
 E:\R\RNOTE1.DOC: Getting Started With R

John Miyamoto February 16, 2006
Email: jmiyamot@u.washington.edu http://faculty.washington.edu/jmiyamot

Getting Started with the R Statistical Programming Language

NOTE: R is a freeware statistical program. See the R homepage (http://www.r-project.org/) for
the terms of its use. The homepage also has useful information about the history of the R-project,
how to use R, how to write R programs, and much more.

Instructions for Downloading R.

These instructions assume that R version 2.2.1 is the current state-of-the-art version of R
for Windows. If there is a more recent version, go ahead and use it.
1. Go to http://www.r-project.org/ or http://cran.us.r-project.org/welcome.html. Either should

work.
2. Click on CRAN (Comprehensive R Archive Network). CRAN will ask which of various

mirrored website you want to be connected to. Choose one close to where you are. (In
Seattle, I usually choose UCLA or Wisconsin.)

3. Under "Precompiled Binary Distributions", click on the operating system for your computer,
e.g., MacOS (System 8.6 to 9.1 and MacOS X) or Windows (95 and later). DO NOT
download the R source code unless you are a computer expert who wants to work with the
code.

4. For either Macos or Windows, there are two components to the program. Base refers to the
main program. Contrib refers to special sets of functions (R calls them "packages") that
have been written by R-users for special purposes. Everyone needs to have the Base
program, but you only need packages if you have a need for its specific purpose. E.g., there
is a repeated measures package called nlme that has multilevel modeling functions.

5. For Windows users, download the R-2.2.1 program file. This is all you need to install the R
base program.

* If you are short of hard drive space, you can download the files miniR.exe and miniR-1.bin to miniR-6.bin.
If you need to, you can put miniR.exe and miniR-1.bin on one floppy, and miniR-2.bin to miniR-6.bin on
separate floppies. This is a small installation, containing text and compiled HTML help files, and the
Introduction to R and Data Import/Export manuals in PDF.

* The file ReadMe.R Version# contains installation instructions if you require a more customized installation.

6. For Windows users, go back to the window with the Contrib option (to start from the R-
Homepage, click on CRAN; click on R-Binaries; click on Windows; click on Contrib). Now
you can click on the names of any packages that you want to download. Over time, you will
hear about various packages that you may need to use in your work. It is easy to use this
procedure to download zip files that contain various packages. Put the package zip files in a
temporary directory. I recommend that you download at least the 'foreign' package; it has
functions for reading data from SPSS or SAS files (among others).

7. It may be convenient to download the R Manuals (see instructions below) while you are still
connected to CRAN.

8. It may be useful to look at the FAQ for Windows and Mac users. Go to http://cran.r-
project.org/, and click on FAQs. Choose the R Windows FAQ or the R MacOS X FAQ.

I'm afraid that I don't use a Mac, Unix or Linux systems, so I don't have any tips about what to
download for these operating systems. You can probably get help with a Mac, Unix or Linux
installation at CSSCR.

 Hints for Using R 2

Installing R on a Windows System:

The files README and RW-FAQ documents contain instructions for installing R.
• To install R, simply apply the Add/Remove programs utility (available on the Control

Panel) to R installation file (named something like 'R-2.2.1-win32.exe'.
• After the program has been installed, you will want to put an icon (short-cut) to the

Rgui.exe program file on your desktop. Rgui.exe is contained in the ...\R Version#\bin
directory. Rgui.exe runs the interactive version of R. Right mouse click on the Rgui.exe,
create a shortcut to R, and then copy or cut and paste this shortcut to the Windows Desktop
(or any other place you might want to keep the icon).

• You may also want to install some R packages. First, download the zip file for the package
from CRAN (see step 6 above). To Install a R Package: When you unzip the zip file for
the package, make ...\R Version#\library the target directory (where unzip is instructed to
place the files). The unzip program will automatically create directories under ...\R
Version#\library for the individual packages. You can delete the zip files after you have
installed the packages. When you run R, you need to give the command,
library(package.name), where "package.name" is the name for the particular package.
For example, to load the 'foreign' package, you must give the R command,
library(foreign). Below is a list of some of the many useful R packages.
* The foreign package (foreign.zip) contains a function, read.spss, that allows R to read SPSS data files.
* The MASS package (vr.zip) contains many useful functions and data sets for Venables & Ripley's excellent

textbooks about S computing (also R). This package is automatically installed when you install the base
package (the main R program), so you don't need to download it or install it individually.

* The NLME package (nlme.zip) contains functions and data for repeated measures anova and multilevel
modeling. This package is automatically installed when you install the base package (the main R program),
so you don't need to download it or install it individually.

* Note: It is very easy to update R packages, i.e., get the latest versions of packages that you have previously
installed on your computer. To update your R packages, do the following: (i) connect to the internet;
(ii) run R; (iii) give the command, update.packages(), to R. The update.packages function will automatically
update every package that you have installed on your computer.

Setting the Startup Directory for R:

The startup director is the directory that contains the data objects that you want to work
on in your current R session. For example, suppose you are working on two projects; the data
files for your dissertation project are contained in a directory (folder) called c:\diss and the data
for your job are contained in a directory called c:\job. When you want to use R to analyze your
dissertation data, you want to start R with c:\diss as the startup directory; and when you want to
use R to analyze data from your job, you want to start R with c:\job as the startup directory.

• To set the startup directory, click the right mouse button on the R program icon. Choose
"properties". Click on the Shortcut tab, and type the path and name of the directory that
contains the files that you want to work on. You can choose any directory as the startup
directory.

• Example: Suppose as suggested above that you are working on two projects, a dissertation
project with files in c:\diss, and a job project with files in c:\job. A standard way to deal
with this is to make two copies (or shortcuts) of the R program icon. (Right mouse click on
any existing R program icon or shortcut; select Create Shortcut; do this twice if you want
two shortcuts to R.) Now edit the properties of these icons, setting one so that it starts in
c:\diss\data and the other so that it starts in c:\job\data. Click on the appropriate icon when
working on the corresponding project. In this way, R objects that are created for purposes

 Hints for Using R 3

of analyzing the dissertation data (in c:\diss\data) will not get confused with R objects that
are created for purposes of analyzing job data (in c:\job\data).

Suppose you want to work on the data in c:\diss\data, and you have created an R shortcut
(icon) that starts in this directory. Double click on the R icon that starts in c:\diss\data. As it
starts up, R automatically looks for a file called .Rdata in c:\diss\data. This file, .Rdata,
contains any functions or data objects that were created and saved in previous R-sessions that
started in c:\diss\data. If there is no .Rdata file in c:\diss\data, e.g., because this is the first time
you have started R in this directory, then R automatically creates a .Rdata file. When you
initially start R, the .RData file in the startup directory is loaded into the computer's working
memory and is given the name, .GlobalEnv. .GlobalEnv can be thought of as the workspace
for your current R session. If you create additional objects during your R session, these objects
will be added to .GlobalEnv, but they will not be permanently saved until you issue a command
that saves the workspace. You can use a save.image command to save the current workspace
to .Rdata (see the R-Help page for the save.image and save functions). In addition, when
you quit R, you will be queried whether you want to save your current workspace to c:\diss\data.
If you choose to save your current workspace, then all functions and objects in your current
workspace will be loaded the next time you start R in c:\diss\data.

How does R find the functions and objects (e.g., data) that are needed in an
analysis?

Whenever you enter an R-expression at the R-prompt, R looks for functions or objects
that correspond to the functions or objects that are referred to in the expression. For example,
suppose you type the following at the R-prompt:

>X <- Y + Z

R will look for objects called "Y" and "Z", and try to assign to "X" the sum of the values assigned
to "Y" and "Z". To find the objects "Y" and "Z", R looks through a series of files for objects with
these names. This series of files is called the search path for R. You can see the current search
path by giving the R command, search(). For example on my computer, search() produces
the following information:

> search()

[1] ".GlobalEnv" "file:c:/r/jmm/.RData" "package:ctest"

[4] "package:mass" "package:nls" "Autoloads"

[7] "package:base"

This output tells us that .GlobalEnv is in position 1 (the top position on the search
path). The files in positions 2 - 6 are occupied by other files that contain useful functions.
Position 7 contains the base package which constitute the default basic set of functions that define
the R programming language. The specific search path will differ on different computers, or even
on the same computer in different R-sessions; later I will explain how the user can control which
files will be placed on the search path.

If the expression, "X <- Y + Z", is entered at the R-prompt, R looks for objects
corresponding to "Y" and "Z". R looks first in .GlobalEnv, second in the file
c:/r/jmm/.RData, third in the file ctest, fourth in the file mass, etc. R assigns to each
expression the first object with a matching name that it finds in this search. For example, suppose
that there is an object named "Y" in ctest where "Y" has the value 4, there is also an object

 Hints for Using R 4

named "Y" in mass where it has the value 10, and there is no object named "Y" in any other file
along the search path. Y will be assigned the value 4 because this is the value of Y in the earliest
file on the search path. Suppose that there is an object named "Z" in .GlobalEnv where it has
the value 2, there is also an object named "Z" in package:nls where it has the value 15, and
there is no object named "Z" in any other file along the search path. Then Z will be assigned the
value 2 because this is the value of Z in the earliest file on the search path. The expression "X <-
Y + Z" results in assigning the number 6 to "X" (because 6 = 4 + 2). Furthermore the object
called X will be placed in .GlobalEnv (if there previously existed an object called X in
.GlobalEnv, that object would be replaced by the X whose value is 2).

In general, whenever an R-expression is entered at the R-prompt, R looks for functions
and objects that correspond to functions and objects that are referenced in the expression. R will
always interepret such references according to the first function or object of the same name that
occurs along the search path.

The attach, library, and require functions can be used to place sets of R objects on
the search path. The detach function is used to remove files from the search path. Suppose that
c:\diss\data is the startup directory, and you want to access the objects in a file,
c:\rfiles\previous.rda. You can place it in position 2 of the search path with the function,
attach("c:/rfiles/previous.rda", pos=2). Note that the "\" symbol must be changed
to a "/" symbol when indicating directory paths to R. Once c:\rfiles\previous.rda is attached
to the search path, then functions and other objects in previous.rda can be used in the current
R program. The library and require commands are used to attach packages to the search
path. See the online documentation for further information about library, require and
detach.

Setting the Startup Configuration of R:

You don't have to create a startup configuration for yourself because R has a default
configuration that works fine. In the long run, however, you will discover that there are certain
settings that you prefer to have as your personal defaults. This section describes how to set these
defaults (to the best of my current understanding). See Section 10.8 ("Customizing the
environment") of An Introduction to R for a fuller, and no doubt more accurate description of the
initialization process for R.

When R starts up, it first looks in the file ...\library\base\R\Rprofile.site for
initial program settings; it runs any R commands that it finds in this file. (The symbol "..." refers
to the directory that contains the R program; on my computer it is C:\Program Files\R\R-
2.2.1\ but it will be different on different computers.) Next R looks in the file
...\etc\Rprofile.site for additional program settings, and runs any R commands that it finds
in this file. Finally R looks for a function called .First that may be stored in one of the
positions along the search path. It executes the first .First function that it finds on the search
path, starting from .GlobalEnv and ending at the last environment on the search path.
Remember, if c:\data is the start up directory for the current R session, then R initially looks for
a file called .RData in c:\data and loads the functions and objects in .RData into the current
workspace (called .GlobalEnv). Thus, if R finds a .First function in .GlobalEnv at start
up, this happens because you created a .First function in a previous R session and saved it to
the .RData file c:\data. If there is no .First function in .GlobalEnv, then R will look for a
.First function in the second position, then in the third position, As stated, R executes the

 Hints for Using R 5

first .First function that it finds along the search path. If there is no .First function along the
search path, then no .First function will be executed.

The standard way to set the initial configuration of R is to create a .First function that
defines the desired initial settings of R, and to save this .First function to a file on the initial
search path of R. The user creates the .First function or modifies an existing .First function
in order that the R program has the desired initial configuration. For example, the following code
creates a .First function that is a simplification of the one I use (the function is shown on the
left; an explanation of the function is shown on the right):

Table 1
.First <- function() { Begins the definition of the .First

function.
 options(continue = "& ", digits = 8) Sets the continuation character to &

and the default number of digits after
the decimal place to 8.

 attach("C:/R/jmfuns.rda", pos = 2) Puts C:\r\jmfuns.rda on the search
path in position 2. Note that a "\" in
Windows corresponds to a "/" in R
because of R's Unix ancestry.

 attach("data.rda", pos=2) Looks in the startup directory for a
file called data.rda. If it finds it, it
attaches it in position 2 (jmfuns.rda
gets bumped to position 3).

 library(foreign) This command places the foreign
package on the search path. The
foreign package contains functions
that allow the user to read data from
other statistical packages, e.g., from
SPSS.

 } Ends the function definition.

I want the .First function to run whenever I start R because it sets program parameters the way
that I like them. These settings become my defaults - they can be overridden whenever I like. If
you use R, you will learn what configuration you like, and you can make this configuration your
default by defining your own .First function.

In order to have the .First file run at startup, you need to have .First in an
appropriate place. Here are two ways to do this.

Method I: Create a separate .First function in every directory in which you start up R, and
save this function to the .RData file for this directory1. This method works but it is
inconvenient. For example, if you want to make the same change to every .First function in
every directory that you work in, there is no easy way to do this.

Method II (my preferred method): Method II is slightly elaborate to set up in the first place, but it
is very convenient once the necessary configuration has been created. The purpose of Method II
is to create a default search path that looks like:

1 See the section "Setting the Startup Director for R" for an explanation of how to set the directory in which R starts.

 Hints for Using R 6

Table 2
> search()

 [1] ".GlobalEnv" "file:data.rda" "file:c:/r/jmfuns.rda"

 [4] "package:methods" "package:stats" "package:graphics"

 [7] "package:grDevices" "package:utils" "package:datasets"

[10] "Autoloads" "package:base"

.GlobalEnv is the current workspace as determined by the startup directory1. I use
.GlobalEnv as a temporary workspace - objects that I want to retain permanently are
kept in c:/diss/data.rda or c:/r/jmfuns.rda.

data.rda is a user-created file that I use to store data objects for this particular project, e.g.,
data frames, matrices, vectors, and results of analyses. The file 'data.rda' is stored in the
startup directory1. When working on a different project, I start R with a different startup
directory, and a different file of data objects (also called 'data.rda') would be attached in
this position.

c:/r/jmfuns.rda contains general purpose functions that I have written for my personal
use. When I create new functions or data objects, they are initially stored in
.GlobalEnv. If I want to save data objects permanently, I move them from
.GlobalEnv to c:/diss/data.rda. If I want to save functions permanently, I move
them from .GlobalEnv to c:/r/jmfuns.rda. This is useful because these function
then become available whenever I compute with R (on my own computer), not just when
working on this particular project. When I work on a different project, I have a different
file of data objects in the second position, but I keep my standard 'jmfuns.rda' function in
the third position. Functions or object that have no lasting value are left in .GlobalEnv.
These files can be saved for temporary use in the .Rdata file of the startup directory,
and they can be reused in the short term but not the long term.

methods, stats, graphics, grDevices, utils, datasets

These are the packages that R Version 2.2.1 loads by default.

Autoloads See the R-Help documentation.

base The base package contains the base set of functions for R. R won't run without these
functions.

The rationale behind this organization is that in any analysis, one creates many functions
or data objects that are temporarily useful but are not of lasting value. In the long run, it is con-
fusing to have these objects mixed in with other functions or objects that are of permanent value.
Therefore I keep data objects of permanent value to the particular project in a data.rda file, and
I keep functions that I have written for use in any project in c:/r/jmfuns.rda. By keeping
objects and functions that have permanent value in files that are separate from .GlobalEnv, I
avoid the mistake of accidentally deleting them or overwriting them. Of course, I need a function
that lets me move new objects or functions from .GlobalEnv to data.rda or
c:/r/jmfuns.rda and a function that lets me delete objects from data.rda and
c:/r/jmfuns.rda. These functions (move and rm.sv) are described below.

The good news is that it is easy to create the code that creates the default search shown in
Table 2. The bad news is that this code involves a few, superficially mysterious manoeuvers. If
we simply stored the .First function defined in Table 1 in the .Rdata file of the startup
directory, then R would start with the following initial search path:

 Hints for Using R 7

Table 3
> search()

 [1] ".GlobalEnv" "package:methods" "package:stats"

 [4] "package:graphics" "package:grDevices" "package:utils"

 [7] "package:datasets" "package:foreign" "file:data.rda"

[10] "file:e:/r/jmm/jmfuns.rda" "Autoloads" "package:base"

Note that data.rda and jmfuns.rda follow all of the default-loaded packages. This
configuration is created because a separate automatic initialization function, .First.sys, loads
the set of default R-packages. Since .First.sys always runs after .First, there is no obvious
way to reposition data.rda and jmfuns.rda ahead of the default R-packages. Fortunately, there
is a not so obvious way to accomplish this, as shown next. (Note: The "#" symbol in R code has
the effect that all symbols on the same line that occur to the right of "#" are ignored by R.)

Step 1. In order to have the .First function run every time R starts up, you need to edit a
file called Rprofile.site in the directory …\R\R-Version#\etc. Upon the initial
installation of the R program, this Rprofile.site is inactive (has no effect on the running
of the program) because every line of the file is commented out ("#" is at the beginning of
each line; "#" tells R to ignore this line.) Use a word processor or editor to add the
following line to the Rprofile.site file: attach("c:/r/myfuns.rda", pos=2). This
line can go anywhere in the file; just make sure that you don't put a "#" at the beginning of
this line. The effect of this line is to place c:\r\myfuns.rda on the search path. (When
you first add this line to the Rprofile.site file, the c:\r\myfuns.rda file may not yet
exist; not to worry - we will create it at Step 4 below.

Step 2: After editing Rprofile.site, you need to save it to the …\R\R-Version#\etc
directory. Be sure that the word processor does not add an extension to the file name, i.e.,
turn "Rprofile.site" into "Rprofile.site.doc" - R will not recognize the latter name. Also, be
sure that you save the Rprofile.site file as a text file, not as a document file in the
format of the word processor.

Step 3. Run R. Create the following .First function. The function is defined in the left panel
of Table 4; the explanation of the code is given in the right panel.

Table 4
.First <- function() { # Begin the function definition.

curr.rdefault.packages <-

 options("defaultPackages")[[1]]

Assign the names of the packages that
R currently adopts as the default
packages to a variable called
'curr.rdefault.packages'.

for (i in 1:length(curr.rdefault.packages))

 library(curr.rdefault.packages[i],

 pos=2, character.only=T)

This 'for' loop loads these packages
onto the search path. Note that we are
forcing this to happen here so that we
can put the 'data.rda' and 'myfuns.rda'
files ahead of this position on the
search path.

 Hints for Using R 8

library("foreign")
library("MASS")

Loads the 'foreign' and 'MASS'
packages onto the search path.
This simply reflects my personal
habit of using these packages.
The user can use the 'library' function
to load any packages as a user-defined
default. Leave this blank if the user
prefers not to load any packages by
default (other than the ones that are
assumed in any standard R session.)

attach("c:/r/myfuns.rda", pos=2) # This code positions 'myfuns.rda' in the
second position on the search path.
Note that

 if (!any(tolower(list.files()) == "data.rda"))

{ File.Description <- paste(getwd(),

"/data.rda contains data objects for this project",

 sep="")

save(File.Description, file="data.rda") }

If there exists a file called 'data.rda' in
the startup directory, this code has no
effect. If no such file exists, this code
creates a string variable called
'File.Description' and saves it to
'data.rda' (thereby creating this file).
Later you can change the contents of
'File.Description' to give it a more
informative description of 'data.rda'.

attach("data.rda", pos=2) # This command attaches 'data.rda' to
the search path.

LngthS <- length(search())

Dir2nd <- max((1:LngthS)

 [search()=="file:e:/r/jmm/myfuns.rda"])

detach(pos=Dir2nd)

Because of the procedure that is
implemented at Step 4 below, there
will be two occurrences of 'myfuns.rda'
on the search path. This code simply
detaches that last occurrence of
'myfuns.rda'.

 # The remaining code simply reflects my
somewhat idiosyncratic preferences.
They can be omitted if desired.

options(continue = "& ", digits = 8) # I prefer to use "& " as the continuation
character, and to display 8 digits after
the decimal place.

options(chmhelp=TRUE) # This option requests compiled HTML
help.

options(editor=

 "C:/Program Files/UEdit70/UEDIT32.EXE")

Ultraedit is my preferred editor.

par(pch=16, bty="l", xaxs="i", yaxs="i")

palette(value=

 c(colors()[c(24, 503, 255, 128, 109, 142,

 652, 1)]))

dev.off()

These are simply my preferred settings
for graphs.

tm.t <- confl.jm(all.nm=T)

tm.f <- confl.jm(all.nm=F)

Creates some variables to be used
below.

 Hints for Using R 9

cat("Welcome to R for Windows.")

cat("\n\n")

cat("Current .GlobalEnv = ")

print(getwd())

cat("Current search path is:\n")

print(search())

cat("\nDefault colors are: ")

print(palette())

cat('\nThe following ".*" files have naming conflicts:

\n')

print(tm.t[!(tm.t %in% tm.f)])

cat('\nThe following non-".*" files have naming

conflicts: \n')

print(confl.jm(all.nm=F))

Produces my preferred user feedback
at startup.

rm(tm.t, tm.f) # Deletes the temporary variables.

 } #End of function definition # End of function definition

Step 4. Once you have created the .First function, save it to the file in which you want to
save your personal set of functions. For example, if c:\r\myfuns.rda is the path and file
name in which you wish to store your functions, enter the code:

save(.First, file = "c:/r/myfuns.rda")

WARNING: If c:\r\myfuns.rda already exists, its contents will be overwritten with
.First when you give the save command. To avoid this, you should first
attach("c:/r/myfuns.rda"), then move .First to c:/r/myfuns.rda using the
move command that is described at the end of this document. The move command
automatically saves the attached file after moving an object.

This completes the configuration for Method II. With this configuration, the .First
function in c:\r\myfuns.rda will always run at startup no matter what is the startup directory2.
Additional modifications can be made to the .First function in c:\r\myfuns.rda to change
the preferred initial configuration of R. I have created two functions, move and rm.sv, that make
it easier to work with this configuration. The move function moves objects from .GlobalEnv to
any other environment along the search path and saves this environment to the associated file. It
also deletes the object from .GlobalEnv. A typical application of move is to move a newly
defined function from .GlobalEnv to the file that contains the user's defined functions, e.g.,
c:\r\myfuns.rda in the example given above. In this way, the function will be available on
future occasions when R is started in other directories. In addition, by deleting the function from
.GlobalEnv, one avoids having multiple copies of the function in different directories, which
can be confusing if the function is revised over time.

The rm.sv function removes (deletes) an object from an environment on the search path
that is not the topmost environment, i.e., not .GlobalEnv, and saves that environment to its
associated file. If the save operation were not carried out, the object would still be deleted from
that environment during the current R session, but it would reappear in that environment if the
associated file were attached to the search path in some future R session. The definitions of move

2 The only exception to this is that if there exists a .First in the .Rdata file of the startup directory, then this

function will run at startup and not any other .First function.

 Hints for Using R 10

and rm.sv are given below. It is also possible to download these functions from
http://faculty.washington.edu/jmiyamot/gsdat/dfiles.htm#Rnotes.

Microsoft Word Macros for Writing R Code

It is easier to use R if you use a programming editor like Emacs3 or UltraEdit4 while
writing the code. I have written a number of macros for Microsoft Word that facilitate the writing
of R code in Word. These macros and an explanation of how to use them are contained in a
separate document called Rmacros.doc.

Instructions for Downloading R Manuals.

The manuals will be saved to your hardrive as Acrobat pdf files. Put them in whatever directory
will be convenient for you.
1. Go to http://www.r-project.org/. Click on Manuals.
2. Click on An Introduction to R. This will automatically download an R reference manual.
3. Click on Contributed.
4. Download: ``Using R for Data Analysis and Graphics'' by John Maindonald (PDF [695kB],

and the data sets and scripts that are available at JM's homepage.
5. Download: ``Notes on the use of R for psychology experiments and questionnaires'' by

Jonathan Baron and Yuelin Li, and the ``R reference card'' by Jonathan Baron.

R-FAQs:

Go to http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html.

Documentation for Using R

The R-program comes with documentation through its help system. You can also get
free documentation from several users of R. Go to http://cran.r-project.org/. Under the
Documentation headings, click on Contributed. You will see the following list of contributed
documentation.

``Using R for Data Analysis and Graphics'' by John Maindonald (PDF [702kB], data sets and
scripts are available at John Maindonald's homepage (http://room.anu.edu.au/~johnm/).

``R for Beginners / R pour les débutants'' by Emmanuel Paradis, an introduction in English
(PDF [152kB]) and French (PDF [280kB]).

“Practical Regression and Anova using R” by Julian Faraway (PDF [1MB], data sets and
scripts are available at the book homepage). This is a concise yet reasonably comprehensive
description of regression and anova computations in R.

``Kickstarting R (version 1.2)'' compiled by Jim Lemon, a short introduction in English as
HTML files: donload as gzipped TAR [64kB] or ZIP [81kB]; or browse directly.

3 Emacs is a well known programming editor. ESS is a version of Emacs that is tailor made for use with statistical

programs. You can get more information and download the software for free from
http://www.usc.edu/isd/doc/statistics/help/multiuse/ESS.shtml or http://www.stat.math.ethz.ch/ESS/.

4 Go to http://www.idmcomp.com/ for information about this programming editor. Click on Downloads to download
a free trial version of this software. You have to pay $30 if you continue to use it for more than 45 days.

 Hints for Using R 11

``Notes on the use of R for psychology experiments and questionnaires'' by Jonathan Baron
and Yuelin Li (HTML [116kB], PDF [235kB]).

``R reference card'' by Jonathan Baron (PDF [58kB], LaTeX source [5kB]).

``Einführung in S'' by Günther Sawitzki (PDF [884kB]), lecture notes (in German) for a 4-5 day
introductory course in programming in the S language for students with basic knowledge in
probability theory. See also the StatLab Heidelberg S page for more information.

A Spanish translation of ``An Introduction to R'' by Andrés González and Silvia González
(PDF file [660kB], Texinfo sources)

I find R for Beginners, Baron's R for Psychology Experiments, and the R Reference Card to be
especially helpful. Maindonald's, Faraway's and Lemon's notes are also useful.

Appendix I
The move and rm.sv Functions

The code for the move and rm.sv functions can be downloaded directly from
http://faculty.washington.edu/jmiyamot/gsdat/dfiles.htm#Rnotes.

The move function moves objects from .GlobalEnv to any other environment along the
search path and saves this environment to the associated file. It also deletes the object from
.GlobalEnv. A typical application of move is to move a newly defined function from
.GlobalEnv to the file that contains the user's defined functions, e.g., c:\r\myfuns.rda in the
example given above. In this way, the function will be available on future occasions when R is
started in other directories. In addition, by deleting the function from .GlobalEnv, one avoids
having multiple copies of the function in different directories, which can be confusing if the
function is revised over time. By default, the move is not carried out if an object with the same
name exists in the destination directory. The default can be overridden (replace=T). The move
function also applies to a character vector of object names. The move function is defined as
follows:

move <- function(x, dest = "data", pos=NA, replace.object=F) {
 if (dest == "data") dir <- "data.rda"

The next line assumes that user-defined functions are stored in "e:/r/jmm/jmfuns.rda".
Change this to whatever the current user prefers as the default location of functions.

 if (dest == "fun") dir <- "e:/r/jmm/jmfuns.rda"
 if (is.na(pos)) dirL <- paste("file:", dir, sep="") else dirL <- search()[pos]
 if (mode(x) != "character") name <- deparse(substitute(x)) else name <- x
Assign the correct number to tmpos = pos, if it is not already assigned.
 if (is.na(pos)) {
 tmp <- search() == dirL
 if (sum(tmp) < 1) stop(message=paste(dir, "not in search path."))
 if (sum(tmp) > 1) {
 cat("There is more than one directory named",
 dir, "in the search path.\n",
 "Set the destination with the pos argument.\n")
 stop(message = "Execution of move terminated.")

 Hints for Using R 12

 } #end of if (sum(tmp) > 1)
 tmpos <- (1:length(search()))[tmp]
 } else tmpos <- pos #End of if (is.na(pos))
Assign the correct directory name to dirN if it is not already assigned.
 tms <- search()[tmpos]
 dirN <- substring(tms, 6, nchar(tms))
#--
The next if carries out the move, if this is possible.
 e.test <- NULL; for (i in 1:length(name))
 e.test <- c(e.test, !exists(name[i], env=pos.to.env(tmpos)))
 if (all(e.test) | replace.object) {
 for (i in 1:length(name)) assign(name[i], get(name[i], envir=.GlobalEnv),
 pos=tmpos)
 save(list=objects(pos=tmpos, all=T), file=dirN)
 rm(list=name, envir=.GlobalEnv)
 } else { #end if, start else
#--
The next code gives warning messages if the move could not be carried out.
Case I: The target directory was specified by dir.
 if (is.na(pos)) {
 cat("\n No movement of object was carried out!\n Object(s) ",
 name[!e.test], " exists in ", dir,".\n\n",
 'Add "replace.object=T" or "repl=T to the move command in order to replace',
 name[!e.test],"\nin", dir,".\n\n") } else
 {
Case II: The target directory was specified by pos.
 cat("\n No movement of object was carried out!\n Object(s) ",
 name[!e.test], " exists in pos =", pos,".\n\n",
 'Add "replace.object=T" or "rep = T" to the move command in order to \n',
 'replace', name[!e.test],"in pos =", pos,".\n\n") }
 } #end of case where object exists in destination directory
######### Documentation below this line ######################
The function "move" puts an R object in another environment on the search
path, and deletes it from the current top environment on the search path,
i.e., deleted it from .GlobalEnv. By default, the move is not carried out
if an object with the same name exists in the destination directory. The
default can be overridden (replace.object=T). The move function also applies
to a character vector of object names.
x = object to be moved; or a character vector of object names.
if (dest == "data"), then the move takes the object to the data.rda file.
if (dest == "fun"), then the move takes the object to the jmfuns.rda file.
pos = position number of the target directory;
pos is set to NA if target directory is specificed by dir. Specify dest or pos
but not both. The setting of pos overrides the setting of dest.
dir = the name of target R-environment; it is determined by dest or pos.
The default setting for dir is dir="data.rda" (the default data storage location).
Note that dir has the form, dir="e:/....", and not, dir="file:e:/....".
Note also that the target must be a file, not a package.

 Hints for Using R 13

dirL = file:dir
dirN = dir if pos was not specified: else, dirN = directory name corresponding to pos
replace.object = T to replace same name object in target directory
} #end of function definition --

To use the move function, specify x to be the object to be moved or a character vector of
object names to be moved. Change dir="c:/r/myfuns.rda" in the function definition to
whichever file you wish to be the default destination of the move operation. The destination
environment of the move can be specified either by pos=k where k = the position number of the
destination on the search path, or as an environment name, as in dir="c:/r/myfuns.rda". If
both pos and dir are specified, the specification of pos overrides the specification of dir.

EXAMPLES EXPLANATION

move(x1) Moves the object x1 from .GlobalEnv to the
default destination, which is data.rda file in
the startup directory.

move(x1, pos=3) Moves the object x1 from .GlobalEnv to the
environment in position 3 of the search path.

move(c("x1","x2","x3")) Moves the objects, x1, x2, and x3, from
.GlobalEnv to the default destination, which is
data.rda file in the startup directory.

move(c("x1","x2","x3"), pos = 3) Moves the objects, x1, x2, and x3, from
.GlobalEnv to the environment in position 3 of
the search path.

The rm.sv function removes (deletes) an object from an environment on the search path
and saves that environment to its associated file. If the save operation were not carried out, the
object would still be deleted from that environment during the current R session, but it would
reappear in that environment if the associated file were attached to the search path in some future
R session. The rm.sv function also applies to the objects named by a character vector of object
names.

rm.sv <- function(x, dir="data.rda", pos=NA) {
 if (is.na(pos)) dirL <- paste("file:", dir, sep="") else dirL <- search()[pos]
 if (mode(x) != "character") name <- deparse(substitute(x)) else name <- x

Assign the correct number to tmpos = pos, if it is not already assigned.
 if (is.na(pos)) {
 tmp <- search() == dirL
 if (sum(tmp) < 1) stop(message=paste(dir, "not in search path."))
 if (sum(tmp) > 1) {
 cat("There is more than one directory named",
 dir, "in the search path.\n",
 "Set the destination with the pos argument.\n")
 stop(message = "Execution of deletion terminated.")
 } #end of if (sum(tmp) > 1)
 tmpos <- (1:length(search()))[tmp]
 } else tmpos <- pos #End of if (is.na(pos))

 Hints for Using R 14

Assign the correct directory name to dirN if it is not already assigned.
 tms <- search()[tmpos]
 dirN <- substring(tms, 6, nchar(tms))
#--
The next if carries out the deletion, if this is possible.
 e.test <- NULL; for (i in 1:length(name))
 e.test <- c(e.test, exists(name[i], env=pos.to.env(tmpos)))
 if (all(e.test)) {
 remove(list=name, pos=tmpos)
 save(list=objects(pos=tmpos, all=T), file=dirN)
 } else { #end if, start else
#--
The next code gives warning messages if the deletion could not be carried out.
Case I: The target directory was specified by dir.
 if (is.na(pos)) {
 cat("\n No deletion of object was carried out!\n Object(s) ",
 name[!e.test], " does not exist in ", dir,".\n\n") } else
 {
Case II: The target directory was specified by pos.
 cat("\n No deletion of object was carried out!\n Object(s) ",
 name[!e.test], " does not exist in ", dir,".\n\n")
 } } #end of case where object(s) do not exist in destination directory
######### Documentation below this line ######################
The function "rm.sv" delete an R object from another environment on the search
path, and then saves that environment to its associated file. The rm.sv function
also applies to the objects specified by a character vector of object names.
x = object to be deleted; or a character vector of object names.
pos = position number of the directory containing the object;
pos is set to NA if directory is specificed by dir.
dir = the name of R-environment containing the object;
By default, dir = "data.rda" (in the current active directory)
Specify pos or dir, but not both.
Note that dir has the form, dir="c:/....", and not, dir="file:c:/....".
Note also that the directory must be a file, not a package.
dirL = file:dir
dirN = dir if pos was not specified: else, dirN = directory name corresponding to pos
} #end of function definition

To apply rm.sv, x = object to be deleted or character vector of names of objects to be
deleted; pos = position number of the target directory; pos is set to NA if target directory is
specificed by dir; dir = the name of target R-environment; specify pos or dir, but not both; if
pos and dir are both specified, the specification of pos overrides the specification of dir.

EXAMPLES EXPLANATION

rm.sv(x1, pos=2) Deletes (removes) the object x1 from the
environment in position 2 of the search path.

rm.sv(c("x1","x2","x3"), pos=2) Deletes (removes) the objects x1, x2, and x3
from the environment in position 2 of the

 Hints for Using R 15

search path.

