Biomass detection model

We assume that species are present in all plots in which they were planted, even when no biomass was observed, and that zero observations of biomass arise from lack of detection (as clipstrips only cover 3.75% area in the plot) rather than extinction. This is a reasonable assumption, because only three of the species were entirely absent, as biomass, percent cover or inflorescences, in any plots (and then, in only 3% of those plots). Plots in which no biomass is detected (i.e. zero biomass) presumably arise when biomass production in that plot is very low. We allow observations of zero biomass to contribute to the estimation of the latent variable biomass (\hat{b}_{ijkl}) by modeling biomass detection (o_{bijkl} , a vector of ones and zeros describing whether or not biomass was detected, i.e. greater than zero, in clipstrips) as a Bernoulli sample from the unobserved probability of biomass detection in that plot (\hat{o}_{bijk}):

$$o_{bijkl} \sim \text{Bern}(\hat{o}_{bijkl})$$
 (A1)

We assume that biomass detection is linked to biomass production (\hat{b}_{ijkl}) through two parameters (f_{bi}, g_{bi}) :

$$\operatorname{logit}(\hat{o}_{bijkl}) = f_{bi} + g_{bi} \log(\hat{b}_{ijkl} - b_i)$$
(A2)

We subtracted the average biomass observed for each species $(\overline{b_i})$ from the plot, ring and sample specific estimate of biomass production to reduce the natural tendency for slope and intercept parameters to be correlated; this technique is called covariate centering.

Percent cover detection model

As with biomass, we assumed that zero observations of percent cover arise from a lack of detection. Thus, percent cover detection (o_{pijkl} , a vector of ones and zeros describing whether or not percent cover was detected, i.e. greater than zero, in quadrats) is a Bernoulli sample from a plot-specific probability of observing percent cover values greater than zero (\hat{o}_{pijkl}):

$$o_{pijkl} \sim \text{Bern}(\hat{o}_{pijkl})$$
 (B1)

Our percent cover detection process model links the probability of sampling percent cover that is greater than zero (\hat{o}_{pijkl}) to the expected (unobserved) percent cover in that plot and two parameters (f_{pi}, g_{pi}) :

$$\operatorname{logit}(\hat{o}_{pijkl}) = f_{pi} + g_{pi} \log(\hat{p}_{ijkl} - \overline{p}_i)$$
(B2)

In other words, the probability of observing a particular species is greater when there is more percent cover in the plot. We subtracted the average percent cover observed for each species $(\overline{p_i})$ from the plot, ring and sample specific estimate of biomass production to reduce the natural tendency for slope and intercept parameters to be correlated; this technique is called covariate centering.

Bayesian model fitting

Our Bayesian statistical models are characterized by hierarchical levels of variability (Fig A1, Fig A2), consisting of (1) data models (describing sampling distributions of biomass, percent cover, inflorescences, and seed weight), (2) process models (describing how global change affects biomass, inflorescence production and seed number; and how percent cover and biomass are related) and (3) parameter models (describing parameter and prior distributions). In the text, we describe data models (equations 1, 8 and 12).and process models (equations 2, 7, 9 and 13).

We briefly describe our 'parameter' models; that is, the priors. We used diffuse priors for all parameters in both models. Specifically, coefficients describing average global change effects over all species $(A_b, A_f, X_b, N_b, N_f, \Delta_{b9}, \Delta_{f9}, \Delta_{b4}, \Delta_{f4}, \Delta_{b1}, \Delta_{f1}, A_w, X_w, N_w, \Delta_{9w}, \Delta_{4w}, \Delta_{1w})$ were given diffuse normal priors – (mean 0, standard deviation 9). Parameters describing average intercept and slope parameters for all species in biomass detection (appendix A), percent cover detection (appendix B), and the relationship between biomass and percent cover relationship (equation 7) were also given diffuse normal priors with mean 0 and standard deviation 9. Parameters describing between-species variability in global change effects, variability in intercept and slope parameters for biomass detection, percent cover detection and biomass to percent cover translation were given diffuse inverse gamma priors (shape 0.1, scale 0.1). Parameter describing ring to ring variability in inflorescence production and inflorescence weight (eqns 3, 4 14, 15 - σ_{bri} , σ_{fri} , σ_{wri}) were also given diffuse inverse gamma priors (shape 0.1, scale 0.1), and not modeled hierarchically.

Because parameters for both biomass and inflorescence production are estimated on a log-scale, a normal distribution with mean 0 and standard deviation 9 represents an extremely wide range of possible parameter values. Priors are not as diffuse as those sometimes used in hierachical Bayesian statistics, but they generously encompass the largest possible range of values for these parameters (roughly based on extreme data values). We assured (with additional model fitting) that they were diffuse enough to have no effect on the means and credible intervals of the posterior densities of interest. Extremely diffuse priors run the risk of generating improper posteriors, which we wished to avoid.

1

Figure C1. Bayesian Hierarchical model structure for analyses determining effects of elevated CO_2 , nitrogen deposition and declining diversity on biomass production and allocation to inflorescence production. Grey boxes indicate different hierarchical levels of the model, white squares indicate observed data, and white circles bordered with dashed lines indicate model elements estimated by Gibbs sampling. Oval white boxes represent the process models we specify in our model. Arrows indicate how parameters, process and data are related.

Figure C2. Bayesian Hierarchical model structure for analysis determining effects of elevated CO_2 , nitrogen deposition and declining diversity on inflorescence weight. Grey boxes indicate different hierarchical levels of the model, white squares indicate observed data, and white circles bordered with dashed lines indicate model elements estimated by Gibbs sampling. Oval white boxes represent the process models we specify in our model. Arrows indicate how parameters, process and data are related.

Model fit

Our statistical model structure and parameter estimates (Table D1-D4) did a good job describing the observed data for most species and response variables (Figure D1-D4). The r^2 between predicted and observed response variables ranged from 0.10 to 0.55 for biomass data, from 0.47 to 0.72 for percent cover data, from 0.31 to 0.94 for inflorescence counts, and from 0.06 to 0.30 for inflorescence weights. Slope parameters describing the relationship between biomass detection, and percent cover and percent cover detection were always significantly positive, as expected (Table D2). The slope parameters describing the (inverse) relationship between biomass and percent cover were always negative (indicating a positive relationship between biomass and percent cover). Some parameter correlations existed, especially between slope (g_{bi}, g_{pi}, r_i) and intercept parameters (f_{bi}, f_{pi}, q_i). As we do not independently interpret the values of these parameters, these parameter correlations do not affect our conclusions about global change coefficients.

			1	1		1	1	1	1	
Species	$lpha_{\scriptscriptstyle bil}$	χ_{bi}	$\delta_{_{b1i}}$	δ_{b4i}	$\delta_{_{b9i}}$	v_{bi}	ϕ_i	f_{bi}	${m g}_{\scriptscriptstyle bi}$	$\sigma_{\scriptscriptstyle bi}$
Agropyron										
repens	0.807	-0.044	1.181	0.188	0.741	0.958	-0.15	1.353	1.14	9.827
Andropogon										
gerardii	2.424	0.121	-0.335	0.014	0.127	0.062	0.897	0.828	0.9	12.81
Bouteloua										
gracilis	0.188	-0.318	2.251	1.844	0.804	-0.405	0.301	0.786	0.844	12.83
Bromus										
inermis	2.361	-0.047	-0.762	-0.382	-0.261	0.908	0.29	1.562	1.194	12.86
Koeleria										
cristata	0.97	0.143	1.066	0.493	0.542	0.592	0.321	2.093	0.895	21.73
Lespedeza										
capitata	3.232	0.297	-0.35	-0.198	0.182	-1.24	0.802	-0.279	0.761	9.681
Lupinus										
perennis	5.189	-0.027	-1.792	-1.134	-0.384	-0.219	-0.963	0.164	0.927	24.87
Poa										
pratensis	2.701	0.073	-1.551	-1.4	-0.693	0.941	0.785	1.464	1.104	22.59
Schizachyrium										
scoparium	0.85	0.103	1.158	0.3	0.257	-0.595	0.85	-0.886	0.944	15.05
Solidago										
rigida	0.933	0.336	1.63	1.842	1.007	0.048	0.163	-2.281	0.904	13.83
Sorghastum										
nutans	1.029	0.138	0.996	0.792	0.177	-0.587	0.909	-0.79	1.152	7.639
Means over all										
species	1.974	0.067	0.179	0.142	0.186	0.057	NA	0.484	0.995	NA
Between-										
species										
variances	1.879	0.062	1.025	1.025	1.025	0.44	NA	1.759	0.061	NA

Table D1. Posterior means of parameters related to the biomass process model

Species	$lpha_{_{fi}}$	$\chi_{_{fi}}$	$\delta_{_{f1i}}$	$\delta_{_{f4i}}$	$\delta_{_{f9i}}$	\mathcal{V}_{fi}	$\sigma_{_{fi}}$
Agropyron							
repens	-1.973	-0.3405	0.24	0.6823	0.277	-0.6423	10.24
Andropogon							
gerardii	-2.251	-0.3661	-0.4749	-0.0464	-0.1172	0.988	4.539
Bouteloua							
gracilis	-1.092	-0.379	0.776	1.558	0.3479	1.271	2.264
Bromus							
inermis	-1.588	-0.503	-0.5316	0.3122	0.1325	-0.4881	8.392
Koeleria							
cristata	-1.472	-0.3324	1.271	0.6015	-0.171	-0.518	18.15
Lespedeza							
capitata	-1.844	-0.3341	-1.06	-0.0178	-0.0522	0.536	15.64
Lupinus							
perennis	-0.8018	-0.227	-0.3037	0.0533	-0.0033	-0.0619	21.4
Poa							
pratensis	-2.049	-0.4574	1.705	0.6159	1.089	-0.7451	5.302
Schizachyrium							
scoparium	-0.1799	-0.2225	-0.3883	0.4049	-0.2257	0.6863	16.29
Solidago							
rigida	-2.274	-0.3437	0.2177	0.4099	0.5704	0.8524	12.71
Sorghastrum							
nutans	-1.257	-0.4046	-0.1753	-0.1568	-0.1741	0.7847	9.496
Means over all							
species	-1.585	-0.3588	0.1503	0.4184	0.1679	0.1893	NA
Between-							
species							
variances	0.438	0.0443	0.3708	0.3708	0.3708	0.4885	NA

	Table D2. Posterior means of	parameters related to the inflorescence allocation r	process model
--	------------------------------	--	---------------

Species	f_{pi}	${m g}_{\it pi}$	q_{i}	r _i	$\sigma_{_{pi}}$
Agropyron					
repens	7.822	2.959	-3.78	-0.2505	2.155
Bromus					
inermis	7.392	3.396	-3.269	-0.2331	4.928
Koeleria					
cristata	6.809	3.663	-3.066	-0.2426	2.029
Poa					
pratensis	8.134	2.277	-3.62	-0.2371	4.471
Andropogon					
gerardii	7.561	3.086	-3.685	-0.2491	2.403
Bouteloua					
gracilis	7.04	3.448	-3.211	-0.2177	4.527
Schizachyrium					
scoparium	7.41	2.699	-4.663	-0.2963	4.805
Sorghastrum					
nutans	7.931	2.352	-3.7	-0.2605	3.929
Lespedeza					
capitata	7.044	4.198	-3.167	-0.2281	3.593
Lupinus					
perennis	6.721	4.12	-3.086	-0.2082	3.904
Solidago					
rigida	7.332	3.575	-3.367	-0.2365	2.739
Means over all					
species	7.359	3.206	-3.534	-0.2455	NA
Between-					
species					
variances	0.1438	0.2743	0.1952	0.0161	NA

Table D3. Posterior means of	parameters related to the	percent cover process model
------------------------------	---------------------------	-----------------------------

Species	$\alpha_{_{wi}}$	$\chi_{\scriptscriptstyle wi}$	$\delta_{\scriptscriptstyle w1i}$	$\delta_{_{w4i}}$	$\delta_{_{w9i}}$	v_{wi}	$\sigma_{\scriptscriptstyle wi}$
Agropyron							
repens	-2.737	0.0847	0.059	-0.0971	-0.0218	0.0716	3.417
Bromus							
inermis	-2.157	-0.0699	-0.0575	-0.0248	-0.0209	0.1089	6.958
Koeleria							
cristata	-3.847	-0.1332	0.3614	0.2944	-0.0336	0.000818	8.057
Poa							
pratensis	-2.042	-0.1306	-0.1179	-0.1837	-0.0253	0.09598	1.635
Andropogon							
gerardii	-2.823	0.0864	0.135	-0.1288	-0.0096	0.09551	6.308
Bouteloua							
gracilis	-1.823	0.0319	0.3255	-0.0361	-0.1505	0.04792	0.6371
Schizachyrium							
scoparium	-0.8597	0.1344	-0.0687	0.1477	0.047	-0.03725	2.1
Sorghastrum							
nutans	-3.065	0.0969	-0.106	0.0434	-0.0228	0.08152	5.877
Lespedeza							
capitata	-2.645	-0.136	-0.1142	-0.0676	-0.1545	0.1286	2.441
Lupinus							
perennis	0.5105	-0.0268	-0.3236	-0.27	-0.017	0.1188	2.479
Solidago							
rigida	-1.354	0.0298	0.153	0.1471	0.1605	-0.05007	2.822
Across-species							
means	-2.04	-0.0031	0.0203	-0.0168	-0.0214	0.05965	NA
Across-species							
variances		0.0456	0.0447	0.0447	0.0447	0.025994	NA

Table D4. Posterior means of	parameters related to the	inflorescence weight process m	odel.

Appendix D

Figure D1. The relationship between predicted biomass vs. observations of aboveground biomass for the eleven species. Predictions are based on the mean of 1000 MCMC samples of the model after convergence was achieved and chains were thinned to remove autocorrelation. Scatterplots are on a log scale, with the 1:1 line drawn and the r^2 of the predicted vs. observed indicated on graph.

Appendix D

Figure D2. The relationship between predicted precent cover vs. observations of percent cover for the eleven species. Predictions are based on the mean of 1000 MCMC samples of the model after convergence was achieved and chains were thinned to remove autocorrelation. Scatterplots are on a log scale, with the 1:1 line drawn and the r^2 of the predicted vs. observed indicated on graph.

Figure D3. The relationship between predicted number of inflorescences per m^2 vs. observations observations of number of inflorescences for each of eleven species. Predictions are based on the mean of 1000 MCMC samples of the model after convergence was achieved and chains were thinned to remove autocorrelation. The 1:1 line and the r^2 of the relationship between predicted and observed are both indicated on graph.

Appendix D

Figure D4. The relationship between predictions and observations of inflorescence weight for each of eleven species. Predictions are based on the mean of 1000 MCMC samples of the model after convergence was achieved and chains were thinned to remove autocorrelation. Scatterplots are on a log scale, with the 1:1 line drawn and the r^2 of the predicted vs. observed indicated on graph.

Predicted In(Inflorescence weight)