Material for problem 4 will be sent in an email.

1. Show that for an aqueous phase reaction which occurs much slower than aqueous phase diffusion, the reaction probability, γ, becomes dependent on particle size:

$$\frac{1}{\gamma} = \frac{1}{\alpha} + \frac{3\sigma}{4R_pHRTk_{aq}}$$ \hspace{1cm} (1)

2. The conditions in problem 1 imply that there is no aqueous phase mass transport limitation to the reactive processing of the gas by the aerosol. If a rate constant k_{aq} for pseudo-first order reaction in solution, and aqueous phase diffusivity, D_{aq}, are known show mathematically how you could predict whether an aqueous phase mass transport limitation would exist.

3. Consider the aqueous-phase oxidation of SO$_2$ to H$_2$SO$_4$ by O$_3$:

- $\text{SO}_2(g) \Leftrightarrow \text{H}_2\text{SO}_3(aq)$
- $\text{H}_2\text{SO}_3(aq) \Leftrightarrow \text{H}^+(aq) + \text{HSO}_3^-(aq)$, $K_1 = 1.3 \times 10^{-2}$ M
- $\text{HSO}_3^-(aq) \Leftrightarrow \text{H}^+(aq) + \text{SO}_3^{2-}(aq)$, $K_1 = 6.3 \times 10^{-8}$ M
- $\text{O}_3(g) \Leftrightarrow \text{O}_3(aq)$, $K_{O_3} = 1.1 \times 10^{-2}$ M atm$^{-1}$
- $\text{SO}_3^{2-}(aq) + \text{O}_3(aq) \rightarrow \text{SO}_4^{2-} + \text{O}_2(aq)$, $k^{II} = 1 \times 10^3$ M$^{-1}$ s$^{-1}$

Calculate the rate of sulfate formation as a function of pH from pH 3 – 7 neglecting mass transport limitations and assuming SO$_2$ = 1 ppbv and O$_3$ = 50 ppbv. Is this a significant source of acidity to cloud drops? (Explain). Is this reaction limited by aqueous phase diffusion under any conditions for typical cloud droplet sizes from 10 – 100 microns in size? Assume $T = 298$ and $P = 1$ atm.

4. Using the size distributions measured during NAMBLEX, calculate the overall, pseudo-first order mass transfer rate coefficient using the Fuchs-Sutugin approach to the transition regime. The rate coefficient should have units of s$^{-1}$ and represents the total (integrated) transfer rate of a generic gas-phase molecule to the population of particles being considered. It will be easiest to calculate a k_{mt} for each size distribution (i.e. DMA, FSSP, GRIMM) which vary as a function of time of day. Compare the Fuchs-Sutugin approach to the alternative method also developed in class known as the “timescale comparison” mass transfer rate constant. For each calculation you will need to assume a molecular mass (e.g. ~ 60 g/mol), a temperature, and diffusivity (e.g. 0.1 cm2 s$^{-1}$). Assume for these calculations that the reaction probability of the gas, γ, is unity.

5. Repeat the calculations assuming $\gamma = 0.1, 0.01, \text{and } 0.001$. Describe differences in k_{mt} that result between the different size distributions. For example, suppose measurements of a gas-phase species imply that it’s reaction probability γ must be 1, and cannot be 0.1. To which size range of particles is this species being lost?