
 File = E:\bugs\test.bugs.install.docm 1

John Miyamoto

Test Run to Check the Installation of

OpenBUGS, JAGS, BRugs, R2OpenBUGS, Rjags & R2jags

The following annotated code is extracted from John Kruschke's R scripts, "E:\btut\r\BernBetaBugsFull.R" and

"E:\btut\r\BernBetaJagsFull.R" that were downloaded from his website

(http://indiana.edu/~kruschke/DoingBayesianDataAnalysis/). I have made some changes to this code.

The purpose of this annotated R code is simply to check that your installation of OpenBUGS, JAGS,

BRugs, R2OpenBUGS, Rjags & R2jags are all running and talking to each other in the way that they

should. It is assumed that all of these programs have been installed (see, e.g., "Installing BUGS and the

R to BUGS Interface"; the installing.bugs.jags.pdf is available on the Psych 548 website). The R-code for

this document is shown as text at the end of this file, and also as an ascii file, test.bugs.install.txt. If you

want to run the code as you are reading this document, I recomment that you load the text file,

test.bugs.install.txt, into RStudio or your favorite programming editor. It will be easier to transfer the

code to R from a programming editor than from this pdf file.

Contents (Cntrl-left click on a link to jump to the corresponding section)

Section Topic

1 The binomial inference problem that will be used in this document

2 Checking the connection between R and OpenBUGS via BRugs

3 Checking the connection between R and OpenBUGS via R2OpenBUGS

4 Checking the connection between R and JAGS via rjags

5 Checking the connection between R and JAGS via R2jags

6 Text version of the R-code in Tables 1 - 4
End of Contents Table

1. The binomial inference problem that will be used in this document TOC

All of the computations in this document make use of the same Bayesian inference problem.

DATA You have observed 14 independent flips of a coin which may or may not

be biased. You observe 11 heads and 3 tails.

PARAMETER The probability of a heads is an unknown parameter called theta.

PRIOR PROBABILITY

DISTRIBUTION

Prior to observing the coin flips, you believe that all values of theta

are equally likely, so the prior probability distribution of theta is a

uniform distribution over the [0, 1] interval.

BAYESIAN

INFERENCE PROBLEM

What is the posterior probability distribution over theta after

observing 11 heads and 3 tails?

http://indiana.edu/~kruschke/DoingBayesianDataAnalysis/

 File = E:\bugs\test.bugs.install.docm 2

One reason that this inference problem is used so often to teach

Bayesian statistics is that it can be solved by many different methods.

Studying how these different methods apply to the same problem

helps students understand some of the more esoteric methods.

Figure 1 shows the analytical solution to this problem. Given a

uniform prior distribution over theta, the posterior distribution is a

beta distribution with parameters 12 and 4 (I don't know of any

widely accepted names for these parameters; often they are denoted

as  and ). In Figure 1, the dotted line represents the prior

probability distribution and the solid curve represents the posterior

probability distribution. ◦ 

The remainder of this document solves this same problem

using MCMC simulation software.

2. Checking the connection between R and OpenBUGS via BRugs. TOC

 Note: The BRugs documentation states that you may have problems running BRugs with the 32-bit

version of R. Nevertheless, I had no problems running the following code with the 64-bit version of

R.

Table 1. Test the BRugs interface between R and OpenBUGS. The code in this table is a subset for the

code in Kruschke's script file, BernBetaBugsFull.R.
R Code Explanation

library(BRugs) Attaches BRugs to the search path.

modelString = "

BUGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... BUGS model specification ends.

" # close quote to end modelString

THE MODEL.

Specify the model in BUGS language, but save it as a

string in R:

writeLines(modelString,con="model.txt") Write the modelString to a file, using R commands:

modelCheck("model.txt") Use BRugs to send the model.txt file to BUGS, which

checks the model syntax:

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

THE DATA.

Specify the data in R, using a list format compatible

with BUGS: [This is not the only way to specify the

data for BUGS. JM will show you other ways.]

modelData(bugsData(dataList)) Use BRugs commands to put the data into a file and

ship the file to BUGS:

modelCompile()

modelGenInits()

INTIALIZE THE CHAIN.

BRugs command tells BUGS to compile the model.

BRugs command tells BUGS to randomly initialize a

chain.

Figure 1

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

P(success)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Prior Probability

Posterior

Probability

beta(12, 4) Distribution

 File = E:\bugs\test.bugs.install.docm 3

samplesSet("theta") # RUN THE CHAINS.

BRugs tells BUGS to keep a record of the sampled

"theta" values:

chainLength = 50000 R command defines a new variable that specifies an

arbitrary chain length:

modelUpdate(chainLength) BRugs tells BUGS to generate a MCMC chain:

thetaSample = samplesSample("theta") # EXAMINE THE RESULTS.

BRugs asks BUGS for the sample values.

mode(thetaSample)

length(thetaSample)

thetaSample[1:20]

thetaSample should exist in your R data set. It

should be a vector of length 1,000 (the simulation

produced 1,000 estimates of theta. If this is in fact true,

then you have OpenBUGS sucessfully installed and the

BRugs interface is working properly with R.

thetaSummary = samplesStats("theta")

thetaSummary

BRugs asks BUGS for summary statistics. Again, if you

can see these statistics, then the BRugs interface is

working properly with R.

res.param(thetaSample)

mtext(
"Estimated Posterior Distribution of ThetaSample",

 side = 3, cex = 2, line = 2)

mtext(
"Estimates Computed by OpenBUGS Through the BRugs

Interface",

 side = 3, cex = 1.25, line = 0)

The res.param function is in the jmfuns.rda file1.

You will have to attach this file to the search path if you

want to run this function. res.param makes a plot of

the posterior distribution of a parameter.

beta.exact = draw.beta(12, 4, plot.dist =

FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

I have added the true beta(12, 4) distribution to this plot,

except that I displaced the curve by 0.005 to the left in

order to be able to see both the true distribution and the

distribution that was estimated by MCMC.

The text output shows a statistical summary:

 mean median mode bnd.low bnd.hi n.samples

 7.51e-01 7.62e-01 7.90e-01 5.45e-01 9.37e-01 5.00e+04

It will be interesting to compare these results to other results computed below.

3. Checking the connection between R and OpenBUGS via R2OpenBUGS TOC

Table 2. Test the R2OpenBUGS interface between R and OpenBUGS.
R Code Explanation

if ("package:R2WinBUGS" %in% search())

 detach("package:R2WinBUGS")

This command detaches the R2WinBUGS package from the

search path in the case where it is present on the search

path. The reason for doing this is that the bugs function in

R2WinBUGS package can interfere with the use of the

bugs function in the R2OpenBUGs package.

1 If you don't have the jmfuns.rda function, it can be downloaded from

http://faculty.washington.edu/jmiyamot/downloads.htm or https://faculty.washington.edu/jmiyamot/p548/p548-set.htm

 File = E:\bugs\test.bugs.install.docm 4

The following cells (yellow background) are

repeated from Table 1. They need to be

repeated only if modelString and dataList

have been removed from .GlobalEnv, e.g.,

if you are starting a new R session.

modelString = "

BUGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... BUGS model specification ends.

" # close quote to end modelString

THE MODEL.

Specify the model in BUGS language, but save it as a string

in R:

writeLines(modelString,con="model.txt") Write the modelString to a file, using R commands:

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

THE DATA.

Specify the data in R, using a list format compatible with

BUGS: [This is not the only way to specify the data for

BUGS. JM will show you other ways.]

library(R2OpenBUGS) Attach R2OpenBUGS to the search path.

 WARNING: When you run the next command, your R

program will appear to freeze while it transfers the

computation to OpenBUGS. R will regain control after

OpenBUGS has finished the MCMC computation. On my

i5 laptop, the OpenBUGS computation takes about 5

seconds, but it could be longer on a slower computer. If

your computer freezes for more than 30 seconds, I would

assume that it is officially frozen, and you will have to force

the closure of R and OpenBUGS.

bugs.out = bugs(

 data = dataList,

 inits = NULL,

 parameters.to.save = "theta",

 model.file= "model.txt",

 n.chains= 1,

 n.iter= 50000,

 n.burnin= 0,

 n.thin= 1

)

bugs sends the computation to OpenBUGS. When

OpenBUGS has finished, it returns the results to R. The

results are stored in bugs.out which is a list structure.

In future classes, we will thoroughly discuss the structure of

the bugs function and its output. For now, suffice it to say

that this function requests that OpenBUGS compute 1,000

parameter estimates from the posterior distribution of the

theta parameter, and stores these estimates in the

bugs.out list.

names(bugs.out) We see that bugs.out has many components.

names(bugs.out$sims.list) We see that the estimates of theta are stored in

bugs.out$sims.list.

est.theta = bugs.out$sims.list$theta

mode(est.theta)

length(est.theta)

est.theta[1:20]

We store the estimates of theta in est.theta.

est.theta is a numeric vector of length 1,000,

representing the 1,000 estimates of theta which have been

sampled via MCMC simulation from the posterior

distribution of theta.

 File = E:\bugs\test.bugs.install.docm 5

res.param(est.theta)

mtext(
"Estimated Posterior Distribution of est.theta",

 side = 3, cex = 2, line = 2)

mtext(
"Estimates Computed by OpenBUGS Through the

R2OpenBUGS Interface",

 side = 3, cex = 1.25, line = 0)

The res.param function is in the jmfuns.rda file2.

You will have to attach this file to the search path if you

want to run this function. res.param makes a plot of the

posterior distribution of a parameter.

beta.exact = draw.beta(12, 4, plot.dist =

FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

I have added the true beta(12, 4) distribution to this plot,

except that I displaced the curve by 0.005 to the left in order

to be able to see both the true distribution and the

distribution that was estimated by MCMC.

This analysis finds:

 mean median mode bnd.low bnd.hi n.samples

 7.51e-01 7.62e-01 7.90e-01 5.45e-01 9.37e-01 5.00e+04

Not surprisingly, these results are exactly identical to the results produced by BRugs in Section 2. In

both cases, the actual computation is performed by OpenBUGS. Next we will see check the performance

of JAGS.

4. Checking the connection between R and JAGS via rjags TOC

Table 3. Test the rjags interface between R and JAGS.
R Code Explanation

rm(list = ls()) Delete (remove) all objects

from .GlobalEnv, to clear the work space.

graphics.off() Turn off all graphics windows, again to clear

the work space.

if (.Platform$OS.type != "windows") {

 windows <- function(...) X11(...)

}

Sets the meaning of the "windows" function

so that it is compatible with either Microsoft

Windows or with a Mac or Linux

environment.

require(rjags)

2 If you don't have the jmfuns.rda function, it can be downloaded from

http://faculty.washington.edu/jmiyamot/downloads.htm or https://faculty.washington.edu/jmiyamot/p548/p548-set.htm

 File = E:\bugs\test.bugs.install.docm 6

modelString = "

JAGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... JAGS model specification ends.

" # close quote to end modelString

THE MODEL.

Specify the model in JAGS language, but

save it as a string in R:

It is interesting to note that the model

language for OpenBUGS is identical to the

model language (for the same model) in

JAGS (see Table 1).

writeLines(modelString,con="model.txt") Write the modelString to a file, using R

commands:

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

THE DATA.

Specify the data in R, using a list format

compatible with JAGS:

initsList = list(theta = sum(dataList$y) /

 length(dataList$y)

INTIALIZE THE CHAIN.

Can be done automatically in jags.model() by

commenting out inits argument.

Otherwise could be established as:

 # RUN THE CHAINS.

parameters = c("theta") The parameter(s) to be monitored.

adaptSteps = 500 Number of steps to "tune" the samplers.

burnInSteps = 1000 Number of steps to "burn-in" the samplers.

nChains = 3 Number of chains to run.

numSavedSteps=50000 Total number of steps in chains to save.

thinSteps=1 Number of steps to "thin" (1=keep every

step).

nIter = ceiling((numSavedSteps*thinSteps) / nChains) Steps per chain.

jagsModel = jags.model(

 "model.txt" , data=dataList , # inits=initsList ,

 n.chains=nChains , n.adapt=adaptSteps)

Create, initialize, and adapt the model:

cat("Burning in the MCMC chain...\n") # Burn-in:

update(jagsModel , n.iter=burnInSteps)

cat("Sampling final MCMC chain...\n")

codaSamples = coda.samples(jagsModel ,

 variable.names=parameters, n.iter=nIter,

 thin=thinSteps)

The saved MCMC chain:

Tesulting codaSamples object has these

indices:

codaSamples[[chainIdx]][stepIdx ,

paramIdx]

mcmcChain = as.matrix(codaSamples)

thetaSample = mcmcChain

EXAMINE THE RESULTS.

Convert coda-object codaSamples to

matrix object for easier handling. But note

that this concatenates the different chains

into one long chain. Result is

mcmcChain[stepIdx , paramIdx]

 File = E:\bugs\test.bugs.install.docm 7

mode(thetaSample)

length(thetaSample)

thetaSample[1:20,]

thetaSample should exist in your R data

set. It should be a matrix with 50,001 rows

(the simulation produced 50,001 estimates of

theta) and 1 column. If this is in fact true,

then you have JAGS sucessfully installed

and the Rjags interface is working properly

with R.

summary(thetaSample) BRugs asks BUGS for summary statistics.

Again, if you can see these statistics, then the

BRugs interface is working properly with R.

res.param(thetaSample)

mtext(
"Estimated Posterior Distribution of ThetaSample",

 side = 3, cex = 2, line = 2)

mtext(
"Estimates Computed by JAGS Through the Rjags Interface",

 side = 3, cex = 1.25, line = 0)

The res.param function is in the

jmfuns.rda file3. You will have to attach

this file to the search path if you want to run

this function. res.param makes a plot of

the posterior distribution of a parameter.

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

I have added the true beta(12, 4) distribution

to this plot, except that I displaced the curve

by 0.005 to the left in order to be able to see

both the true distribution and the distribution

that was estimated by MCMC.

Summary of Results from the Rjags Run:

 mean median mode bnd.low bnd.hi n.samples

 0.750 0.760 0.778 0.543 0.936 50001.000

Comparing these results to the results from BRugs and R2OpenBUGS, we can see that they are virtually

identical.

5. Checking the connection between R and JAGS via R2jags TOC

Table 4. Test the R2jags interface between R and JAGS.
R Code Explanation

rm(list = ls()) Delete (remove) all objects

from .GlobalEnv, to clear the work space.

graphics.off() Turn off all graphics windows, again to clear

the work space.

if (.Platform$OS.type != "windows") {

 windows <- function(...) X11(...)

}

Sets the meaning of the "windows" function

so that it is compatible with either Microsoft

Windows or with a Mac or Linux

environment.

library(R2jags)

search()

Notice that the R2jags package requires

that Rjags and R2WinBUGS be on the

search path.

All of the following code (shaded yellow) is the

same as the code for the Rjags example. It is

reproduced here because it was deleted when we

cleared the work space.

3 If you don't have the jmfuns.rda function, it can be downloaded from

http://faculty.washington.edu/jmiyamot/downloads.htm or https://faculty.washington.edu/jmiyamot/p548/p548-set.htm

 File = E:\bugs\test.bugs.install.docm 8

modelString = "

JAGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... JAGS model specification ends.

" # close quote to end modelString

THE MODEL.

Specify the model in JAGS language, but

save it as a string in R:

It is interesting to note that the model

language for OpenBUGS is identical to the

model language (for the same model) in

JAGS (see Table 1).

writeLines(modelString,con="model.txt") Write the modelString to a file, using R

commands:

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

THE DATA.

Specify the data in R, using a list format

compatible with JAGS:

initsList = list(theta = sum(dataList$y) /

 length(dataList$y)

INTIALIZE THE CHAIN.

Can be done automatically in jags.model() by

commenting out inits argument.

Otherwise could be established as:

 # RUN THE CHAINS.

parameters = c("theta") The parameter(s) to be monitored.

adaptSteps = 500 Number of steps to "tune" the samplers.

burnInSteps = 1000 Number of steps to "burn-in" the samplers.

nChains = 3 Number of chains to run.

numSavedSteps=50000 Total number of steps in chains to save.

thinSteps=1 Number of steps to "thin" (1=keep every

step).

nIter = ceiling((numSavedSteps*thinSteps) / nChains) Steps per chain.

The following R2jags command has the same

structure as the preceding Rjags computation.

jags.out = jags(

The output of the jags analysis will be

saved in jags.out.

 data = dataList, Specify the data.

 inits = NULL, We could specify the initial values (start

values) for the 3 chains of sampled estimates.

By setting inits = NULL, we let JAGS

choose the initial values at random.

 parameters.to.save = parameters, The parameter(s) to be monitored (returned

to R for further analysis).

 n.iter= nIter + 1000, The number of iterations (samples of

estimates) to be drawn in each chain.

 model.file= "model.txt", The designation of a model file.

 n.chains= nChains, The number of chains of estimates.

 n.burnin= burnInSteps, The number of "burn-in" samples that will be

discarded.

 File = E:\bugs\test.bugs.install.docm 9

 n.thin= thinSteps) The rate at which samples will be saved from

a chain, e.g., n.thin = 5 would mean that

every 5th sample is saved.

Next we need to find the component of the output

that contains the samples from the posterior

distribution of theta.

names(jags.out) Names of the components of the list,

jags.out.

names(jags.out$BUGSoutput) Names of the component,

jags.out$BUGSoutput.

names(jags.out$BUGSoutput$sims.list) Names of the component,

jags.out$BUGSoutput$sims.list.

If you are wondering how I knew that the

estimates of theta would be stored in the

sims.list component of BUGSoutput, I

based this guess on the fact that the bugs

function in R2OpenBUGS also stores the

parameter estimates in a component called

sims.list. (Also, I know that

R2WinBUGS, R2OpenBUGS and R2jags

were all written by researchers in the same

lab, so we can expect parallels in how the

functions in these packages will work.)

est.theta = jags.out$BUGSoutput$sims.list$theta

mode(est.theta)

length(est.theta)

est.theta[1:20]

res.param(est.theta)

mtext(
"Estimated Posterior Distribution of est.theta",

 side = 3, cex = 2, line = 2)

mtext(
"Estimates Computed by JAGS Through the R2jags Interface",

 side = 3, cex = 1.25, line = 0)

The res.param function is in the

jmfuns.rda file4. You will have to attach

this file to the search path if you want to run

this function. res.param makes a plot of

the posterior distribution of a parameter.

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

I have added the true beta(12, 4) distribution

to this plot, except that I displaced the curve

by 0.005 to the left in order to be able to see

both the true distribution and the distribution

that was estimated by MCMC.

Summary of Results from the R2jags Run:

 mean median mode bnd.low bnd.hi n.samples

 0.750 0.760 0.781 0.542 0.934 50001.000

Obviously, the results are similar from all four methods. The plots of the estimated posterior distributions

are shown on the next page.

4 If you don't have the jmfuns.rda function, it can be downloaded from

http://faculty.washington.edu/jmiyamot/downloads.htm or https://faculty.washington.edu/jmiyamot/p548/p548-set.htm

 File = E:\bugs\test.bugs.install.docm 10

Figure 2. Posterior distributions of theta estimated by four different methods. The thin red line shows

the beta(12, 4) distribution (exact posterior distribution); it has been displaced to the left by 0.005 in order

to make it more visible.

6. Text version of the R-code in Tables 1 - 4.

The code shown below is also available in a separate text file called 'test.bugs.install.txt'.

You may want to copy this code from the current document and paste it into a script file

within RStudio. Then you can run it in RStudio.

File: test.bugs.install

Title: Test Run to Check the Installation of

OpenBUGS, JAGS, BRugs, R2OpenBUGS, Rjags & R2jags
#---

Table 1. Test the BRugs interface between R and OpenBUGS.

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Values of thetaSample

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

mean = 0.751
median = 0.762
mode = 0.79
bnd.low = 0.545
bnd.hi = 0.937
n.samples = 50000

Estimated Posterior Distribution of ThetaSample

Estimates Computed by OpenBUGS Through the BRugs Interface

0.4 0.6 0.8 1.0

0
1

2
3

4

Values of thetaSample

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

mean = 0.75
median = 0.76
mode = 0.778
bnd.low = 0.543
bnd.hi = 0.936
n.samples = 50001

Estimated Posterior Distribution of ThetaSample

Estimates Computed by JAGS Through the Rjags Interface

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Values of est.theta

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

mean = 0.751
median = 0.762
mode = 0.79
bnd.low = 0.545
bnd.hi = 0.937
n.samples = 50000

Estimated Posterior Distribution of est.theta

Estimates Computed by OpenBUGS Through the R2OpenBUGS Interface

0.4 0.6 0.8 1.0

0
1

2
3

4

Values of est.theta

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

mean = 0.75
median = 0.76
mode = 0.781
bnd.low = 0.542
bnd.hi = 0.934
n.samples = 50001

Estimated Posterior Distribution of est.theta

Estimates Computed by JAGS Through the R2jags Interface

 File = E:\bugs\test.bugs.install.docm 11

The code in this table is a subset for the code in

Kruschke's script file, BernBetaBugsFull.R.

library(BRugs)

modelString = "

BUGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... BUGS model specification ends.

" # close quote to end modelString

writeLines(modelString,con="model.txt")

modelCheck("model.txt")

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

modelData(bugsData(dataList))

modelCompile()

modelGenInits()

samplesSet("theta")

chainLength = 50000

modelUpdate(chainLength)

thetaSample = samplesSample("theta")

mode(thetaSample)

length(thetaSample)

thetaSample[1:20]

thetaSummary = samplesStats("theta")

thetaSummary

res.param(thetaSample)

mtext(

"Estimated Posterior Distribution of ThetaSample",

 side = 3, cex = 2, line = 2)

mtext(

"Estimates Computed by OpenBUGS Through the BRugs Interface",

 side = 3, cex = 1.25, line = 0)

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

#---

Table 2. Test the R2OpenBUGS interface between R and

OpenBUGS.

if ("package:R2WinBUGS" %in% search())

 detach("package:R2WinBUGS")

 File = E:\bugs\test.bugs.install.docm 12

The following cells (yellow background) are

repeated from Table 1. They need to be

repeated only if modelString and dataList

have been removed from .GlobalEnv, e.g.,

if you are starting a new R session.

modelString = "

BUGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... BUGS model specification ends.

" # close quote to end modelString

writeLines(modelString,con="model.txt")

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

library(R2OpenBUGS)

bugs.out = bugs(

 data = dataList,

 inits = NULL,

 parameters.to.save = "theta",

 model.file= "model.txt",

 n.chains= 1,

 n.iter= 50000,

 n.burnin= 0,

 n.thin= 1

)

names(bugs.out)

names(bugs.out$sims.list)

est.theta = bugs.out$sims.list$theta

mode(est.theta)

length(est.theta)

est.theta[1:20]

res.param(est.theta)

mtext(

"Estimated Posterior Distribution of est.theta",

 side = 3, cex = 2, line = 2)

mtext(

"Estimates Computed by OpenBUGS Through the R2OpenBUGS Interface",

 side = 3, cex = 1.25, line = 0)

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

 File = E:\bugs\test.bugs.install.docm 13

lines(x, y, col = "red")

#---

Table 3. Test the rjags interface between R and JAGS.

rm(list = ls())

graphics.off()

if (.Platform$OS.type != "windows") {

 windows <- function(...) X11(...)

}

require(rjags)

modelString = "

JAGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... JAGS model specification ends.

" # close quote to end modelString

writeLines(modelString,con="model.txt")

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

initsList = list(theta = sum(dataList$y) / length(dataList$y)

parameters = c("theta")

adaptSteps = 500

burnInSteps = 1000

nChains = 3

numSavedSteps=50000

thinSteps=1

nIter = ceiling((numSavedSteps*thinSteps) / nChains)

jagsModel = jags.model(

 "model.txt" , data=dataList , # inits=initsList ,

 n.chains=nChains , n.adapt=adaptSteps)

cat("Burning in the MCMC chain...\n")

update(jagsModel , n.iter=burnInSteps)

cat("Sampling final MCMC chain...\n")

codaSamples = coda.samples(jagsModel ,

 variable.names=parameters, n.iter=nIter,

 thin=thinSteps)

mcmcChain = as.matrix(codaSamples)

thetaSample = mcmcChain

mode(thetaSample)

length(thetaSample)

thetaSample[1:20,]

 File = E:\bugs\test.bugs.install.docm 14

summary(thetaSample)

res.param(thetaSample)

mtext(

"Estimated Posterior Distribution of ThetaSample",

 side = 3, cex = 2, line = 2)

mtext(

"Estimates Computed by JAGS Through the Rjags Interface",

 side = 3, cex = 1.25, line = 0)

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

#---

Table 4. Test the R2jags interface between R and JAGS.

rm(list = ls())

graphics.off()

if (.Platform$OS.type != "windows") {

 windows <- function(...) X11(...)

}

library(R2jags)

search()

All of the following code (shaded yellow) is the

same as the code for the Rjags example. It is

reproduced here because it was deleted when we

cleared the work space.

modelString = "

JAGS model specification begins ...

model {

 # Likelihood:

 for (i in 1:nFlips) {

 y[i] ~ dbern(theta)

 }

 # Prior distribution:

 theta ~ dbeta(priorA , priorB)

 priorA <- 1

 priorB <- 1

}

... JAGS model specification ends.

" # close quote to end modelString

writeLines(modelString,con="model.txt")

dataList = list(

 nFlips = 14 ,

 y = c(1,1,1,1,1,1,1,1,1,1,1,0,0,0)

)

initsList = list(theta = sum(dataList$y) / length(dataList$y)

parameters = c("theta")

adaptSteps = 500

burnInSteps = 1000

nChains = 3

numSavedSteps=50000

 File = E:\bugs\test.bugs.install.docm 15

thinSteps=1

nIter = ceiling((numSavedSteps*thinSteps) / nChains)

The following R2jags command has the same

structure as the preceding Rjags computation.

jags.out = jags(

 data = dataList,

 inits = NULL,

 parameters.to.save = parameters,

 n.iter= nIter + 1000,

 model.file= "model.txt",

 n.chains= nChains,

 n.burnin= burnInSteps,

 n.thin= thinSteps)

Next we need to find the component of the output

that contains the samples from the posterior

distribution of theta.

names(jags.out)

names(jags.out$BUGSoutput)

names(jags.out$BUGSoutput$sims.list)

est.theta = jags.out$BUGSoutput$sims.list$theta

mode(est.theta)

length(est.theta)

est.theta[1:20]

res.param(est.theta)

mtext(

"Estimated Posterior Distribution of est.theta",

 side = 3, cex = 2, line = 2)

mtext(

"Estimates Computed by JAGS Through the R2jags Interface",

 side = 3, cex = 1.25, line = 0)

beta.exact = draw.beta(12, 4, plot.dist = FALSE)

x = beta.exact[, 1] - 0.005

y = beta.exact[, 2]

lines(x, y, col = "red")

#---

	Contents (Cntrl-left click on a link to jump to the corresponding section)
	1. The binomial inference problem that will be used in this document TOC
	2. Checking the connection between R and OpenBUGS via BRugs. TOC
	The text output shows a statistical summary:

	3. Checking the connection between R and OpenBUGS via R2OpenBUGS TOC
	This analysis finds:

	4. Checking the connection between R and JAGS via rjags TOC
	Summary of Results from the Rjags Run:

	5. Checking the connection between R and JAGS via R2jags TOC
	Summary of Results from the R2jags Run:

	6. Text version of the R-code in Tables 1 - 4.

