.
2. Draw K counts. Decrease these counts by some fixed discrete number J .
3. Draw K of the remaining counts. Increase these counts by J .
4. Together with the counts we do not sample, we therefore form a new set of counts with

the same total.

We first report a simulation study in which we validate the MCMC sampling for the prediction
of monthly country ACM from reported annual ACM and monthly subnational ACM. We
conceived the following setup where we simulate,

Y+,t = Unif(5000,20000)
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with t= 1, . . . ,12 as the true unobserved total monthly ACM and where we have the observed
annual total

∑12
t=1 Y+,t and the observed subnational ACM given by,

zt = Y+,t × pt
where logit pt = −1.5 + εt with εt ∼ N(0,0.1). We also simulate our covariate model out-
comes as ac = Y+,t + δt with δt ∼ N(0,0.05× Y+,t) and where the error has variance frac-
tionally larger than the percent relative error of the covariate model. Following this simulation
scheme for the data, through the MCMC sampling approach outlined above and initializing
using Y+,t/12 for each cell count, we run 10,000 iterations. We obtain monthly estimates that
stabilize around the true values Y+,t as shown in Figure 22, following an acceptance rate that
stabilizes just below 0.50 as shown in Figure 23.
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FIG 22. Estimated monthly ACM across all 12 time points where the horizontal lines display the true monthly
simulated ACM.

There are reasons to believe that the China DSP system may have become less reliable
during the pandemic (Haidong Wang, personal communication), and so we carry out two
analyses, one in which we apportion out the annual ACM counts using the DSP data and
covariate prior, and the other in which we use the covariate prior only.

In Figure 24, we plot the expected numbers, with uncertainty, along with the predictions
based on the covariate model only (2020–2021), and the covariate model plus subnational
data (2020). The 2020 estimates are very similar under the two approaches, which is reassur-
ing. For the final reported numbers, we used the covariate model, given the aforementioned
question mark over the accuracy of the DSP data.
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FIG 23. Cumulative acceptance rate of proposed monthly ACM vector across iterations within the MCMC chain.
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FIG 24. Expected numbers for China, along with within-year predictions based on: covariate model only, covari-
ate model and subnational data.
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6.4. India. For India, we use a variety of sources for registered number of deaths at the
state and union-territory level. Some information was reported directly by the states through
official reports and automatic vital registration:

Karnataka Birth and Death Registration (URL data 2022-03-05):
https://ejanma.karnataka.gov.in/frmTransaction_Details.aspx

Kerala Civil Registrations (URL date 2022-03-05):
https://cr.lsgkerala.gov.in/Pages/Map.php

Birth and Death Odisha (URL date 2022-03-05):
https://www.birthdeath.odisha.gov.in/#/home

Tamil Nadu Births and Deaths (URL date 2022-03-05):
https://www.crstn.org/birth_death_tn/MisRep.jsp

We also used data obtained by journalists who obtained death registration information
through Right To Information requests: Rukmini (2022a); Saikia (2022); NDTV.com (2022);
Ramani and Radhakrishnan (2021); Ramani (2021a,f,b); Rukmini (2022b); Ramani (2021c);
Ramani and Vasudeva (2021b); Ramani (2021d); Staff (2022); Ramani (2021e); Ramani and
Vasudeva (2021a); The Times of India (2021). Some of the state level data before and during
the pandemic was scaled up to account for incomplete registration where vital registration
captures only some of the deaths that occur, as shown in Office Of The Registrar General
(2021). For the historic national totals, the WHO takes the Civil Registration System (CRS)
data provided by the Indian government; the CRS is implemented by the Office of the Regis-
trar General of India (ORGI) housed in the Ministry of Home Affairs, under the Registration
of Births and Deaths Act, 1969.

It is known that the CRS suffers from under-reporting. Rao and Gupta (2020) report that
completeness of death registration from 67% in 2011 to 79% in 2017. The WHO adjusts the
CRS data for under-reporting, using a method that uses life tables and data from the Indian
Sample Registration System (SRS) which is a random sample of under 1% of the national
population (WHO, 2020). In Figure 25 we plot the completeness by year, along with the
completeness we assume for 2020 and 2021 (we use the last completeness estimate).

Figure 26 displays the reported deaths by those states that we have data for during the
pandemic.

For the final 3 months of 2021 there are data available from a single state only (Tamil
Nadu) available, and for these 3 months the counts appear high (perhaps due to late registra-
tion), and so we do not use these data and instead use a simple predictive model. Specifically,
we model log(Yt/Et) (using the estimated Yt for the first 21 months and weighting by the
variance of the estimate) using an autoregressive order 1 (AR1) model in INLA (we experi-
mented with various choices, including splines and RW1 and RW2 models), and then predict
the final 3 months. Figure 27 shows various summaries from the AR1 model. We wanted pre-
dictions for last 3 months that were relatively neutral, since we have not seen any evidence
to suggest large changes in India in this period.

Figure 28 shows the predicted ACM for India, based on the state level data, along with the
expected deaths, both with credible intervals.

Figure 29 shows the ACM counts by states, and the remainders, which sum to the total
ACM, by month. Figure 30 shows the pandemic period, with the crucial change being that
now the black rectangles are estimated, based on the fraction of deaths in each state, as
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FIG 25. Completeness for the 17 states for which we have subnational data during the pandemic.
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FIG 27. AR1 prediction model for India. In the bottom left we plot the AR1 contribution.
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FIG 28. Estimates with 95% uncertainty for India. The final 3 months are based on an AR1 model.
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FIG 29. All-cause mortality by month in pre-pandemic period, 2015–2019. Black rectangles are totals while
colored rectangles are the states for which we have data in the pandemic.
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FIG 31. Cumulative excess over January 2020 to December 2021. The black curve is the contribution from the
observed state level data.

estimated from the data in Figure 29. Figure 31 shows the cumulative excess over January
2020–December 2021, along with the estimated contribution from the state-level data only.

Recall that the subnational model is built on the assumption that the proportion of deaths
in a state is approximately constant over time. Having data from many states does protect
from requiring a constant fraction assumption for all states, since the level of bias depends
on the cumulative effects of departures from constancy across all states.

To address the sensitivity we carried out analyses based on different subsets of the data and
estimating the fractions of deaths based on data from 2015–2019, or from 2019 only. Figures
32 and 33 show the time series of estimated national ACM for different subsets of states, and
based on different years of subnational data. Figures 34 and 35 show the cumulative national
ACM versions of these plots. For monthly and cumulative plots we split into two sets to make
the plots simpler to read. The cumulative totals are substantively similar, offering evidence
that the excess result is not being driven by data from any one state.

To further assess the Indian subnational model, we carry out the following leave-one-
out strategy. We systematically leave one state out at a time, and then estimate the monthly
national distribution of ACM, by month. We then apply the estimate of the fraction of the
left out state to the total, and compare with the observed ACM. Figures 36 and 37 show the
resultant time series and cumulative totals. The predictions are better for some states than
others but they are not systematically higher or lower, which gives some reassurance that our
model is robust. Chandigarh is low and Chhattisgarh is high, but these states are responsible
for a small proportion of the total.
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FIG 32. Time series of ACM with different states excluded, and with different years of data used for the expected
numbers.
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FIG 33. Time series of ACM with different states excluded, and with different years of data used for the expected
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FIG 34. Cumulative excess with different states excluded, and with different years of data used for the expected
numbers. Based on all the data, we estimate that India’s excess is 4.7 million deaths, with a 95% credible interval
of (3.31, 6.48) million.
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FIG 35. Cumulative excess with different states excluded, and with different years of data used for the expected
numbers. Based on all the data, we estimate that India’s excess is 4.7 million deaths, with a 95% credible interval
of (3.31, 6.48) million.
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FIG 36. Observed ACM by month and predicted, based on a leave-one-out procedure, in which the state ACM is
predicted based on the data from all other states.
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FIG 37. Cumulative ACM by month and predicted, based on a leave-one-out procedure, in which the state ACM
is predicted based on the data from all other states.
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In Table 3 we give our estimates (based on all data for the first 21 months and with expected
numbers calculates from 2019) and also give the estimates from IHME, The Economist, Jha
et al. (2022) and three estimates from Anand et al. (2021). The Jha et al. (2022) estimate
is based on a nationally representative telephone survey, a government survey that covers
0.14 million adults and the Government of India’s data from facility-based deaths and CRS
deaths in 10 states. Anand et al. (2021) use three methods: Indian States’ CRS (method 1),
international age-specific infection fatality rates applied to Indian demography (method 2)
and seroprevalence and a household survey (method 3).

There is reasonable agreement between the different estimates, which is reassuring, given
the different data sources used. Along with the sensitivity and leave-one-out analyses, this
provides further evidence that the model is reasonable and the subnational data (taken as a
whole) are representative, so that, when combined, they provide a reliable excess mortality
estimate.

Approach Estimate (×106) Period
Naive 5.04 (4.48, 5.59) Jan 20–Dec 21
WHO 4.74 (3.31, 6.48) Jan 20–Dec 21
The Economist 4.86 (1.70, 8.47) Jan 20–Dec 21
IHME 4.07 (3.71, 4.36) Jan 20–Dec 21
Naive 4.29 (4.00, 4.59) June 20–June 21
WHO 4.33 (2.85, 6.13) June 20–June 21
Jha et al. (2022) 3.23 (3.06, 3.39) June 20–June 21
Naive 3.96 (3.62, 4.29) April 20–June 21
WHO 3.99 (2.40, 5.95) April 20–June 21
Anand et al. (2021) Method 1 3.4 April 20–June 21
Anand et al. (2021) Method 2 4.0 April 20–June 21
Anand et al. (2021) Method 3 4.9 April 20–June 21

TABLE 3
The parentheses give 95% uncertainty intervals. The Jha et al. (2022) estimate is for excess COVID-19 deaths.

The naive estimates are based on the ACM estimates Yt,1/p̂t where Yt,1 is the observed ACM from the available
states, and p̂t is the estimated fraction of deaths available in month t.
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6.5. Indonesia. We have the annual number of national deaths in Indonesia as published
by the Global Burden of Disease (GBD) Study from 2015–2019 GBD (2020). The subna-
tional data consist of the monthly number of deaths from 2015–2021 from Jakarta, Indonesia.
The proportions of deaths in Jakarta in 2015–2019 are shown in Figure 38. Note that this is
only just above 3%. An alternative to using the Jakarta data, is to use the global covariate
model. In Figure 39 we show the comparison between these two analyses (over the period
January 2020–June 2021, in the last 6 months of 2021 there are no subnational data, and so
the covariate model is used). For the covariate model the point and 95% interval estimate
are 495K (256K, 726K) while for the subnational they are 1,024K (752K 1,287K). There are
large differences in the two analyses, and in the main paper the subnational estimates were
the ones we used when reporting regional and global estimates, as WHO liked to use ob-
served data from a country, when available. We believe it is important to see both estimates,
however, because of the small proportion of the population observed in an urban setting.
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FIG 38. Proportion of ACM counts in Jakarta in 2015–2019.
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FIG 39. Estimated ACM (top) and excess ACM (bottom) for Indonesia from covariate model and subnational data
from Jakarta.
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6.6. Turkey. We have monthly annual deaths in Turkey as published by the Turkish Na-
tional Statistics Office from 2015–2019. The subnational data correspond to monthly ACM
counts from 2018–2021 in 24 provinces and cities from all over Turkey, as published by
Guclu Yaman. More details, for 21 of the locations are at https://gucluyaman.com/
tr/excess-mortality-in-turkey/.

Figure 40 shows the fractions of deaths in the 23 subnational areas over 2018–2019. Using
the binomial subnational model, and the global covariate model, we obtain the estimates
shown in Figure 41 – it is reassuring that they are so similar. In the main paper, we used the
subnational estimates.
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6.7. Additional Analyses for Germany and Sweden. After the official release of the
WHO results, there was attention on Germany and Sweden which has lead us to examine
our models and data sources for those countries. The original excess estimate for Germany
was 195K (161K, 229K). This estimate was obtained using a negative binomial model with
a thin-plate spline for the annual trend (on the linear predictor scale). A scaling factor to ac-
count for completeness was also used, which lead the ACM counts in 2016–2018 to be scaled
up. Unfortunately for the adjusted data the spline fit was unduly influenced by a lower count
in 2019 which caused the spline prediction in the pandemic to be too low, and the excess
correspondingly to be too high. We removed the completeness adjustment and replaced the
spline term for the annual trend with a linear term, and this produced the much more rea-
sonable series in the left-hand panel of Figure 42. This produces a revised excess estimate of
122K with a 95% interval of (101K, 143K). With the adjusted data, the spline also produced
a reasonable fit (right-hand panel of Figure 42) and very similar estimates.
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FIG 42. Expected ACM counts and observed ACM (the black lines) for Germany, using unadjusted ACM data.

For Sweden, the WHO made a completeness adjustment for the 2019 mortality count
(which was lower than the previous year), which resulted in an increase in the count, and
this same adjustment was also applied to the 2020 and 2021 counts. The original excess
estimate for Sweden, using the adjusted data, was 11.3K (9.9K, 12.7K). With hindsight the
adjustment was unnecessary and so we present here an analysis with the unadjusted data,
and replacing the spline term for the annual trend with a linear term. The revised estimates
with the unadjusted data are 13.4K (11.7K, 15.2K), so an increase over the previous analysis.
With the unadjusted data the spline model gave similar excess estimates. The fits are shown in
Figure 43. For the next update of estimates, we will revisit the completeness process that was
used to produce the counts used in the various analyses, and also examine different models
for calculating the expected numbers.
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Linear Spline
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FIG 43. Expected ACM counts and observed ACM (the black lines) for Sweden, using unadjusted ACM data.
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7. Supplementary Materials: Model Assessment. The sampling model we assume is,

Yc,t|θc,t ∼NegBinl(Êc,tθc,t, τ̂c,t)

with known overdispersion parameter τ̂c,t and mean E[Yc,t|θc,t] = Êc,tθc,t and var(Yc,t|θc,t) =
Êc,tθc,t

(
1 + Êc,tθc,t/τ̂c,t

)
with

log θc,t = α+

B∑
b=1

βbtXbct +

G∑
g=1

γgZgc + εc,t,(2)

and εc,t ∼iid N(0, σ2ε ).
We wish to assess whether the covariate model provides a good fit to the data. To this end

we perform a number of model checks.

7.1. Fitted Values. We plot fitted values ŷc,t versus observed values yc,t. The fitted values
are given by Ŷc,t = Êc,tθ̂c,t where θ̂c,t is the posterior median. We color code the points by
region. These plots are created both for in-sample in Figure 44, and out-of-sample (via cross-
validation in which data from either a complete country or a complete month are removed)
in Figure 45). As we would expect, the in-sample points almost all lie on the line of equality
(since we include the random effects εc,t for each country-time point combination). The out-
of-sample versions are less good, as expected, but nothing jumps out as being particularly
aberrant.
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FIG 44. In-sample observed versus predicted, color-coded by region.
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7.2. Standardized Residuals. We plot standardized residuals versus time (to see if there
are is systematic model misspecification over time) and versus the log of the fitted values
(to assess whether the mean-variance relationship is adequate), in both cases color coded by
region. Standardized residuals are:

rc,t =
yc,t − ŷc,t√

Êc,tθ̂c,t

(
1 + Êc,tθ̂c,t/τ̂c,t

) .
Figure 46 shows in-sample standardized residuals over time – it is difficult to make any

definitive statements from this plot. There are some relatively high residuals for low fitted val-
ues, but the total number of such points is small, and their contribution to the overall excess
picture is small (the countries with values below 5 in log fitted ACM are (in order from left
to right in the plot) San Marino, Monaco, Saint Kitts and Nevis, Andorra, Antigua and Bar-
buda, Seychelles and the Maldives). Figure 47 shows absolute standardized residuals versus
log fitted values, with a smoother added, for both in-sample and leave-one-out residuals. In
both plots, there is no systematic pattern for larger values, which is important, as this would
indicate a deficiency in the mean-variance relationship.
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FIG 46. In-Sample standardized residuals over time, color-coded by region.
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7.3. Bias and RMSE. We assess the errors in our model, also using CV, over the countries
with ACM data. Let rc,t = Yc,t/Nc,t be the observed ACM rate and r̂c,t = Ŷc,t/Nc,t where
Ŷc,t = PostMedian(Yc,t|y−ct) is the estimated rate. We report the relative bias of the ACM
rate,

(3)
1∑
c |Mc|

∑
c

∑
t∈Mc

r̂c,t − rc,t
rc,t

,

and the absolute version of this quantity,

(4)
1∑
c |Mc|

∑
c

∑
t∈Mc

|r̂c,t − rc,t|
rc,t

.

These measures can be calculated with the estimated rates being based on data with either a
complete country’s worth of data or a complete months worth of data being left out.

We also calculate the root mean squared error (RMSE) of the fit:√
1∑
c |Mc|

∑
c

∑
t∈Mc

(r̂c,t − rc,t)2

again using the two cross-validation schemes (by month and by country). We also estimate
the coverage of the predictive intervals from these CV exercises, at the 50%, 80% and 95%
levels.

Table 4 shows the summaries. The relative biases are small (just under 2%), while the
absolute relative biases are around 10%. The RMSE measures are around 1.25 ×103. Under
both CV schemes, the coverages are a little higher than the nominal for the 50% and 80%
levels and a little lower than the nominal for the 95% level.

CV Level Measure Performance
Country Relative Bias 1.98
Country Absolute Relative Bias 10.08
Country RMSE (×1000) 1.25
Country Coverage: 50% Interval 59.3
Country Coverage: 80% Interval 82.7
Country Coverage: 95% Interval 91.6
Month Relative Bias 1.84
Month Absolute Relative Bias 10.18
Month RMSE (×1000) 1.24
Month Coverage: 50% Interval 57.8
Month Coverage: 80% Interval 83.7
Month Coverage: 95% Interval 92.9

TABLE 4
Leave one country and month out model assessment measures. Relative bias and absolute relative bias are

expressed as percentages.
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8. Supplementary Materials: Data Types By Country. On the following pages we
list the countries for which we produced excess mortality estimates, along with the regions
within which they lie, and the type of data they have available.

Country List
Country WHO Region Data Type
Afghanistan EMRO No Data
Albania EURO Full National
Algeria AFRO Partial National
Andorra EURO Partial National
Angola AFRO No Data
Antigua and Barbuda AMRO Partial National
Argentina AMRO Partial National / Sub-

national Data
Armenia EURO Full National
Australia WPRO Full National
Austria EURO Full National
Azerbaijan EURO Full National
Bahamas AMRO No Data
Bahrain EMRO No Data
Bangladesh SEARO No Data
Barbados AMRO Partial National
Belarus EURO Partial National
Belgium EURO Full National
Belize AMRO Partial National
Benin AFRO No Data
Bhutan SEARO No Data
Bolivia (Plurinational State of) AMRO Full National
Bosnia and Herzegovina EURO Full National
Botswana AFRO No Data
Brazil AMRO Full National
Brunei Darusssalam WPRO Partial National
Bulgaria EURO Full National
Burkina Faso AFRO No Data
Burundi AFRO No Data
Cabo Verde AFRO No Data
Cambodia WPRO No Data
Cameroon WPRO No Data
Canada AMRO Partial National
Central African Republic AFRO No Data
Chad AFRO No Data
Chile AMRO Full National
China WPRO Annual Data
Colombia AMRO Full National
Comoros AFRO No Data
Congo AFRO No Data
Cook Islands WPRO No Data
Costa Rica AMRO Partial National
Côte d’Ivoire AFRO No Data
Croatia EURO Full National
Cuba AMRO Partial National
Cyprus EURO Full National
Czechia EURO Full National
Democratic People’s Republic of Korea SEARO No Data
Democratic Republic of the Congo AFRO No Data
Denmark EURO Full National
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Country List
Country WHO Region Data Type
Djibouti EMRO No Data
Dominica AMRO No Data
Dominican Republic AMRO Partial National
Ecuador AMRO Full National
Egypt EMRO Partial National
El Salvador AMRO Partial National
Equatorial Guinea AFRO No Data
Eritrea AFRO No Data
Estonia EURO Full National
Eswatini AFRO No Data
Ethiopia AFRO No Data
Fiji WPRO No Data
Finland EURO Full National
France EURO Full National
Gabon AFRO No Data
Gambia AFRO No Data
Georgia EURO Partial National
Germany EURO Full National
Ghana AFRO No Data
Greece EURO Full National
Grenada AMRO Annual Data
Guatemala AMRO Full National
Guinea AFRO No Data
Guinea-Bisssau AFRO No Data
Guyana AMRO No Data
Haiti AMRO No Data
Honduras AMRO No Data
Hungary EURO Full National
Iceland EURO Full National
India SEARO Subnational Data
Indonesia SEARO Subnational Data
Iran (Islamic Republic of) EMRO Full National
Iraq EMRO Partial National
Ireland EURO Full National
Israel EURO Full National
Italy EURO Full National
Jamaica AMRO Partial National
Japan WPRO Full National
Jordan EMRO Partial National
Kazakhstan EURO Full National
Kenya AFRO Full National
Kiribati WPRO No Data
Kuwait EMRO Partial National
Kyrgyzstan EURO Full National
Lao People’s Democratic Republic WPRO No Data
Latvia EURO Full National
Lebanon EMRO Full National
Lesotho AFRO No Data
Liberia AFRO No Data
Libya EMRO No Data
Lithuania EURO Full National
Luxembourg EURO Full National
Madagascar AFRO No Data
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Country List
Country WHO Region Data Type
Malawi AFRO No Data
Malaysia WPRO Partial National
Maldives SEARO Partial National
Mali AFRO No Data
Malta EURRO Full National
Marshall Islands WPRO No Data
Mauritania AFRO No Data
Mauritius AFRO Full National
Mexico AMRO Full National
Micronesia (Federated States of) WPRO No Data
Monaco EURO Full National
Mongolia WPRO Full National
Montenegro EURO Partial National
Morocco EMRO No Data
Mozambique AFRO No Data
Myanmar SEARO No Data
Namibia AFRO No Data
Nauru WPRO No Data
Nepal SEARO No Data
Netherlands EURO Full National
New Zealand WPRO Full National
Nicaragua AMRO Partial National
Niger AFRO No Data
Nigeria AFRO No Data
Niue WPRO No Data
North Macedonia EURO Full National
Norway EURO Full National
Oman EMRO Full National
Pakistan EMRO No Data
Palau WPRO No Data
Panama AMRO Partial National
Papua New Guinea WPRO No Data
Paraguay AMRO Full National
Peru AMRO Full National
Phillipines WPRO Partial National
Poland EURO Full National
Portugal EURO Full National
Qatar EMRO Full National
Republic of Korea WPRO Full National
Republic of Moldova EURO Full National
Romania EURO Full National
Russian Federation EURO Full National
Rwanda AFRO No Data
Saint Kitts and Nevis AMRO Annual Data
Saint Lucia AMRO No Data
Saint Vincent and the Grenadines AMRO Annual Data
Samoa WPRO No Data
San Marino EURO Full National
Sao Tome and Principe AFRO No Data
Saudi Arabia EMRO No Data
Senegal AFRO No Data
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Country List
Country WHO Region Data Type
Serbia EURO Full National
Seychelles AFRO Partial National
Sierra Leone AFRO No Data
Singapore WPRO Full National
Slovakia EURO Full National
Slovenia EURO Full National
Solomon Islands WPRO No Data
Somalia EMRO No Data
South Africa AFRO Full National
South Sudan AFRO No Data
Spain EURO Full National
Sri Lanka SEARO Annual Data
Sudan EMRO No Data
Suriname AMRO Partial National
Sweden EURO Full National
Switzerland EURO Full National
Syrian Arab Republic EMRO No Data
Tajikistan EURO Partial National
Thailand SEARO Full National
The United Kingdom EURO Full National
Timor-Leste SEARO No Data
Togo AFRO Full National
Tonga WPRO No Data
Trinidad and Tobago AMRO No Data
Tunisia EMRO Partial National
Turkey EURO Subnational Data
Turkmenistan EURO No Data
Tuvalu WPRO No Data
Uganda AFRO No Data
Ukraine EURO Full National
United Arab Emirates EMRO No Data
United Republic of Tanzania AFRO No Data
United States of America AMRO Full National
Uruguay EURO Full National
Uzbekistan EURO Full National
Vanuatu WPRO No Data
Venezuela (Bolivarian Republic of) AMRO No Data
Viet Nam WPRO Annual Data
Yemen EMRO No Data
Zambia AFRO No Data
Zimbabwe AFRO No Data

TABLE 5
Countries, regions and data scenarios
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