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a b s t r a c t

As interest in marine renewable energy increases, observations are crucial for understanding the envi-
ronments that prospective turbines will encounter. Data from an acoustic Doppler velocimeter in Puget
Sound, WA are used to perform a detailed characterization of the turbulent flow encountered by a
turbine in a tidal strait. Metrics such as turbulence intensity, structure functions, probability density
functions, intermittency, coherent turbulence kinetic energy, anisotropy invariants, and a new scalar
measure of anisotropy are used to characterize the turbulence. The results indicate that the scalar
anisotropy magnitude can be used to identify and parameterize coherent, turbulent events in the flow.
An analysis of the anisotropy characteristics leads to a physical description of turbulent stresses as being
primarily one- or two-dimensional, in contrast to isotropic, three-dimensional turbulence. A new
measure of the anisotropy magnitude is introduced to quantify the level of anisotropic, coherent tur-
bulence in a coordinate-independent way. These diagnostics and results will be useful for improved
realism in modeling the performance and loading of turbines in realistic ocean environments.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A full characterization of turbulence in the ocean would require
observations in time and space spanning many orders of magni-
tude, which are unrealistic with the current technology. A large
array of many instruments, sampling with high temporal frequency
over a long period of time would be needed to sample an open-
ocean location. Without such instrumentation, methods are
needed to use the limited observing systems to extract as much
temporal and spatial information as possible. In an energetic tidal
channel, a single-point observing system such as an acoustic
Doppler velocimeter (ADV) is able to sample with high temporal
frequency, spanning the range of temporal scales most relevant to
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the location. In particular, an ADV is appropriate for stationary
measurement locations, as in a tidal channel under consideration
for a tidal energy conversion device, where only one location is
needed for characterization (a vertical profile of ADVs would be
ideal, to sample the entire water column, but measurements at a
specifically chosen height can be sufficient for many purposes).
Turbulence statistics developed for laboratory experiments (e.g. hot
wire anemometers) or atmospheric boundary layer site assessment
(e.g. sonic anemometers) can be adapted for use with these single-
point observations in a tidal channel. This paper presents a number
of such statistical analyses that shed light on the characteristic
timescales and turbulent covariances, which can be used to esti-
mate the dimensionality of the turbulent structures. Utilizing the
“Frozen Turbulence Hypothesis” of Taylor [1], the length scales of
the turbulent features can also be obtained from single-point
observations.

Theoretical analyses have been used for studying the energy
transfer and dissipation in tidal channels since Taylor [2]. Turbu-
lence spectra were observed using a hot-film flowmeter towed
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behind a ship in a tidal channel by Grant et al. [3], showing an
agreement between the theory of Kolmogorov [4] of an inertial
range and the observations. The turbulent scales of motion that
occur in an energetic tidal channel, such as the one studied here,
are typically small coherent features (integral timescale (10 s), or
(10 m) horizontal length scale) in comparison to the local depth

(approximately 30 m). However, occasional extreme events (auto-
correlations persisting up to 150 s for 80 m horizontal scale) occur,
which contribute to the turbulent energy spectrum. These turbu-
lent features are not well-represented in coarse-resolution coastal
models [5] or statistical models (e.g. TurbSim Jonkman and Kilcher
[6]), as will be shown in a forthcoming paper.

The use of an acoustic Doppler current profiler (ADCP) and a
moored microstructure instrument by Lu et al. [7] allowed more of
the turbulence spectrum to be observed, and they were able to
estimate the production and dissipation rates of turbulent kinetic
energy, as well as mixing length, eddy viscosity and diffusivity to
assess and improve the turbulence parameterizations in a plane-
tary boundary layer model. ADCP and ADV observations were used
by Thomson et al. [8] to calculate turbulent dissipation rates in a
tidal strait, with a critical method of removing the Doppler noise
from the profiler data. These advances in observing systems have
allowed for calculations of turbulent properties, and this paper
utilizes these high-frequency observations for further analysis of
the intermittent, coherent events that contribute to the turbulence
spectrum.

Though a detailed turbulence characterization can serve many
purposes, the one of interest here is marine renewable energy, and
generating power from turbines placed in fast tidal currents, similar
to wind power generation. The International Electrotechnical
Commission (IEC) standard metric for quantifying the level of tur-
bulence at wind energy sites is the turbulence intensity (addressed
in Section 2.2) [9], but this metric does not address all turbulent
events that may affect generation and safety, such as coherent
structures and intense eddies. To date, studies of energetic tidal
sites have continued to use the turbulence intensity as the primary
metric for characterizing turbulent environments [10e14]. How-
ever, atmospheric and oceanic turbulence differ due to the distinct
tidal, seasonal, and diurnal forcings of each fluid. Some of the most
comprehensive characterizations, such as those described in
Thomson et al. [15], Thomson et al. [16], and Gunawan et al. [17]
have furthered the characterization of ocean turbulence by also
examining energy spectra and spatial structure functions. Turbu-
lence dissipation rates have also been measured in a small number
of studies in the United Kingdom [18,19]. A more detailed
description of energetic tidal channels using higher order statistics
will reveal additional insights into the turbulent environment.

Turbulence manifested in gusts, or coherent, anisotropic, and
intermittent eddies puts particularly strong and variable stresses
on tidal turbines, leading to misalignment of the drive train and
wearing of the gearbox (the specific structural make-up and design
of the turbine will determine exactly the load, but the dynamic is
the same as that for wind turbines) [20]. As a result, a site char-
acterization that quantifies the incidence and properties of intense,
coherent, anisotropic turbulent eddies has the potential to prevent
untimely, unexpected, and costly failures in turbines. Anisotropic
turbulence has been examined in theory [21,22], and in the labo-
ratory [23], and observed in the form of mesoscale eddies in both
the atmosphere [24] and the ocean [25,26]. In the present study, a
higher-order, detailed characterization of ocean observations is
performed that will provide more accurate information to numer-
ical models that predict loading and power production from tidal
turbines. These observations can be compared with numerical
turbulence simulators (like the TurbSim model from the National
Renewable Energy Laboratory (NREL) [6]), which currently use only
turbulence intensity, a power spectral density curve, and model-
defined spatial coherence to create more realistic turbulent envi-
ronments for turbine simulator models (like the NREL FASTmodel).

Using velocity measurements from Puget Sound, WA, this paper
examines several higher-order metrics to characterize and identify
extreme turbulence eddies (or “events”) in a tidal strait. These
metrics include velocity structure functions for timescale infor-
mation, probability density functions for intermittency, and
anisotropy tensor eigenvalues for quantification and physical
description of anisotropy. The specific metrics chosen are drawn
from the laboratory and numerical experiment literature, where
collection of data is simpler than in real-world ocean observations
[4,27,28]. However, these metrics are demonstrated here to be
suitable for application to observational data as well. Higher-order
statistics and a parameterization more grounded in turbulence
theory are proposed to improve the classification of anisotropy at
potential tidal energy sites. An easily understood visualization of
anisotropy proposed by Banerjee et al. [29] is presented as well.
With an improved set of parameters that provide a better physical
description of the flow, it will be shown that more accurate pre-
dictions of turbulence coherence can be obtained. Knowledge of
turbulence coherence will allow turbines to be better designed to
withstand the particular scales of turbulence that cause the largest
loads and put the most strain on gear boxes. This paper is organized
as follows: Section 2 characterizes the flow with several statistical
parameters; Section 3 proposes a new parameterization based on
the characterization; and Section 4 concludes with a discussion of
the implications of this work to the marine energy industry, and to
observations of turbulence in the ocean generally.

2. Characterization of turbulence

The data used in this analysis were collected from an acoustic
Doppler velocimeter (ADV) device at Nodule Point, on the eastern
side of Marrowstone Island in the Puget Sound [15]. The site, which
is 22 m deep, was under consideration for an array of Verdant
Power™ turbines and has a maximum current velocity of 1.8 m s�1

at the proposed hub-height of 4.7 m above the seabed. The mea-
surements examined here were collected from February 17 to 21,
2011 using an ADV sampling at 32 Hz on the apex of a Tidal Tur-
bulence Tripod at approximately hub-height. The location is well-
mixed, with minimal stratification as measured from a
conductivity-temperature-depth (CTD) sensor. More detail on the
observations and how they were performed can be found in
Thomson et al. [15].

2.1. Velocity decomposition and statistics

Each of the three velocity components have been decomposed
into a mean (u) and perturbation (u0):

u ¼ uþ u0; (1)

where u ¼ ui þ vj þ wk. The horizontal velocities are defined
where�i is aligned toward the seaward principal flow direction, j is
perpendicular to the principal flow direction, and k is in the vertical
direction. Wave motions are neglected for the location analyzed
here because the orbital effects do not reach the depth of the tur-
bine, although they may be important in other locations since they
introduce coherent structures that appear in the variance. Though
recent work suggests that some wave effects may penetrate deeper
[30e32], Thomson et al. [33] show that waves in Puget Sound
typically have a 3 s period, because they are fetch limited, giving
them about a 15 mwavelength, and thus most motion has decayed
7.5 m below the surface. The ADV measurements are 16.3 m below



Fig. 2. a) Velocity perturbations, b) turbulent kinetic energy components, and c)
Reynolds shear stress components, from the Nodule Point ADV shown in Fig. 1. The
mean velocity is shown for reference in the dotted line in a), with the axis labeled on
the righthand side of the figure.
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the surface, which is more than twice the e-folding depth from the
wave layer. Thus, we also do not explicitly consider deep-
penetrating wave-forced (i.e., Langmuir) turbulence, though it
may affect turbulence at other sites [32,34]. Themean used here is a
10-min time mean, by contrast to the shorter 5-min mean chosen
by Thomson et al. [15]. The 10-min interval was chosen in an
attempt to retain the longest timescales of coherent turbulence
structures in the perturbation, u0, while capturing the tidal and
diurnal variations in the mean, u. Within each averaging interval,
the mean flow was assumed to be steady, which can create dis-
continuities at interval edges. Experimentation with a range of
averaging intervals suggested that 5e10 min variability might be
appropriately categorized as turbulent, although all coherent
structures observed passed by in less than 4 min (see Appendix).
Assuming Taylor's frozen turbulence hypothesis [1], this allows
motions smaller than ~1.1 km at Nodule Point (for 1.8 m s�1 mean
velocities).

Fig. 1 shows the three components of velocity at Nodule Point
from February 17e21, 2011 at approximately hub-height depth
(4.7 m), with the observed velocities in gray, and the 10-min mean
in black. “Slack conditions”, where the velocity is not large enough
to drive a turbine, are defined as u � 0:8 m s�1 (shownwith dotted
lines on Fig. 1), and occur at high and low tides. This is in contrast to
ebb and flood tides when velocities are larger. The analyses here
will focus on flood and ebb events (distinguished by being up-
stream and downstream of headland) consistent with the emphasis
on tidal power generation. Velocity perturbations and the indi-
vidual components of turbulent kinetic energy
(TKE ¼ 1=2ðu02 þ v02 þw02Þ) are shown in Fig. 2a and b. Peaks occur
periodically in each signal with the M2 (semidiurnal) tide domi-
nated mainly by the u02 and v02 components of the TKE. Diurnal
variability is also typical as one large and one small (i.e., mixed
semi-diurnal) flood or ebb per day. The w0 fluctuations are
considerably smaller than those in the other directions, as indicated
by the small w02 component of the TKE.
Fig. 1. Velocities in the along stream (u; a), cross-stream (v; b), and vertical (w; c)
directions from the ADV at Nodule Point from 17 Feb 2011 to 21 Feb 2011 at approx-
imate hub-height depth of 4.7 m. Gray dots show instantaneous velocity measure-
ments, and black lines show 10-min averages. Dotted lines in a) show the slack
condition criterion. Three 99th percentile values of Iu, TKE, CTKE, and A values when
u>0:8 m s�1 are shown in the red squares, green diamonds, and blue circles,
respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Reynolds shear stresses are defined as u0iu
0
j. In a well-mixed,

homogeneous flow such as a tidal strait, coherent turbulent struc-
tures appear as bursts in the Reynolds shear stresses [35]. Thesemay
be formedbygeographical or topographical features that disturb the
otherwise-laminar tidal flow. Fig. 2c shows the covariances, where
turbulent bursts can be seen occurring at a roughly diurnal period.
Outside of the turbulent burst, all three components are approxi-
mately zero with only occasional peaks in one component. Some
days have two turbulent bursts, both during flood tide, with the
stronger turbulence associated with the stronger flood.
2.2. Turbulence intensity, turbulent kinetic energy, and coherent
turbulent kinetic energy

The metric most commonly used in the wind industry to char-
acterize the turbulent environment is the turbulence intensity, I
Fig. 3. a) Turbulence intensity, b) turbulent kinetic energy, c) coherent turbulent ki-
netic energy, and d) anisotropy magnitude, A, from the Nodule Point data shown in
Fig. 1, with intervals with u>0:8 m s�1 removed. Three 99th-percentile values of Iu,
TKE, CTKE, and A values when u>0:8 m s�1 are shown in the red squares, green di-
amonds, and blue circles, respectively, discussed in Sections 2.2 and 2.6. The mean u-
velocity is shown in a) as the gray dashed line. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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[36]. Turbulence intensity, shown in Fig. 3a, is the ratio of the
standard deviation of the velocity to the mean with a noise-
corrected term subtracted for acoustic Doppler measurements,
and is defined as

Iu ¼ su

u
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 � n2

p
u

; (2)

where the overline indicates a 10-min average
(Iuz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3TKE� n2

p
=u for isotropic turbulence) [15]. Although in

much of the wind literature turbulence intensity is calculated from
wind speeds (often measured by cup anemometers) [37], turbu-
lence intensity can be calculated in all three directions (Iu, Iv, Iw), but
the along-stream intensity, Iu, is used here. Fig. 4 shows turbulence
intensity plotted versus mean flow speed for the entire sampling
period at Nodule Point. The highest turbulence intensities occur
below 0.8 m s�1, which are considered slack conditions when the
turbine would be motionless. The fastest mean velocities at Nodule
Point (~2 m s�1) see turbulence intensities around 10%, while
slower mean velocities see turbulence intensities that reach up to
20%. This behavior is consistent with the Iu � 1=u relationship,
which has been regressed in the inset of Fig. 4 where u02 versus u is
shown. Similarly, MacEnri et al. [38] saw the same behavior, but
with lower overall turbulence intensity levels in the Strangford
Lough, Ireland. This variation in Iu encourages further analysis into
what causes the turbulence intensity to peak, since the large spread
suggests that local values of u are not a good predictor of su.

Iu only accounts for one direction of velocity fluctuations, so
turbulent kinetic energy, TKE, is also used for a more complete
characterization of tidal turbulence intensity. TKE is defined as one-
half the sum of the normal stresses,

TKE ¼ uiui
2

¼ 1
2

�
u02 þ v02 þw02

�
; (3)

and has also been shown have a negative impact on power pro-
duction [39]. Although turbulence intensity and TKE are a helpful
metrics for determining loads on a turbine [40] and expected
Fig. 4. Turbulence intensity versus mean speed for each 10-min interval at Nodule
Point, colored by A, discussed in Section 2.6. The gray area indicates slack conditions.
Three 99th percentile values of Iu, TKE, CTKE, and A values when u>0:8 m s�1 are
shown in the squares, triangles, diamonds, and circles, respectively on each plot. Inset
is the joint pdf of u versus u02, with the best-fit line. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
energy production, a more detailed characterization of the type of
turbulence will show individual turbulent events like a large,
anisotropic eddy passing through the region (peaks in Fig. 3b).
Coherent turbulent kinetic energy (CTKE; the magnitude of the
instantaneous Reynolds shear stresses) is another common metric
in the wind literature used to identify coherent turbulent events
[10,41], and is defined as

CTKE ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu0v0Þ2 þ ðu0w0Þ2 þ ðv0w0Þ2

q
: (4)

CTKE identifies the instances when the Reynolds shear stresses
peak, while the turbulence intensity identifies only one component
of the kinetic energy. The use of the cross terms identifies the
moments when there are peaks in multiple velocity components,
identified as spatially coherent features in the flow (though CTKE is
an instantaneous quantity, so the temporal coherence remains
unknown). The reader is referred to Kelley et al. [35], where CTKE is
introduced, for more information on this metric.

The method employed by Kelley et al. [35] & [42] to describe
coherent turbulent structures uses wavelet analysis to decompose
the Reynolds stresses and coherent turbulent kinetic energy
alongside observed loads onwind turbines to characterize the time
and frequency behavior of the coherent structures and their effect
on the turbines. These results have shown that bursts of CTKE
induce higher structural loads at scales 6%e23% of the rotor
diameter on both stiff and flexible-blade wind turbines. Although
observations of loads are not available for a tidal turbine (loads have
been measured in a flume tank [43,44] but not in the field), Rey-
nolds stresses, TKE, and CTKE from ADVmeasurements can be used
to infer expected loading events.

CTKE is shown in Fig. 3c, andwill be used as an additional metric
for parameterization of turbulence at this location. An alternative to
CTKE, the anisotropy magnitude A (Eq. (12)), that is more firmly
grounded in turbulence theory is shown in Fig. 3d and presented in
Section 2.6. From Fig. 3, it is possible to identify more “events”,
appearing as peaks in the bottom three panels that do not appear in
the turbulence intensity. Three illustrative intervals in the largest
99th percentile of Iu; TKE;CTKE, and A when u>0:8 m s�1 were
chosen to highlight the meaning of these diagnostics to draw
attention to where the peaks in each metric lies. These intervals are
also indicated in Figs. 1, 3, 4, 8e10.
2.3. Correlation and length scales

Turbulence intensity does not directly address the spatial and
temporal structure of turbulence in the tidal channel, so quanti-
fying the scales of motion leading to large Iu is a natural next step in
the characterization. Spatial and temporal correlation scales can
also give a much better physical description of the turbulence than
is possible with turbulence intensity. Thus, velocity autocorrela-
tions were calculated to infer the time (and, using Taylor's hy-
pothesis, length) scales of the turbulence. The temporal
autocorrelation is defined as

rðtÞ ¼ u0ðtÞu0ðt þ tÞ
u02

(5)

where the overbar is the 10-min mean, and results are shown in
Fig. 5.

The Taylor, l, and integral, L, scales are used to quantify the
longest time over which the turbulence stays correlated, and the
time until the flow is uncorrelated, respectively [45]. These scales
are defined as



Fig. 5. Autocorrelation functions of horizontal (top) and vertical (bottom) velocity for a
subsample of 10-min intervals with u>0:8 m s�1 from the Nodule Point ADV, with the
average autocorrelation shown in the bold solid line and the average integral and
Taylor scales, L and l.

Fig. 6. Box plots of the second-order temporal structure functions for each 10-
min interval with an u>0:8 m s�1 of the Nodule Point ADV data. Top plot is the hor-
izontal velocity structure function and the bottom is the vertical velocity structure
function. For comparison, the solid line on the horizontal structure functions shows the
median of the vertical velocity structure functions, and the line on the vertical struc-
ture functions shows the median of the horizontal velocity structure functions. White
circles are the median, the boxes show the 25th-percentile, and the vertical lines
include the entire range. The dotted line is a guideline with slope of 2/3.

Fig. 7. Probability density functions of the velocity perturbation differences, Du0 (cir-
cles), Dv0 (squares), and Dw0 (diamonds) from Nodule Point ADV data, with a Gaussian
curve for reference (dashed). Black shapes have a time step of Dt ¼ 1=32 s � 3 cmð Þ,
gray are Dt ¼ 3.6 s (~3 m), and white are Dt ¼ 7.2 s (~6 m).
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l2 ¼ �2

"
d2r
dt2

��
t¼0

#�1

; (6)

L ¼
Zt0
0

rðtÞdt; (7)

where t0 is the first zero-crossing of the autocorrelation function,
eliminating the residual noise from the un-averaged random vari-
able. These correlation timescales were calculated for each 10-
min interval where u>0:8 m s�1 in Fig. 5. The average correlation
length scales are shown, though Fig. 5 clearly shows intervals with
much higher l and L than the mean. Using Taylor's frozen turbu-
lence hypothesis with the mean horizontal velocity and L for each
10-min segment, the average correlation length scale is 11.6m, with
the longest correlation equal to 81 m, equivalent to the average
L¼10 s and longest L¼70 s. Thomson et al. [15] calculated a
dominant length scale of 2e3 times the water depth (average of
75 m) at Nodule Point from the “fractional” turbulence intensity,
with a large spread. The fractional turbulence intensity is based on
the energy spectrum, which is dominated by the large scales,
possibly causing the difference between scales observed by the
different methods. The correlation scales presented here identify



Fig. 10. A versus mean CTKE for each 10-min interval at Nodule Point. Linear best-fit
and correlation coefficient are shown in the solid line, and the one-to-one dashed
line is shown as well. Three 99th-percentile values of Iu, TKE, CTKE, and A values are
shown in the squares, triangles, diamonds, and circles, respectively.Fig. 8. First four moments of the u-velocity from the Nodule Point ADV data, based on

10-min intervals. Topebottom: mean, standard deviation, s, skewness, S, and kurtosis
minus 3, K � 3. Three 99th-percentile values of Iu, TKE, CTKE, and A values when
u>0:8 m s�1 are shown in the red squares, magenta triangles, green diamonds, and
blue circles, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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the most common scales, not the most energetic ones, which are
identified by the fractional turbulence intensity. Features with a
length scale larger than the water depth are inherently anisotropic,
as isotropy can only exist up to the length scale of the water depth.
2.4. Temporal structure functions

Structure functions of each 10-min interval with u>0:8 m s�1

were computed to study the relationship of correlation over the
longer and shorter timescales, analogous to an energy spectrum.
Structure functions are especially useful for problems with uneven
measurements in space or in time, but they are used here with the
even time-series of observations to directly relate to the correlation
Fig. 9. Barycentric maps based on C1c, C2c, and C3c for the 10-min intervals with
u>0:8 m s�1 at Nodule Point. The black points are the intervals with u>0:8 m s�1, and
the gray points are intervals falling under “slack tide” conditions.
timescales from the previous section. The second-order temporal
structure function is defined as [46]

Dðt; tÞ ¼ ½uðtÞ � uðt þ tÞ�2; (8)

which has a slope (gD) that is related to the slope of the energy
spectrum (gE) by

gD ¼ �gE � 1: (9)

This relationship can be used to define the energy spectrum of
simulated turbulence used as input into a computational fluid
model of a turbine. Structure functions provide spectral informa-
tion about a range of timescales, as opposed to l and L which
provide single correlation scales. Spatial structure functions have
also been used to infer energy dissipation rates, as done in Wiles
et al. [47], Thomson et al. [15] and Lucas et al. [48].

Fig. 6 compares the temporal structure function of the hori-
zontal (top) and vertical (bottom) velocities from the Nodule Point
ADV. For easier comparison, the solid line in the horizontal struc-
ture function plot is the median of the vertical structure functions,
and vice versa. The slope of nearly gD ¼ 2/3 seen in both directions
(shallower in the horizontal) up to a timescale of approximately 3 s
matches the scaling theory of three-dimensional, isotropic turbu-
lence from Kolmogorov [4]. It is important to note that the smaller
scales span a larger range in structure function amplitudes, so
though the average slope is shallower than gD¼ 2/3, there aremany
intervals with steeper slopes than average. The structure function
slope of gD¼ 2/3 is equivalent to the frequency spectral slope of f�5/

3. The structure function median in one direction is almost always
outside of the 25th percentile of the other direction's structure
function (see solid lines on each plot), exhibiting the preference for
larger horizontal velocity covariance at these timescales.

At first glance, this difference in amplitude between the vertical
andhorizontal velocity structure functions seems to suggest that the
covariances are not isotropic, butMcCaffrey et al. [49] show that the
transformation from frequency to temporal space introduces an
integration constant thatmayexplain theoffset in structure function
amplitude seen here. Thus, only the slope of the structure function is
meaningful in this context, not the magnitude. A slight flattening
occurs on the vertical structure function at about 3 s that does not
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occur in the horizontal structure function. This supports the results
of Thomson et al. [15] for frequency spectra with 5-min windows,
which exhibit isotropy (horizontal and vertical spectra having the
same slope) from 1e10 s scales. At lower frequencies, the vertical
spectra flatten out, showing the large-scale anisotropy. A random
phase signal has a structure function slope of 0, suggesting that over
the longest timescales vertical velocities are not associated with a
turbulent cascade. Note that the gD ¼ 2/3 slope of these structure
functions (and the related kinetic energy spectrum slope) is not a
unique indicator of an energy cascade in three-dimensional turbu-
lence eindeed the inverse energy cascade in two-dimensional tur-
bulence of Kraichnan [50] would also follow gD ¼ 2/3, so the
extension of the horizontal spectral slope to larger scales is not
inconsistent with correlation scales of 10 s. Consistency of the
structure function with L is indicated by the point where the
structure function flattens out being on the order of the average
integral scale fromFig. 5. The vertical correlation scales seen in Fig. 5
are also consistent with the results, since they average about 1 s.
2.5. Intermittency from probability density functions

The flow diagnosis reveals distinctions among different 10-
min intervals, which likely extends to turbulence intermittency. A
useful tool for analyzing turbulent behavior is the velocity difference
probability density function (pdf), which can quantify the intermit-
tency of turbulence (e.g. coherent structures and eddies). Comparing
pdfs in each direction further uncovers the anisotropy. Gaussian
turbulence should manifest itself as a collection of velocity differ-
ences that are normally distributed for small differences, with
intermittent events appearing as deviations from Gaussian distri-
butions in the tails [51]. Although the small velocity differences in all
pdfs shown in Fig. 7 do follow the Gaussian curve (dashed lines), the
strong departure from Gaussian in the tails indicates that there is a
significant amount of intermittency in this flow.

Higher statistical moments were calculated for each velocity
component (subscript i) also in 10-min intervals (mean, variance,
skewness S, and kurtosisK, respectively) to providemore quantitative
measuresof intermittency.Moments of theu-velocityatNodulePoint
are plotted in Fig. 8. A purely random, Gaussian flow would have
moments Si ¼ 0 and Ki¼ 3. It is clear from the skewness and kurtosis
(shown here as deviations from Gaussian, K� 3) that many intervals
deviate from normally distributed velocity perturbations (for con-
sistency across moments, the Doppler noise was not removed from
the standard deviation as it was for turbulence intensity). The de-
parture from Gaussian in the pdfs expands consistently on the de-
parture from 0 in the skewness and kurtosis (minus 3) in Fig. 8.

A single observation at Nodule Point covers 1/32 of a second, so
looking at velocity differences over slightly longer intervals will
accentuate persistent features. Fig. 7 compares the pdfs using
Dt ¼ 1/32 s, 3.6 s and 7.2 s, corresponding to the smallest features
captured by the ADV, and at 3 m and 6 m, which are half- and full-
rotor diameters for the Verdant Power turbines, assuming Taylor's
hypothesis (with the overall average of the flow speed as the ve-
locity scale). As the time interval increases, the intermittency in-
creases for u and v velocities but decreases for w. Thus, as in the
structure function analysis, horizontal velocities are more coherent
on longer timescales than vertical, and nowwemay associate those
correlations as well with intermittency. There is only a small dif-
ference in intermittency between the 3 and 6 m-scales, suggesting
that the intermittent structures occur on a scale larger than the
turbine rotor in this location. Other deeper locations that can
accommodate larger turbines may also contain longer turbulence
scales, so though these observations are not relevant to all loca-
tions, the measurement technique is useful.
2.6. Tensor invariant anisotropy magnitude

The metrics analyzed thus far indicate that turbulence at this
location in the Puget Sound features anisotropy and coherence.
However CTKE is, like Iu, not a true scalar as it depends on the
coordinate system chosen. In the case of CTKE, the dependence on
coordinate system is not obvious, but direct calculation using this
data and alternative coordinate system choices, such as a rotation of
the u-v coordinates by 45�, results in an altered value of CTKE. By
aligning the u-velocity with the along-stream direction and wwith
the vertical as done here, one arrives at a unique definition of CTKE.
However, the turbulent structures that arrive at the study location
may observe coordinate-invariance symmetries not shared by CTKE
(e.g. non-horizontal planar or axial symmetries). Locations where
the ebb and flood flow directions are not anti-parallel are likely to
cause inconsistencies in the interpretation of CTKE. Ideally, a true
scalar, invariant of coordinate system, could be used to quantify
turbulent events. TKE is tensor invariant, but does not describe the
anisotropy between its components, or include the shear stresses.
To this end, we created a new metric which we call the anisotropy
magnitude, A, that captures the shear stress terms like the CTKE,
but also the anisotropy from the normal stresses as well as the
strength of the turbulence in the TKE e and maintains coordinate
system independence.

A more detailed anisotropy analysis can be done using the
anisotropy tensor [52]:

aij ¼
uiuj
2TKE

� dij

3
; TKE ¼ uiui

2
; (10)

and its three principal invariants (I, II, III),

I ¼ aii≡0
II ¼ aijaji
III ¼ aijainajn;

(11)

with a sum implied to occur over repeated indices (Einstein nota-
tion). Like the turbulent kinetic energy, TKE, these invariants are
true scalars independent of coordinate systemethey depend only
on the symmetry, or lack thereof, of the turbulence itself. An
analysis of the invariants II and III (since I¼ 0 by the definition of aij)
provides a method of quantifying anisotropy in a turbulent flow
and physically describing the departures from isotropy, indepen-
dent of the chosen coordinate axis. Isotropic turbulence with un-
correlated orthogonal velocity fluctuations has the characteristic
that I ¼ II ¼ III ¼ 0, and deviations away from this point describe
different turbulent regimes, as illustrated by the classical Lumley
Triangle [28]. The next section illustrates an updated version of the
Lumley Triangle due to Banerjee et al. [29].

The coordinate-system invariant scalar magnitude of the
anisotropy similar to the CTKE, denoted A, is constructed from the
scalars II and TKE as

A ¼ TKE
ffiffiffi
II

p
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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:

(12)

This definition possesses the following attributes: 1) Unlike TKE,
but like CTKE, A ¼ 0 for isotropic, uncorrelated turbulence. 2) Like
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CTKE and TKE, A has the units of energy per unit mass (m2 s�2). 3) A
tends to grow with CTKE, approaching a version of CTKE formed
from the time-averaged shear stresses as CTKE[ TKE. 4) Like CTKE
and TKE, A is real, and 5) unlike CTKE, A is a true, coordinate-
independent scalar, as it is the product of two scalars. The anisot-
ropy magnitude, A, is therefore similar in meaning to the CTKE in
Equation (4), though not identical because CTKE is an instanta-
neous measure, and A uses the 10-min means of the Reynolds
stresses. This allows instrument noise to be removed through the
averaging, while it acts to enhance CTKE. The anisotropy magni-
tude, A, is plotted at Nodule Point in Fig. 3c, exhibiting simulta-
neous, similar intermittent peaks as CTKE between periods of low
anisotropy. However, it is intriguing to note that the extreme oc-
currences of TKE co-occur with two peaks in CTKE, and one in A, but
the peaks in A do not always co-occur with those of CTKE or Iu. This
highlights the fact that neither CTKE nor Iu are reliable, coordinate-
system independent indicators of turbulence structure or anisot-
ropy, but that TKE and A capture the same features in a reliable,
coordinate-system independent manner.
Table 1
Percentage of intervals with u>0:8 m s�1 that, if they are in the 90th-percentile of
one metric, they also fall in the 90th-percentile of the other. A random probability
would expect this value to be 10%.

A Iu TKE CTKE

A 100 12.7 76.2 73.0
Iu 12.7 100 6.4 6.4
TKE 76.2 6.4 100 96.8
CTKE 73.0 6.4 96.8 100
2.7. Anisotropic barycentric map

Banerjee et al. [29] introduce a visualization of anisotropy that
contains additional information beyond A, based on the eigen-
values of the anisotropy tensor as opposed to the invariants. The
“barycentric map” is a ternary diagram with vertices representing
purely one-component (linear), two-component (planar), and
three-component (isotropic) turbulence. This map is easier to read
than the Lumley Triangle since the three turbulent states are
equally spaced, and each have one point to represent them. The
CayleyeHamilton theorem proves that the eigenvalues may be
found using only the tensor invariants (I, II, III) and vice versa. Thus
like the invariants, the eigenvalues (and the barycentric map) are
coordinate-independent [53]. The axi-symmetric and plane-strain
limits are represented by straight lines on the barycentric map.

If the eigenvalues of the anisotropy tensor, aij are l1, l2 and l3,
where l1 � l2 � l3, the coordinates of the barycentric map are

C1c ¼ l1 � l2; (13)

C2c ¼ 2ðl2 � l3Þ; (14)

C3c ¼ 3l3 þ 1: (15)

To plot on a Cartesian plane where the vertices of the bar-
ycentric map are (x1c, y1c),(x2c, y2c), and (x3c, y3c), the location of
each point is

xnew ¼ C1cx1c þ C2cx2c þ C3cx3c (16)

ynew ¼ C1cy1c þ C2cy2c þ C3cy3c (17)

The barycentric map is shown in Fig. 9. These results show that
the vast majority of the flow is in the middle of the map, extending
closer to the one- and two-component limits. The large empty
space on the top part of the triangle highlights that this flow is
never in the isotropic turbulent regime for scales between the
sampling frequency and the 10-min window.

The eigenvectors of the anisotropy tensor, when ordered, give
the principal axes of the turbulence. In the one-component limit,
the eigenvector associated with the largest eigenvalue orients the
(linear) direction of the flow, and the plane made by the eigen-
vectors of the two largest eigenvalues describes the two-
component turbulence. Here, the linear turbulence is in the
along-flow direction, and the plane is the horizontal plane in the
along- and cross-flow directions. It is also possible to gain the
directional information from Fig. 2b and c to see which of the
Reynolds stress components dominates the CTKE signal. Consis-
tency between these approaches derives from the close rela-
tionship between the Reynolds stresses and the anisotropy
tensor.

3. Parameterization of extreme turbulence

A single parameter, or small set of parameters, to describe the
turbulence at a particular location is desired for modeling and
classification of tidal turbine locations. The turbulence intensity has
been the parameter traditionally used by engineers, and only
briefly has CTKE been introduced to discuss coherence in a flow
[10e12,35]. Here, the metrics discussed in Section 2 are compared
to identify the best parameter to characterize turbulence.

A comparison of the joint probabilities of Iu, TKE, CTKE�, and A
is a first step to showing how one parameter can be used in place
of a long list. Tables 1 and 2 show the percentage of intervals
(with u>0:8 m s�1) that fall above the 90th- and 99th-percentile
for each pair of variables. Since the probability of the turbulence
intensity peaking when any of the other metrics is also peaking is
below 10% when compared to TKE and CTKE (and only slightly
higher than 10% for A), this shows that there is no statistically
significant correlation between the extreme values of the metrics,
and the metrics are therefore capturing different features of the
flow. On the other hand, the probabilities of intervals falling above
the 90th- and 99th-percentiles of all other pairs of metrics is
above 50%, and often above 75%, indicating that the metrics are
capturing the majority of the same events, and do not all need to
be calculated. Focusing on the comparison between A and CTKE
(Fig. 10), for example, illustrates how one metric can replace the
use of two.

There is a strong correlation (R2 ¼ .66) between A and CTKE
(since A was derived to be the invariant form of CTKE), and the
highest Iu, TKE, CTKE and A intervals all appear in the high end of
Fig. 10. This supports the use of A as opposed to CTKE in charac-
terizing intense turbulent events since it similarly captures aniso-
tropic, coherent events, but is a tensor invariant quantity better
supported by turbulence theory than CTKE. Since CTKE has been
demonstrated to correlate with turbine loading, and A is closely
related, it is a natural supposition that A would have the same
impact, but further studies must be conducted to determine
whether the

ffiffiffi
II

p
(anisotropic turbulence) or the TKE (intense tur-

bulence) factors of coherent turbulence, or the combination of both,
measured by A are most closely related to loading.

The turbulence intensity versus mean speed plot gains a great
deal of information when colored based on A, as in Fig. 4. The 1/u
behavior is expected from the definition of Iu, and the scatter in the
points is informative, but color based on A highlights the points that
will have themost impact on the turbine - with the highest Iu when
the mean speed is highest. The 99th-percentile intervals of Iu, TKE,
CTKE, and A when u>0:8 m s�1 all occur in this region as well.



Table 2
Percentage of intervals with u>0:8 m s�1 that, if they are in the 99th-percentile of
one metric, they also fall in the 99th-percentile of the other. A random probability
would expect this value to be 1%.

A Iu TKE CTKE

A 100 0 83.3 50.0
Iu 0 100 0 0
TKE 83.3 0 100 66.7
CTKE 50.0 0 66.7 100

Fig. 12. A versus Taylor scale, l for each 10-min interval with u>0:8 m s�1 at Nodule
Point with the quadratic fit line and R2 value shown.
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Figs. 10 and 4 both support the use of A over CTKE and Iu, but a
parameterization based on the physical properties of the flow is the
greater goal of this work.

Using A as a measure of coherence, supported by Fig. 12, and
comparing the larger A events (A>0:005 m2 s�2) to the total flow
on a probability density function, the higher A events appear as
smaller deviations from Gaussian in the tails (see Fig. 11). Although
slightly counter-intuitive, this result suggests that within a single
coherent structure, velocity increments are more Gaussian, but in
differences spanning from one smaller-scale structure to the next,
the intermittency appears. These results show that the coherent
events at Dt ¼ 7.2 s (Dx ~ 6 m) are nearly random in all three di-
rections, as is expected from the structure function analysis and the
spectral results of Thomson et al. [15], which are isotropic at this
scale. It is possible that using the pdf to parameterize intermittency
with A is not useful, since choosing Dt may be a larger indicator of
intermittency, so the dependence on A does not appear. Again, the
anisotropy seen in Fig. 7 appears in the pdf differences in the three
directions.

Parameterizing coherence with Iu, TKE, CTKE, and A is possible
with regression analysis between each of these metrics and the
integral and Taylor scales, L and l. Table 3 shows these results,
highlighting that the intervals with high Iu, TKE, A, and CTKE are
associated with longer turbulent timescales l andL. Amost closely
parameterizes coherence in the Taylor scale, l, while the co-
efficients of determination are lower for TKE, CTKE and Iu (i.e.,
poorly predicted). Correlation is low between the four metrics and
the integral scale, L. Quadratic regressions between Iu, and CTKE
(most often used for this purpose; Jonkman [41]) and l or L do not
yield statistically significant coefficients of determination (i.e., poor
predictability). Thus, if we consider our long turbulent timescales to
Fig. 11. Probability density functions of the velocity perturbation differences, Du0

(circles), Dv0 (squares), and Dw0 (diamonds) with a Dt ¼ 7.2 s(~6 m) from Nodule Point
ADV data, with Gaussian curves for reference (dashed). Black includes when
A < 0.005 m2 s�2, white includes when A > 0.005 m2 s�2.
indicate coherent structures, then the extremal intervals do indi-
cate the presence of coherent structures, but the metrics Iu, TKE,
and CTKE are not only a measure of coherence. However, the
quadratic relationship between A and the Taylor scale, l is strong,
with an R2 value of 0.884 (TKE also has a high correlation, though it
is exceeded by A). This relationship is plotted in Fig. 12. CTKE and A
include more information about cross-correlations and directional
variability than the turbulence intensity, so it is perhaps not sur-
prising that they give a better physical description of the flow and a
less noisy prediction of other measures of coherence in the tur-
bulence, which is the goal of this study. The advantage of turbu-
lence intensity over CTKE and A is that directional velocity
observations are not needed, only a current speed. However,
without directional information, Iu is a poor predictor of coherence,
and one should consider adding other measures of coherence, such
as l, in addition to Iu.

Anisotropy is possibly the most important feature of the tur-
bulence to parameterize since it is not captured at all by the
currently-used turbulence intensity. The four different color
schemes on the barycentric map in Fig. 13 highlight the de-
pendencies of each parameter on the anisotropy. The peaks in all
four quantities do happen when the flow is furthest from isotropic
(three-component limit), but the detailed coloring varies substan-
tially by metric.

The turbulence intensity exhibits a strong relationship with
anisotropy, with high Iu events approaching the one-component
limit. This shows that at this location, the strongest component of
the turbulence is aligned in the along-stream direction that is used
in the turbulence intensity.

The color based on CTKE shows a much weaker relationship
with anisotropy, with peaks in CTKE scattered throughout the
map's domain. The anisotropy magnitude, A, is similar to CTKE, as
Table 3
Coefficients of correlation, R2, between Taylor scale, l, and Integral scale, L,
and Iu, TKE, CTKE, and A from the Nodule Point ADV data. The largest R2 value
is shown in bold.

l L

Iu 0.596 0.450
TKE 0.747 0.079
CTKE 0.680 0.017
A 0.884 0.317



Fig. 13. Barycentric maps based on C1c, C2c, and C3c for the 10-min intervals with u>0:8 m s�1 at Nodule Point. Coloring is as follows: top left - Iu; top right e CTKE; bottom left e A,
bottom right e TKE. Three 99th-percentile values of Iu, TKE, CTKE, and A values when u>0:8 m s�1 are shown in the bold squares, triangles, diamonds, and circles, respectively on
each plot, colored according to the map. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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expected, but with a slightly stronger correlation in predicting the
dimensionality of the turbulence. The color based on TKE also
shows a relationship between peaks in TKE and one-component
turbulence, though not as strong a correlation as with A. It is
interesting to note that as A increases, the turbulence is increas-
ingly one-dimensional, rather than simply less three-dimensional.
This is unexpected, and can be verified with increased observa-
tions, and tested in three-dimensional models.

The occurrence of one-component “turbulence” may be a sign
that some residual of the tidal flow itself continues to be catego-
rized as “turbulence” using 10-min averageseunfortunately some
mixing of mean and turbulence is inevitable when Reynolds aver-
aging is used in turbulent flows without clear scale separation. The
time-scale separation analysis in the Appendix aims to minimize
this possibility.

Using the comparisons made in this section, it is clear that A
captures the behavior of CTKE, but provides more physical infor-
mation than Iu, correlating closely with both the Taylor correlation
scale and the proximity to the most anisotropic corner of the bar-
ycentric map. The correlation between A and CTKE can be hy-
pothesized to extend to loads, though direct measurements in a
tidal strait are not available yet. These results all support the use of
A to parameterize turbulence in a tidal strait, indicating the physical
size and shape of turbulence for turbine design and layout purposes
(e.g. if anisotropy is planar at length scales of 10 m, then turbines
can be sized accordingly). If an additional parameter is to be
calculated also, TKE shows the second strongest correlation to
length scales, though anisotropy is lacking. The benefit of TKE over
A is its previous observations of correlations with decreasing power
production.

4. Concluding remarks

The tidal site of Nodule Point shows strong signs of turbulent
events that are expected to impact tidal energy conversion devices.
Some of these events have peaks in coherent turbulent kinetic
energy, some have peaks in turbulence intensity, and most exhibit
one-component anisotropic behavior. The presence of this type of
turbulence means that a preferred direction to the loading events is
to be expected, putting a particular orientation of strain on the
turbine, and violating the common assumption of isotropy. In order
to predict these impacts, an analysis of turbulence should include
turbulence intensity, either in its traditional or coordinate-system
invariant form (the ratio of the full TKE to the mean kinetic en-
ergy), and a measure of anisotropy. Both CTKE and Iu are useful
metrics for measuring turbulence, but when all three velocities are
available, the coordinate-independent measures A, TKE, and the
invariants or eigenvalues of the anisotropy tensor provide a
preferred physical description that includes many details about the
directions of the one- and two-components of the turbulence.
Other measures of intermittency and coherence, such as the pdfs
and structure functions, can be important diagnoses of the degree
to which Kolmogorov-like scalings for turbulent cascades hold for
the environment of interest. Numerical models that parameterize,
rather than directly simulate, the turbulence in similar regions
need to be adapted accordingly (e.g. Thyng et al., 2013, Jonkman
et al., 2012).

The observed anisotropy at Nodule Point can possibly be
attributed to the shallow depth that does not allow isotropy above
scales larger than the water depth. In addition, two-dimensional
turbulence may be created by topographic vortex shedding,
which would produce an energy cascade with a slope of gD ¼ 2/3 as
was observed here. However, high resolution surface measure-
ments (e.g. SAR, HF radar, or ocean color) are necessary to confirm
this hypothesis. Stratification is unlikely to be forcing the two-
dimensional flow, since the tidal strait is well-mixed. Therefore, it
is predicted that tidal straits in general will have two-dimensional
turbulence at scales larger than their depth, although observations
at more sites are needed to support this hypothesis.

A next step will compare the statistics of the observations to
those of the output of turbulence simulators and turbine models.
The observations show strongly that turbulence in this region is not



Fig. 14. a) Power spectrum of the original velocity signal. b) Spectra of the velocity
perturbations for different dt values. dt ¼ 60-min: green, dt ¼ 30-min: red, dt ¼ 20-min:
blue, dt ¼ 10-min: magenta, dt ¼ 5-min: cyan. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

K. McCaffrey et al. / Renewable Energy 76 (2015) 441e453 451
isotropic, even outside of the peaks in turbulence metrics. Turbu-
lence simulators like TurbSim create isotropic turbulence and then
add on an optional coherence function [41]. A comparison between
the resulting loads and efficiencies for turbines in stochastic tur-
bulence and turbulence created by a physical ocean model (like the
Regional Ocean Modeling System of Shchepetkin and McWilliams
[54]), or large-eddy simulation (like the National Center for At-
mospheric Research LES model of Sullivan et al. [55] and Alexander
and Hamlington [56]) for this location will identify the strengths
and weaknesses of each type of model in an effort to improve
modeling capabilities for turbine design. Thyng et al. [5] compare
these ADV records and related observations in this region to a
simulation using ROMS. Their results indicate that the large scale
flow is adequately simulated, but the subgrid parameterizations in
their implementation are unable to fully reproduce the character-
istics of the observed turbulence, based on turbulence intensity.
They propose extensions to these parameterizations that can be
used diagnostically and can guide future parameterization im-
provements. The extensive turbulence characterization performed
here provides a more specific explanation of how the parameteri-
zations are currently lacking.

Additional complexity in real-world turbulence at this and
similar sites may be hidden in this analysis by the assumption of
Taylor's frozen turbulence hypothesis. Several statistics calculated
here utilized this hypothesis to estimate spatial information from
temporal data. In order to relax that assumption, measurements in
time and in space are necessary. An array of ADVs can provide the
spatial resolution, improving with the number of locations col-
lecting simultaneous observations. Undoubtedly, new insight into
the coherent, intermittent in time signals sensed here would result
from information about their horizontal and vertical spatial
coherence and intermittency.
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Fig. 15. a) Velocity over a 10.5-h segment with averages shown in color: dt ¼ 60-min:
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Perturbation from the mean for dt ¼ 60-min: green, dt ¼ 30-min: red, and dt ¼ 20-min:
blue. c) Perturbation from the mean for dt ¼ 10-min: magenta, and dt ¼ 5-min: cyan.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Appendix. Time-scale separation analysis

In decomposing the velocity signal into mean and perturbation,
the goal is to capture the small-scale (in time and space) turbulent
effects aside from the large-scale (in time and space) tidal effects.
Taylor's hypothesis of the relationship between the time and length
scales is assumed, which states that for a given turbulent velocity
scale, bu, the time and length scales are related as L/T. This requires
that for turbulence at larger spatial scales, a longer timescale is
needed to capture the motions. With a goal of capturing the large,
coherent structures in the tidal flow, the largest dt possible is
desirous. However, the tidal signal impacts the flow at longer
timescales, so a careful analysis was needed to separate the two.

The power spectrum of the along stream velocity in Fig. 14a
shows significant peaks at low frequency, and at tidal frequencies of
2 and 4 cycles per day (diurnal and semi-diurnal tides). Fig. 14b
shows spectra of the along-stream velocity perturbation obtained
through different time windows. With a 60-min window, the tidal
frequencies are still apparent, but with decreasing dt, the peaks
decrease. By dt ¼ 5-minutes, the tidal signal is imperceptible.
Fig. 15a shows a 10.5-h segment of velocities with different dt
means, and the resultingperturbationswith60, 30, and20-min dt are
shown in Figs. 15b and 10 and 5-min intervals in Fig. 15c. From these
plots, it is clear that the 60, 30 and 20-min averages are too long
because a significant linear trend remains over the intervals where
the tide is changing direction. That linear trend is therefore being
included in the “turbulence”, though it is actually the tidal signal. The
10- and 5-min averages do not show this remaining signal.
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The variance, s, for each interval in the entire sample for
different dt values was computed, and is shown in Fig. 16. For the
smallest values of dt, there are higher variances seen, with a
decrease as dt increases to about dt ¼ 5. Ignoring the outliers, the
range of variances stays about constant until approximately dt ¼ 35
when it increases again. Using this range of ideal dt values, as well
as the information in Fig. 15, the higher end of this range is known
to be too large. Therefore, after this analysis, the interval length, dt,
for the mean-perturbation decompositionwas chosen to be 10min.
This captures the largest scales of turbulence without contami-
nating it with the tidal signal.
Fig. 16. Variances for each interval of along-stream velocity with dt varying.
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