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Abstract. High biodiversity of forests is not predicted by traditional models, and evidence
for trade-offs those models require is limited. High-dimensional regulation (e.g., N factors to
regulate N species) has long been recognized as a possible alternative explanation, but it has
not be been seriously pursued, because only a few limiting resources are evident for trees, and
analysis of multiple interactions is challenging. We develop a hierarchical model that allows us
to synthesize data from long-term, experimental, data sets with processes that control growth,
maturation, fecundity, and survival. We allow for uncertainty at all stages and variation
among 26 000 individuals and over time, including 268 000 tree years, for dozens of tree
species. We estimate population-level parameters that apply at the species level and the
interactions among latent states, i.e., the demographic rates for each individual, every year.
The former show that the traditional trade-offs used to explain diversity are not present.
Demographic rates overlap among species, and they do not show trends consistent with
maintenance of diversity by simple mechanisms (negative correlations and limiting similarity).
However, estimates of latent states at the level of individuals and years demonstrate that
species partition environmental variation. Correlations between responses to variation in time
are high for individuals of the same species, but not for individuals of different species. We
demonstrate that these relationships are pervasive, providing strong evidence that high-
dimensional regulation is critical for biodiversity regulation.

Key words: Bayesian analysis; biodiversity; coexistence; competition; forest dynamics; hierarchical
models.

INTRODUCTION

Although many hypotheses to explain biodiversity are

debated, none actually predict high diversity, unless

supported by continual inoculation of species from

somewhere else. Of course, if competition is weak,

maintenance of diversity is not hard to explain. But

plants do compete intensely, with massive density

dependent mortality from seedling to adult (Harper

1977, Harms et al. 2000, Ibáñez et al. 2007). Repeatable

patterns in time (Connell and Slatyer 1977, Christensen

and Peet 1984, Huston and Smith 1987, Tilman 1988,

Pickett 1989, Chapin et al. 1994) and along gradients
(Pastor et al. 1984, Tilman 1985, Inouye and Tilman

1988, Papiak and Canham 2006, Silman 2006, Engel-

brecht et al. 2007) have focused attention on competi-

tion for a small number of resources, such as light,

moisture, and several macronutrients (Tilman 1988,

Rees et al. 2001, Silvertown 2004). If patterns are

observed repeatedly, and only a few limiting factors are

pervasive, it is logical to search for a simple explanation.

Robust theory has shown that in competition for a small

number of resources each species can dominate some-

where on the landscape only if there are precise trade-

offs (MacArthur and Levins 1964, Tilman 1982, Kneitel

and Chase 2004). Models predict low diversity, because

not many species can find a position of dominance along

one or a few axes with limited overlap between them

(Tilman 1988, 2004, Gravel et al. 2006, Zillio and Condit

2007).

Finding the trade-offs that would be required to

provide so many niches in so few dimensions has long

been a challenge for community ecology (Hutchinson

1961, Wright 2002). Trade-offs could apply not only to

resources, but also to natural enemies (Janzen 1970,

Connell 1971, Chase et al. 2002, Wright 2002, Beckage

and Clark 2005, Chesson and Kuang 2008, Feeley and

Terborgh 2008), life history and demography (Ellner

1987, Tilman 1994, Cadotte et al. 2006), and interac-

tions among them. Simple models provide critical

insights on how trade-offs can promote low levels of
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diversity. An explanation for the dozens to hundreds of

competitors that can coexist in many forests could build

from this important foundation, but requires a different

approach. The lack of methods to analyze multiple

interactions could be part of the reason why low-

dimensional explanations continue to dominate, despite

limited evidence for niche differences (Clark et al. 2007a,

Clark 2009). We consider an alternative, high-dimen-

sional explanation of diversity, one of multiple limita-

tions distributed among individuals in competing

populations (Clark et al. 2004, 2007a, Marks and

Lechowicz 2006). A hierarchical approach is used to

synthesize multiple data sets with demographic interac-

tions within and among populations. We demonstrate

that distributions of responses among individuals of

competing species are as required to promote coexis-

tence. Our results extend beyond speculation that

complexity could be important (e.g., Hutchinson 1961)

by defining how it would be structured and how it can be

estimated.

Hypothesis tests presented here require quantification

of interactions at individual and species scales. Coexis-

tence of N competing species requires up to N limiting

factors (MacArthur and Levins 1964, Levin 1970,

Grover 1994). The ‘‘limiting factors’’ could be defined

in many ways, but need not include trade-offs in a few

dimensions. Instead of one or a few axes of differenti-

ation partitioned by trade-offs, there could be many axes

and interactions between them, obviating the require-

ment for simple trade-offs. Quantification of so many

interactions would be difficult. But, through analysis at

both individual and species scales, we can determine

whether or not species respond to variation in the

unmeasured dimensions in ways that would promote

coexistence. Hypotheses we test apply to these two scales.

At the species scale, we test the hypothesis that there

are trade-offs in the dimensions traditionally viewed as

important (Fig. 1a), but difficult to quantify. The

alternative of high-dimensional regulation would show

broad overlap when projected on to a few dimensions

(Fig. 1c), due to the fact that individuals within

populations are regulated by many factors. If variation

in Fig. 1c promotes coexistence, responses of individuals

of the same species will be more similar than are those of

different species (Fig. 1e). A correlation between any

two individuals indicates the extent to which they share

common responses to environmental fluctuations (insets

in Fig. 1e). For example, negative correlations indicate

environmental partitioning (Chesson 2000a, b). Howev-

er, correlations between species need not be negative to

promote diversity, provided that individuals respond to

environmental variation more like others of the same

species than of different species (Clark 2010). In other

words, we require individual-scale data to test for species

differences that promote diversity.

At the individual scale we test the hypothesis that

there are trade-offs between individuals in terms of effort

devoted to growth and fecundity (Fig. 1b). Such patterns

could be genetic (Geber 1990, Mangel and Stamps 2001),

but need not be (Tatar and Carey 1995, Barker 1998,

Primack and Stacy 1998, Silvertown and Dodd 1999,

Obeso 2002, Doblhammer and Oeppen 2003, Mair et al.

2003, Dribe 2004, Hurt et al. 2006, Metcalf et al. 2006).

In either case, they can result from a trade-off in resource

allocation to different activities. One alternative is

‘‘winners vs. losers’’ (Fig. 1d), the possibility that some

individuals excel in terms of all demographic rates while

others do poorly. A second alternative is that allocation

between individuals is also high dimensional and does

not show a simple correlation (Fig. 1c).

Information at the individual scale is critical to

determine whether or not the structure of variation is

consistent with high-dimensional regulation of diversity.

Most of the factors affecting physiology, individual

health, and population success cannot be directly

measured. Belowground dynamics (Huston and DeAn-

gelis 1994, Jobbágy and Jackson 2004), microbially

mediated interactions (Bradley et al. 2008, Clark and

Hersh 2009), and lagged responses to environmental

variation (Oren et al. 1999, Naumburg and Ellsworth

2000) make direct measurement of coexistence mecha-

nisms difficult. Although a given study could not

measure all relevant variables, evidence for high-

dimensional regulation can still come from analysis of

how individuals of different species respond to environ-

mental variation, by revealing the extent to which

individuals respond more like (compete more with)

others of the same species. Thus, we quantify not only

observation errors, but also the variation among

individuals and within individuals over time.

The analysis we implement requires two elements: (1)

long-term, simultaneous observations of fecundity,

growth, and mortality of individual organisms of many

species subject to experimentally manipulated resources,

and (2) models that coherently admit information from

multiple sources at multiple scales, allowing for their

relative importance (‘‘weight’’), uncertainty, relation-

ships controlling how species respond to resources, and

variation among individuals in those responses. Long-

term individual level data that include all demographic

rates are required (component 1), because high-dimen-

sional controls on diversity would vary within popula-

tions, depending on the heterogeneity of conditions that

different individuals experience in space and over time.

Demographic rates must be inferred simultaneously,

because they interact, potentially compensating or

amplifying one another. Compensation occurs when

some individuals devote more to reproduction, others to

growth (Loehle 1987) or when high fecundity subse-

quently leads to increased density dependent mortality

(Yoda et al. 1965, Clark 1992, Weiner et al. 2001).

Amplification occurs if healthy individuals grow fast,

produce abundant offspring, and suffer high mortality

risk, whereas unhealthy individuals do the opposite.

With compensation or amplification, population growth

rates evaluated from independent estimates of fecundity,
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growth, and survival are inaccurate. Few long-term data

sets include observations of all three demographic

schedules from the same individuals, and none that we

are aware of analyze their interactions, allowing for

uncertainty in the model, variation among individuals

and over time, and in error in data.

Experimental manipulation is needed because explan-

atory variables are often correlated, and observational

data rarely provide an adequate range of variation. In

our application, tree size and canopy exposure are two

correlated explanatory variables that can be separated

through manipulation of tree canopies (Dietze and

Clark 2008). Although distribution of data (treatments)

is a standard consideration for carefully designed

experiments, nearly all studies of biodiversity regulation

in trees come from purely observational studies,

frequently from a single stand, and lacking manipula-

tion, controls, and analysis of covariates.

Models that incorporate multiple sources of informa-

tion and variation and uncertainty at different scales

FIG. 1. Hypotheses at two levels for trade-offs involving two traits or demographic rates showing patterns expected from (a)
low-dimensional trade-offs among species and (b) within species (among individuals). Alternatives are (c) high-dimensional
limitations, which, after accounting for observation error, indicate that limitations are distributed across additional (unobserved)
axes, and (d) positive correlations. Alternative 2 is especially relevant within species, where the alternative to trade-offs among
individuals can be populations of healthy vs. unhealthy individuals. In panel (e) are example histograms of correlations between
individuals in responses that would show partitioning of environmental variation. Correlations between two individuals are shown
for the case where correlations are positive and negative. If high-dimensional variation promotes coexistence, then correlations in
response should be higher for individuals of the same species than for different species.
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(component 2) are critical for synthesis. Where a large

number of interactions are important and none over-

whelm, there is the possibility of modeling hierarchical-

ly, to capture how interactions at one scale, say variation

within and among individuals, relate to processes and

observations at another, such as among populations and

their resources. As described by Berliner (1996, see also

Ver Hoef and Frost 2003, Wikle 2003, Clark 2005, Wikle

and Berliner 2005, Clark and Gelfand 2006, Royle and

Dorazio 2008, Cressie et al. 2009), data at different

scales can be coherently assimilated in hierarchical

models. Yet there are few ecological examples where

multiple sources of information have been successfully

exploited for inference on complex interactions. The

challenges of building a coherent model, developing

efficient algorithms, and evaluation can be daunting.

Craigmile et al. (2009) focus on a single large data set,

emphasizing the care that is needed at each stage of the

analysis. With multiple data sets comes an additional

concern, how they contribute simultaneously to infer-

ence. Unlike most meta-analyses, which combine

information from multiple studies having the same

predictors and response variables (Gurevitch and

Hedges 1999, Peters and Mengersen 2008), ecologists

increasingly wish to combine data sets on different

predictors and response variables. Combining data sets

requires not only coherency, but also decisions concern-

ing their relative importance or ‘‘weight.’’ Despite

decades of research involving many approaches, we are

unaware of any study that combines these components,

in part due to the challenge of formulating a coherent

framework for inference. Although the challenges to

‘‘computational ecology’’ are substantial (Pascual 2005),

such efforts are critical if there is to be a serious

evaluation of the mechanisms that control biodiversity.

Because a large model is critical to evaluation of the

biodiversity hypotheses, a second theme of this study

concerns how to construct, fit, and evaluate models

when data sets and processes are complex. Our

approach for synthesis focuses on quantifying factors

hypothesized to define low-dimensional niche differenc-

es, such as light availability, and the variation that

remains after observable factors are included, specifical-

ly whether or not that variation is structured among

individuals, over time, or both (Clark et al. 2004). We

exploit all available evidence to allow for uncertainty at

all stages of the model. We apply this approach to

unusually extensive long-term experimental data with

observations on covariates and demographic responses,

including growth, maturation, fecundity, dispersal, and

survival. Inference yields not only species-level param-

eters, but also estimates of demographic rates for 27 000

individuals distributed over 268 000 tree-years (individ-

ual observation years) for dozens of species. Results are

used to determine the distributions of demographic rates

within and between species that critically determine

population growth and apply them to the goal of

explaining high diversity. We test hypotheses summa-

rized in Fig. 1 for all of the dominant tree species in 11

stands in the southern Appalachians and Piedmont

followed for up to 18 years. Because it is not widely

appreciated why current models fail to predict diverse

assemblages and how the structure of variation analyzed

here can provide insight, we first summarize assump-

tions of current models, in the context of individual

success. We follow with a rationale for the specific

hypotheses that come from these assumptions and their

connections to the modeling approach we adopt.

The relationship between trade-offs and individuals

Trade-offs are needed to promote diversity in low

dimensional models, by allowing competitors to share a

low-dimensional niche space, partitioning it into differ-

ent combinations of limitations. A colonization–compe-

tition trade-off could allow species to share two

dimensions, provided there is a strict trade-off in

abilities to colonize and to compete in an environment

providing opportunities for both (Fig. 1a), say through

new patch formation followed by succession (Hastings

1980, Tilman 1994, Cadotte et al. 2006). A trade-off in

low-light survival vs. high-light growth (Denslow 1980,

Canham 1988, 1989, Poulson and Platt 1989, Welden et

al. 1991, Kobe 1996, Walters and Reich 1996, Dalling

and Hubbell 2002, Wright 2002, Baraloto et al. 2005,

Valladares and Niinemets 2008) could explain diversity

in an environment with variable light.

Where present trade-offs almost certainly contribute

to diversity, but empirical support is limited. In the

many efforts to quantify trade-offs from field data

(Reich et al. 1997, Wright et al. 2004, Gilbert et al.

2006), few suggest the strong negative correlations

required by theory (Fig. 1a; but see Tilman 1994 for a

clear example). Moreover, simple negative correlation is

not sufficient–coexistence further requires that species

are too similar to coexist (MacArthur and Levins 1967,

Abrams 1988), although it may be difficult to define the

limit to similarity (Meszéna et al. 2006). Evidence for

such differences would look like Fig. 1a, a pattern that is

rarely observed in data (Clark et al. 2007a, Clark 2009).

Including stochastic terms can increase diversity in

some types of models (Chesson 2000a, b, Volkov et al.

2003, Lichstein et al. 2007), but typically not by much.

Despite slowing exclusion in some cases, stochastic

simulations still predict modest levels of diversity (Til-

man 1988, 2004, Pacala and Tilman 1994, Gravel et al.

2006), unless explicit competitive advantages are pro-

vided for each species somewhere on the landscape (e.g.,

Hurtt and Pacala 1995). Effects of stochasticity can be

weak or even negative, depending on how it is

implemented, and high diversity requires a continual

inoculation of species (Shugart 1984, Hubbell 2001). The

stochasticity in such models is the surrogate for

unspecified niche differences, providing each competitor

with times and locations where it does well and others do

poorly. The implicit niche differences prolong compet-

itive exclusion, effectively allowing for negative correla-
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tions in recruitment success (Clark et al. 2007a, Clark

2009). Although negative correlations between species in

their responses to variation would tend to promote

diversity (Chesson 2000a, Clark et al. 2007a), many

species do not show negative correlation, as expected if

they are, on average, limited by similar factors (Clark

2010). For example, many species benefit from canopy

gaps and from increased moisture availability in wet

years. Simple random noise in models does not provide

an answer to high diversity in nature, because nature

does not provide the low-dimensional niche differences

supplied by stochastic terms in such models. Missing

processes must be taken up by stochastic terms, but how

stochasticity enters models can determine whether or not

it might stand in for actual species differences. Thus,

variation needs to be quantified at several levels.

High-dimensional limitation will be expressed, in part,

through individual differences and over time (Clark et

al. 2004, 2007a). Let cd(i, i
0 ) be the correlation in growth

rate d between individuals i and i0, calculated as in

Tables 1 and 2. Two such comparisons are illustrated in

Fig. 1e. If individuals are limited by the same factors,

variation in these factors would produce positively

correlated responses in d: the two individuals tend to

grow well under the same conditions, and vice versa. If

individuals are limited by different factors, then

correlations will tend to be low, possibly even negative,

as fluctuations in those factors cause different responses

in the two individuals. However, to promote diversity

high-dimensional regulation does not require negative

correlation between species abundances, only that

correlations among individuals of the same species

exceed those for individuals of different species (Fig.

1e). This would be evidence that species partition the

environment. Evaluation requires simultaneous infer-

ence on demographic rates at the level of individuals and

years, using models that contain more complexity than

is typical in ecology. In the next section, we address how

and why a large model can guide understanding of high-

dimensional interactions.

The scale of inference and implications

for understanding coexistence

Large models require justification. They can be

intractable and difficult to parameterize, to evaluate,

and to understand. Motivation comes from failure of

TABLE 1. Calculations from latent states diameter growth rate, fecundity potential, and mortality risk.

Demographic rate Species mean
Individual mean
(over years)

Variance among
individuals

Annual mean
(over individuals) Annual variance

Diameter growth rate d ¼

X

ij;t

dij;tzij;t

X

ij;t

zij;t

dij ¼

X

t

dij;tzij;t

X

t

zij;t

X

ij

ðdij � dÞ2

n� 1
dt ¼

X

i; j

dij;tzij;t

X

i; j

zij;t

X

i; j

d2
ij;tzij;t

X

i; j

zij;t

� d
2

Fecundity potential f ¼

X

ij;t

fij;tQij;tzij;t

X

ij;t

Qij;tzij;t

fij ¼

X

t

fij;tQij;tzij;t

X

t

Qij;tzij;t

X

ij

ð fij � f Þ2

n� 1
ft ¼

X

i; j

fij;tQij;tzij;t

X

i; j

Qij;tzij;t

X

i; j

f 2
ij;tQij;tzij;t

X

i; j

Qij;tzij;t

� f
2

Mortality risk f ¼

X

ij;t

fij;tzij;t

X

ij;t

zij;t

fij ¼

X

t

fij;tzij;t

X

t

zij;t

X

ij

ðfij � fÞ2

n� 1
ft ¼

X

i; j

fij;tzij;t

X

i; j

zij;t

X

i; j

f2
ij;tzij;t

X

i; j

zij;t

� f
2

Notes: Variables for individual i in stand j in year t are fecundity ( fij,t), diameter increment (dij,t), maturation status (Qij,t),
mortality risk (fij,t), and live status (zij,t). Means are indicated with overbars.

TABLE 2. Correlations between demographic rates.

Correlation between individuals, diameter growth cdði; i 0Þ ¼
X

t

ðdij;t � dij Þðdi 0 j;t � di 0 j Þzij;tzi 0 j;t

��
sdðiÞsdði 0Þ

X

t

zij;tzi 0 j;t � 1
�

Correlation between rates, individual ij cijðd; f Þ ¼
X

t

ðdij;t � dij Þð fij;t � fij Þzij;tQij;t

��
sdðiÞsf ðiÞ

X

t

Qij;tzij;t � 1
�

Correlation within individual, lag l clðd; f Þ ¼
X

t

ðdij;t�1 � dij Þð fij;t�l � fij Þzij;tQij;t

��
sdðiÞsf ðiÞ

X

t

Qij;tzij;t � 1
�
>

Note: The standard deviation for variable v for individual i is sv(i ), the correlation between individual i and i0 is cv(i, i
0 ) (Figs. 22

and 23); the correlation between variables v and v0 for individual ij is cij(v, v
0) (Figs. 19 and 20).
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simple models because they leave out too many

important relationships. Despite the widely recognized

limitations of large models, they have become standard

tools where many processes contribute and none

overwhelm: weather prediction, climate dynamics, gene

interactions, biochemical networks, and granular flows

are examples (O’Hagan and West 2010). Ecologists have

argued for more sophisticated treatment of complexity

(Levin 1998, Clark 2005, Pascual 2005), including

biodiversity (Dunne et al. 2002, Clark et al. 2007a,

Clark 2009). However, we are unaware of simultaneous

inference at multiple levels, including individual-level,

long-term, and multi-cohort data. An inferential effort

as extensive as ours is novel, so we summarize the

rationale, emphasizing the scale of inference adopted

here as motivation for the modeling approach that

follows.

A principle motivation for this effort is the limited

progress that has come from simple analyses. If the weak

trait correlations observed from empirical study are not

consistent with predictions from simple models, then

how can a larger model help? First, is the need to

separate variation associated with processes versus

observation (Berliner 1996, Clark 2005, Ogle 2009). If

large variation in Fig. 1c results from observation error,

then it cannot contribute to coexistence.

At the process level, trade-offs might exist (1) among

species having different resource requirements and life

history constraints and (2) among individuals within a

population subject to different limitations and possess-

ing different genotypes. Variation at these levels has

different implications. Where species abundances are

treated as observations, correlations between species can

suggest trade-offs where they do not exist, and vice

versa. Species most abundant on the best sites can have

high mortality rates simply because stand-level mortality

compensates for rapid growth (Assmann 1970, Clark

1992, Silvertown et al. 1993). Then comparisons between

species show positive growth–mortality correlation not

due to a trade-off, but rather due to other factors that

control where they occur. Species comparisons can show

differences on average (i.e., means are ‘‘significantly

different’’), despite the fact that individuals of those

species collectively overlap (Fig. 1c). Species averages

may not differ (e.g., Condit et al. 2006), despite the fact

that the individuals of different species are responding to

the environment in different ways (Fig. 1e). This occurs

when individuals within a species are responding to

unobserved variables, which can be inferred only if there

are individual-level data (Clark et al. 2003, 2004).

Inference on high-dimensional regulation requires

individual-year (‘‘tree-year’’) observations. In the afore-

mentioned example of compensation (typical in thinning

stands), a negative correlation between growth rate and

survival at the species level (thinning is rapid on the best

sites) belies the underlying positive relationship at the

individual level: healthy individuals grow rapidly and

suffer low mortality risk (Kobe 1996, Wyckoff and

Clark 2000). The so-called ‘‘ecological fallacy’’ (Kramer

1983, Ibáñez et al. 2006, Clark 2007) comes from a

mismatch between scales of data and inference. Proper

inference requires analysis of the distribution of

individual health across each population. Replicated

observations at the individual level (Hurt et al. 2006,

Ricklefs and Cadena 2007) can show if variation results

from species responding to variation in different ways. It

can thus be valuable to include covariates directly into

the analysis (e.g., Russo et al. 2008). Here we do so at

the level of demographic rates for individuals and

species to determine the basis for species differences.

Hierarchical modeling provides a means for inference

at different scales (Wikle 2003, Clark 2005, Latimer et

al. 2006, Cressie et al. 2009, Ogle 2009). To address these

complications we model simultaneously the demograph-

ic schedules within and between individuals for all

species. We obtain a coherent assimilation of multiple

data types, and quantify underlying connections be-

tween demographic rates both within and among

individuals over time (Table 1).

STUDY SITES AND DESIGN

The stands analyzed in this study span moisture and

elevation gradients in the southern Appalachians (Co-

weeta Hydrologic Lab, Macon County), the Piedmont

(Blackwood Division, Chapel Hill), and the transition

between them (Mars Hill, Madison County), of North

Carolina (Fig. 2; Table 3). The three regions were

selected to include a range of climates (including

elevation), parent material, and soil moisture. Piedmont

plots (DB, DH) occupy mixed hardwood and pine

stands on soils characterized by low organic matter, with

a range of water-holding capacities, and low to high

shrink-swell clays. Southern Appalachian plots (C1, C2,

C3, C4, C5, CL, CU) occupy elevations from 780 to

1410 m in the Blue Ridge Belt of southwestern North

Carolina, spanning low-elevation mixed oak (700 m) to

high-elevation (.1400 m) northern hardwood and moist

cove forest to xeric ridge tops. Soils differ in cation

exchange, pH, and drainage. Mars Hill plots (MP, MF)

are transitional, being lower in elevation than Southern

Appalachian sites and comparable in climate. Some

species occur in only a portion of the study region

(acronyms in Table 4), others occur at all sites (Table 5).

Plots were first established between 1992 and 2004.

Data come from an intervention design for canopy gap

manipulation that allows for pre-treatment/post-treat-

ment comparisons, provides a range of variation in light

availability needed to parameterize its effects, and creates

conditions required for recruitment of gap specialists

(Canham 1988, 1989, Cole and Lorimer 2005). Of the 11

study plots, three were designated for experimental

canopy manipulation (CL, CU, DB), made sufficiently

large to allow for experimental canopy gaps with

intervening continuous forest. Design and implementa-

tion of gaps is detailed in Dietze and Clark (2008). The

intervention design provides pretreatment data for trees,
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seed collections, and environmental data and continued

after gaps were created in 2001. We therefore have trees

that have continuously grown at all sites without

intervention, many exposed to the intervention (left

standing in and at the edges of gaps), and others that

experienced changes in canopy characteristics without

intervention, due to continuing stem mortality.

METHODS

Our goal is to quantify interactions between demo-

graphic rates, within individuals, between individuals,

and between species, as they respond to environmental

TABLE 4. Species codes used in other tables and figures.

Code Species

acru Acer rubrum
acsa Acer saccharum
acpe Acer pensylvanicum
acba Acer barbatum
beal Betula alleghaniensis
bele Betula lenta
caca Carpinus caroliniana
cagl Carya glabra
caov Carya ovata
cato Carya tomentosa
ceca Cercis canadensis
cofl Cornus florida
fagr Fagus grandifolia
fram Fraxinus americana
list Liquidambar styraciflua
litu Liriodendron tulipifera
nysy Nyssa sylvatica
oxar Oxydendron arboreum
piri Pinus rigida
pist Pinus strobus
pita Pinus taeda
piec Pinus echinata
pivi Pinus virginiana
qual Quercus alba
quco Quercus coccinea
qufa Quercus falcata
quma Quercus marilandica
quph Quercus phellos
qupr Quercus montana
quru Quercus rubra
qust Quercus stellata
quve Quercus velutina
rops Robinia pseudoacacia
tiam Tilia americana
tsca Tsuga canadensis
ulal Ulmus alata
ulam Ulmus americana
ulru Ulmus rubra

TABLE 3. Study sites, including location, parent material, soils, and treatments by plot.

Parameter

Blue Ridge plots
(Coweeta Hydrologic Lab)�

Transition plots
(Mars Hill)�

Piedmont plots
(Duke Forest)§

C1 C2 C3 C4 C5 CL CU MP MF DB DH

Elevation (m) 780 820 870 1110 1410 1030 1140 710 770 155 170
Area (ha) 0.64 0.64 0.64 0.64 0.64 2.75 1.45 0.5 0.5 4.11 2.40
First year 1992 1992 1992 1992 1992 2000 2000 2004 2004 2000 1999
Gap treatment C C C C C C, 4L, 2S C, 4L, 2S C C C, 4L, 2S C, 4L, 2S

Note: Gap treatments are: C, control only; L, large (40 m diameter); S, small (20 m diameter).
� Mean annual temperature is 12.78C; mean annual precipitation is 1780–2500 mm (ranging from low elevation to high);

location is 358030 N, 838270 W; Blue Ridge Belt lithotectonic region.
� Mean annual temperature is 11.68C; mean annual precipitation is 1020 mm; location is 358490 N, 828320 W; Blue Ridge Belt

lithotectonic region.
§ Mean annual temperature is 14.68C; mean annual precipitation is 1210 mm; location is 358580 N, 798050 W; Triassic Basin

lithotectonic region.

FIG. 2. Three study regions in Blue Ridge (Coweeta),
Transition (Mars Hill), and Piedmont (Duke Forest), showing
plots outlined in red and experimental canopy gaps (circles;
Table 2). Contours are 20 m. Inset maps have a common
vertical and horizontal scale.
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covariates, here including tree size and light availability.

In addition to equations and parameters, the model

contains state variables and observations. State vari-

ables are diameter D, diameter growth d, maturation

probability h, maturation status Q, fecundity f, mortal-

ity risk f, and exposed canopy area (ECA) k and are

shown in Fig. 3. In principle, some state variables might

be directly observed and thus are ‘‘known,’’ others will

be partially observed, observed with error, or unob-

served, in which case they must be estimated along with

parameters. These estimated state variables are latent

states. In the current application, state variables must be

estimated, with information coming from observations

(Fig. 3), prior knowledge of observation errors, and the

full process model. Data sets include diameter censuses

D(o), increment cores d (o), seed traps s, remote sensing

and canopy status observations (summarized as C(o) in

Fig. 3), maturation qt and (for dioecious species) gender

ht status observations, and survival status zt. The

observations are obtained in the context of canopy

intervention experiments (Dietze and Clark 2008),

summarized in this analysis by their effects on light

availability, the ECA k.
Data on tree growth (Clark et al. 2007b), survival

(Wyckoff and Clark 2002, Metcalf et al. 2009), canopy

exposure to light (Wyckoff and Clark 2005), and

maturation and fecundity (Clark et al. 2004) were

collected from each of the 11 plots for a period of 5 to

17 years (Tables 6 and 7), including pretreatment for gap

experiments (Dietze and Clark 2008, Ibáñez et al. 2009).

Observations come from i¼ 1, . . . , nj trees on plots j¼ 1,

. . . , J plots, where J¼11 (Table 3). Each tree has a unique
history of observations. An individual is first observed in

year tij, either the year when a sample plot was established

or when the tree first became large enough to be included

in the census (2 m in height). The last year it is observed is

Tij, which is 2008 or the year of death or censoring (trees

pulled down for the canopy experiment).

Tree measurements are similar to those available from

large tree plots in the tropics, with some additional

TABLE 5. Basal area (m2/ha) of species included in this analysis, ranked by weighted average against plot elevation.

Species

Piedmont plots Transition plots Blue Ridge plots

DH,
165 m

DB,
170 m

MF,
720 m

MP,
730 m

C1,
780 m

C2,
820 m

C3,
870 m

CL,
1030 m

C4,
1110 m

CU,
1140 m

C5,
1410 m

ulru 0.31 0 0 0 0 0 0 0 0 0 0
quph 3.8 0.36 0 0 0 0 0 0 0 0 0
qust 2.74 0.5 0 0 0 0 0 0 0 0 0
acba 0.14 0.04 0 0 0 0 0 0 0 0 0
ulam 0.28 0.09 0 0 0 0 0 0 0 0 0
ulal 1.17 0.72 0 0 0 0 0 0 0 0 0
pita 12.84 14.34 0 0 0 0 0 0 0 0 0
qufa 0.58 0.7 0 0 0 0 0 0 0 0 0
list 4.26 5.29 0 0 0 0 0 0 0 0 0
pivi 0.03 0.21 0 0 0 0 0 0 0 0 0
ceca 0.02 0.18 0 0 0 0 0 0 0 0 0
piec 0.03 1.38 0 0 0 0 0 0 0 0 0
caca 0.27 0.07 0.01 0.02 0 0 0 0 0 0 0
cato 0.18 1.53 0 0 0 0 0 0.33 0 0.03 0
caov 0.64 0 0 0 0 0 0.31 0 0 0 0
qual 2.57 4.89 11.64 1.69 0.61 0 0 0 0 0 0.23
cofl 0.31 0.79 0.11 0.67 0.32 0.92 0.39 0.27 0.14 0.06 0.01
pist 0 0 2.37 0.83 0.03 0.03 0 0 0 0 0
fagr 0 0.01 5.77 1.14 0.07 0.01 0 0 0 0 0.41
piri 0 0 0 0 5.33 0 0 0 0 0 0
fram 1.9 0.8 0.02 1.41 0 0 0.07 0.04 0.76 0 2.36
quve 0 0.56 1.69 1.08 1.7 1.8 1.7 0.1 0.25 0.63 0
litu 1.15 3.75 3.05 1.75 0.13 7.83 1.08 13.12 0.05 0.05 0
cagl 0.66 0.72 0.13 0.7 1.59 3.83 3.87 0.74 1.43 0.11 0.13
acru 2.71 3.36 3.86 2.24 4.48 6.14 6.11 9.42 8.44 11.19 0.26
nysy 0.82 0.37 0.66 1.14 1.03 0.85 4.35 1.58 3.22 2.96 0
quco 0 0 4.23 0.34 2.77 2.87 0.14 2.38 1.82 3.57 0
quma 0 0 1.11 20.17 5.8 4.6 14.77 6.68 11.69 11.06 0
rops 0 0.06 0 0 1.13 1.31 0.43 0.97 0.57 0.72 0
oxar 0 0.37 1.34 1.69 2.53 1.06 4.21 1.07 4.38 4.27 0
tsca 0 0 0 0 0.04 0.77 0.11 1.56 0.97 0.28 0.21
quru 0 0.68 0.39 1.98 2.88 1.3 3.98 6.42 6.21 2.7 7.31
bele 0 0 0 0 0.06 2.56 0.43 0.16 0.13 0.01 7.03
acpe 0 0 0 0 0.02 0.38 0.15 0.19 0.37 0.05 1.7
acsa 0 0 0 0.02 0 0.33 0 0.11 0 0 1.74
tiam 0 0 0 0 0 0.37 0 0 0 0 6.8
beal 0 0 0 0 0 0.05 0.08 0 0 0 9.89

Total 37.43 41.77 36.39 36.86 30.51 37 42.19 45.14 40.45 37.7 38.08

Note: For key to species abbreciations, see Table 4.
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categories. All trees greater than 2 m in height are

identified to species and locations mapped (x, y, z).

Individual measurements obtained at the time of

censuses include diameter, canopy status, reproductive

status (which includes maturation and gender status),

and survival (Fig. 3). Trees are remeasured at 2–4 year

intervals. Mortality and ingrowth (i.e., the addition of

new individuals 2 m in height) are recorded at each
census. Increment cores are extracted and annual

growth rates (ring widths) measured from a sample of

species and size classes at regular intervals to provide an

estimate of annual growth increment. For purposes of

evaluating results, we measured ring widths not only for

the study period and sample plots, but also for the full

growth histories of trees within and outside sample

plots. These were used when we predict growth against

age, although age is not used to fit the model.

There are seed traps k ¼ 1, . . . , Kj distributed

throughout each stand j, but with additional traps

concentrated near canopy gaps in treatment plots (Fig.
4), which provide spatiotemporal seed counts. Data

collection methods for trees and seeds are detailed in

Clark et al. (1998, 2004) and for diameter growth and

mortality in Wyckoff and Clark (2000, 2005) and Clark

et al. (2007b).

Maturation status is given by the indicator Qij,t ¼ 0

(immature) or 1 (mature) and gender by the indicatorHij

¼ 0 (male) or 1 (female). Observations of reproductive

status are qij,t for maturation and hij,t for gender (Table

8). Observation categories for individual i on plot j in

year t, or (qij,t, hij,t) are ‘‘uncertain,’’ ‘‘not reproductive’’

(whole crown visible, no reproduction observed),

‘‘flowering’’ (for dioecious species, gender unknown),

‘‘seeds/fruit’’ (mature and female), ‘‘male’’ (flowers

sometimes identified as male), and ‘‘female.’’ To

maximize detection, reproductive status is recorded

during the flowering season, the fruiting season, or

both, depending on species, because visibility is restrict-

ed (Clark et al. 2004). Dioecious species (Acer rubrum,

A. pennsylvanicum, Fraxinus americana, Nyssa sylvatica)
include individuals lacking female function. All mature

individuals of monoecious species have both male and

female function. The relationship between observations,

and maturation and gender status are given in Table 8.

To allow for an extended pretreatment period canopy

gaps were created two years after data collection began

(Table 3), by pulling all dominant and codominant trees

within the designated gap areas of 20 m and 40 m

diameters with a skidder (Dietze and Clark 2008). There

were a total of 10 large and 8 small gaps. At all sites,

control treatments included all areas not influenced by

gaps.

Model rationale

We rely on model-based inference at the level of

individual trees, represented by estimates of latent states,

each responding to a different set of local and regional

conditions and including year-to-year variation. The

population response emerges as a collection of individ-

ual responses, summarized by fitted parameters, with

detail coming from estimates of latent states (Clark and

LaDeau 2006). An individual tree is characterized by

FIG. 3. A simplified directed acyclic graph of interactions and data for tree i in forest stand j in year t. Latent states include
diameter D, diameter growth increment d, maturation probability h, maturation status Q, fecundity f, gender H, mortality risk f,
and light availability k. Data include growth increment data d (o), diameter measurements D(o), survival observations z, maturation
observations q, gender observations h, and canopy observations C(o). Boxes in dashed outline indicate state variables for tree i in
stand j in year t� 1 (ij, t� 1: all state variables shown), in year t (ij, t: a subset of variables shown), and in seed trap k in stand j in
year t ( jk, t). Seed trap data s are at the 1-m scale, rather than tree scale.

November 2010 577HIGH-DIMENSIONAL COEXISTENCE



continuous (diameter, diameter increment, crown area,

fecundity, mortality risk) and discrete (live/dead, imma-

ture/mature, and, for dioecious species, male/female)

latent states, each of which is partially known. There is

thus a multivariate vector of states for individual i on

plot j in each year t, Sij,t ¼ [d, D, k, h, Q, H, f, f, z]ij,t
including, respectively, diameter growth increment

(mm), diameter (cm), exposed canopy area (m2),

maturation risk (probability), maturation status (0, 1),

gender (0 male, 1 female), fecundity (number of seeds),

mortality risk (probability), and survival (0, 1). The

states are modeled together, collectively responding to

the individual’s environment, which changes from year

to year (Fig. 3). Thus we have thousands of nonlinear,

multivariate state–space models, one for each tree,

characterized by both shared and individual responses

to their local environment and fluctuations. To limit

complexity, the directed graph for the model shown in

Fig. 3 includes only the demographic rates that are

represented as state variables in the model and

observations; it does not include parameters.

Although more complex than is typically used for

inference, the model actually contains a minimal number

of relationships. Parameter-level hypothesis testing is

obviated by the fact that the model only contains

interactions already known to be important. For

example, it is known that plant vigor responds to light,

that demographic rates interact, and that models can

TABLE 6. Tree-scale data, shown as dashed circles in Fig. 3.

Species Trees DCens

Increment cores

Died InGro GapTm

Reproductive status Canopy status

IncCr IncYr RepUn RepNo Rep RF RM Can1 Can2 Can3 CanRe

acru 6600 43 828 347 5080 824 1507 865 14 304 1605 892 632 545 7796 1060 377 142
acsa 143 1124 14 334 12 53 5 357 10 9 0 0 101 11 4 48
acpe 821 6190 27 536 107 423 50 2473 16 21 23 8 599 54 23 78
acba 131 616 2 30 5 69 6 198 30 2 0 0 264 9 1 0
beal 160 1589 34 586 35 21 0 482 33 63 0 0 50 33 16 72
bele 163 1422 37 766 24 39 16 540 8 85 0 0 32 63 19 28
caca 590 2526 2 32 30 393 34 551 40 37 9 0 973 67 8 0
cagl 416 3518 108 1850 48 32 32 1140 103 110 0 0 370 116 64 676
caov 68 370 5 90 6 24 0 155 5 19 2 0 116 22 6 0
cato 493 3470 75 996 48 52 73 1074 218 107 0 0 676 119 51 1584
ceca 321 2058 12 178 64 34 35 581 13 133 0 0 595 34 8 0
cofl 2342 13 168 45 840 716 414 283 4619 51 243 1 0 3492 215 23 8
fagr 263 1281 20 296 12 43 7 156 0 1 0 0 251 27 5 82
fram 1607 8083 41 700 213 725 129 2244 28 9 49 0 2497 168 53 40
list 2169 11 957 119 1426 217 877 252 3115 1675 315 0 0 2596 483 159 0
litu 1243 7948 156 2054 190 269 187 2843 424 367 0 0 1011 290 256 2
nysy 1841 12 854 60 1092 213 447 164 5074 71 3 25 0 2366 235 87 32
piri 36 432 18 344 4 0 0 73 0 31 0 0 2 3 23 58
pist 136 516 12 96 17 22 0 14 0 3 0 0 110 5 2 0
pita 566 3354 117 1484 113 130 68 842 47 722 0 0 53 335 253 0
piec 77 469 19 242 32 2 12 131 3 93 0 0 1 46 29 0
pivi 26 146 5 54 13 1 0 53 0 25 0 0 1 9 5 0
qual 346 2202 138 1694 62 30 38 676 5 104 10 0 133 205 119 6
quco 140 1057 27 570 23 13 18 478 3 43 0 0 8 20 47 30
qufa 26 164 12 128 5 4 4 46 0 8 0 0 4 13 10 0
quph 91 482 11 120 10 34 0 183 0 24 4 0 23 53 37 0
qupr 731 6130 130 1766 112 53 81 2747 10 44 0 0 124 151 211 22
quru 406 3134 113 1592 80 35 54 1337 11 105 0 0 141 81 97 18
qust 83 490 14 150 8 27 7 140 1 11 0 0 30 62 26 0
quve 123 882 33 624 36 17 8 323 0 31 0 0 50 30 23 34
rops 155 1062 18 472 39 49 10 576 2 3 0 0 55 20 19 12
tiam 93 790 16 350 29 33 0 318 0 0 0 0 39 8 12 48
tsca 378 3420 35 734 10 54 55 1381 114 17 0 0 333 32 16 0
ulal 1275 7196 42 636 66 487 78 1801 543 92 0 0 2108 131 23 0
ulam 216 1022 3 50 8 147 1 170 65 8 0 0 348 37 0 0
ulru 64 426 0 0 4 6 0 213 7 7 0 0 163 15 4 0

Total 24 339 155 376 1867 27 992 3435 6566 2572 51 408 5141 3787 757 559 27 511 4262 2116 3020

Note: Abbreviations are: Trees, number of trees observed; DCens, number of diameter measurements taken; IncCr, number of
increment cores; IncYr, number of increments measured; Died, number of trees that died during the study interval; InGro, number
of trees that entered the study, first reaching a height of 2 m during the study interval, 1992–2009; GapTm, number of trees
benefiting from increased light with creation of experimental canopy gaps; RepUn, number of observations where an individual was
designated as unknown reproductive status; RepNo, number of observations where an individual was designated as not
reproductive; Rep, number of observations where an individual was designated as reproductive; RF, number of observations where
an individual was designated as female (dioecious species); RM, number of observations where an individual was designated as
male (dioecious species); Can1, number of trees designated as suppressed canopy stature; Can2, number of trees designated as
intermediate canopy stature; Can3, number of trees designated as codominant canopy stature; CanRe, number of trees for which
there are remote-sensing estimates of exposed canopy area (includes only individuals that could be confidently identified on the
ground). See Table 4 for key to species abbreviations.
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capture only a small part of the variance in data.

Complexity comes from the fact that we combine them,

and we allow for uncertainty in their relationships to one

another. We fully exploit prior information, combining

theory (e.g., allometric relationships) and previous

observations. We use weak priors where data should

dominate.

The structure summarized in Fig. 3 differs from other

analyses that involve more than one type of data or

demographic rate, in that the graph is ‘‘fully connected’’:

responses are also predictors. This comes from the fact

that latent states have uncertainty, and estimates for all

components respond to information coming from all

data sources and all parts of the model. If state variables

are taken to be fixed, we effectively ‘‘break’’ the graph at

each of the nodes in Fig. 3, and each part of the graph is

fitted and behaves independently. This approach can

provide valuable insights, but we chose here to treat

demographic rates synthetically based on all informa-

tion.

It is important not only to include what is known in

advance, but also to identify how priors and data sets

contribute to the fit. Large models are difficult to

analyze. Extensive analyses with each of the main

components of this model preceded the synthetic

analysis here, including diameter growth (Clark et al.

2007b, Metcalf et al. 2009a), survival (Clark et al. 2007b,

Metcalf et al. 2009b, Vieilledent et al. 2009), and

TABLE 7. Seed trap data for each plot, shown in Fig. 4.

Species
C1
(340)

C2
(340)

C3
(340)

C4
(340)

C5
(340)

CL
(633)

CU
(385)

BW
(1016)

HW
(378)

MF
(175)

MP
(180)

Total
(4467)

Acer 3552 5392 5481 8611 4379 8019 6805 15 935 3241 327 72 219.8
Betula 1219 25 713 12 080 2636 329 179 2210 4065 1 0 0 2 2920.9
Carpinus 0 0 0 0 0 0 0 199 878 1 0 3.1
Carya 48 95 309 29 13 44 5 110 140 2 7 4.4
Cercis 0 0 0 0 0 0 0 223 3 26 3 0.6
Cornus 155 48 4 4 3 4 17 252 94 2 8 2.5
Fagus 0 1 0 0 0 0 0 0 0 179 5 0.3
Fraxinus 0 9 0 3 763 1 2 3183 907 1 6 13.9
Liquidambar
styraciflua

0 0 2 0 0 3 4 14 620 3639 0 0 45.0

Liriodendron
tulipifera

228 15 539 2814 696 58 9418 69 27 291 2295 372 1220 233.4

Nyssa 538 63 2277 1565 2 131 52 27 88 0 37 22.6
Oxydendron 5097 200 1648 3740 1 1005 6977 525 2 201 39 87.8
Pinus 322 11 13 1 3 32 0 9980 3075 288 87 38.1
Quercus 522 244 574 1671 1796 273 253 1782 2475 224 126 51.1
Robinia 11 1 4 5 0 35 23 15 1 0 0 0.2
Tilia 2 808 3 2 832 0 0 0 2 0 0 11.7
Tsuga 14 18 16 105 8 958 81 0 0 0 0 3.6
Ulmus 0 0 5 1 0 0 0 3705 6915 0 0 27.7

Notes: Numbers in parentheses in column headings are trap years. Values in cells for plots are the numbers of seeds recovered
from seed traps. Values in cells for Total are the mean numbers of seeds�m�2�yr�1.

FIG. 4. Example of the mapped plot DB used for demographic inference. (a) Stems of the genus Acer (green circles scaled to
tree diameter) and seed traps (red boxes scaled to average annual seed collection). (b) Tree symbols scaled to the mean fecundity
estimate averaged over years, ln[ fij,t]¼ 9.7. Light green symbols are trees estimated to have remained immature with probability .
0.5. (c) Tree symbols scaled to average standard error for the annual fecundity estimates (3.7).
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fecundity (Clark et al. 2004, LaDeau and Clark 2006).

For evaluation, we discuss why standard information

criteria are not helpful and emphasize instead direct

comparisons of priors and posterior distributions,

sensitivity analysis, and simulation. We place emphasis

on predictive distributions, i.e., simulation models that

take posterior distributions as inputs and predictions of

latent variables or observations as output. Here we

describe data submodels, the full synthetic model,

followed by computation, and diagnostics.

Data models

Data for covariates.—Covariates in the model in-

clude tree diameter, annual diameter growth increment,

and light availability (exposed canopy area or ECA;

Wyckoff and Clark 2005), all of which contain

observation error. Because of the large number of data

types involved (diameter measurements, tree-ring mea-

surements, canopy status observations, remote sensing,

and solar geometry model output), we integrate data as

a two-step process. First, we inferred tree diameter and

canopy exposure in the form of posterior distributions.

These posterior distributions are then treated as prior

distributions for the full analysis discussed here. The

uncertainty in prior distributions thus incorporates the

posterior precision from step one (Fig. 5). Here we

briefly summarize the first steps, which are detailed in

other publications.

Diameter measurements D
ðoÞ
ij;t and tree-ring data d

ðoÞ
ij;t

(Fig. 3) were combined to obtain posterior distributions

of diameter and diameter growth rate for every tree,

every year (Clark et al. 2007b). Both data sets are

incomplete in space and time, with diameter measure-

ments obtained for every tree and a subset of years, and

tree-ring data available for a subset of trees, but every

year up to the year in which the increment core was

obtained. The credible intervals from that analysis

closely follow the observations, with the widths deter-

mined by the number and type of observations and how

they are distributed in time and among individuals (Fig.

5).

Like the diameter covariates, light availability was

inferred based on the combination of three data types,

synthesized with a hierarchical Bayes model. These three

data types are summarized by a single variable name Cij,t

in Fig. 3. Canopy status observations consist of an

ordinal scale of 1, suppressed (no crown exposed to

direct sunlight); 2, intermediate (less than 20% of crown

exposed to direct sunlight); and 3, codominant (.20%
canopy exposure). Remotely sensed canopy area was the

second data type, including measurement of canopy

exposed to direct sunlight from low-altitude digital

video. The third ‘‘data type’’ involved shade indices

based on heights and distances of each individual’s

neighbors. As with diameter covariates, the posterior

precisions for light availability depend on all data types.

The incorporation of priors for covariates is discussed in

the next section.

Sample sizes are shown for tree scale data in Table 6

and for seed trap data in Table 7. Species vary in terms

of the amount of each data type, but even for the more

poorly represented species, the amount of information is

substantial. For example, although we have only 68

individuals of Carya ovata, we have 694 tree years. We

were particularly concerned with correlations between

tree diameter D and canopy exposure k and the need to

include small trees subject to high light. Although not

evident in the summaries of Table 6, we show that the

combination of natural variation and canopy gap

formation provides a broad range of covariate combi-

nations. The model summarized in Fig. 3 includes

submodels for each of data sets in Tables 6 and 7 and

discussed here.

Seed data.—Seed data are modeled as in Clark et al.

(2004), with a Poisson likelihood for seeds from all trees

of the species to a given seed trap in year t (Fig. 4):

TABLE 8. Indicators and probabilities of maturity and gender conditional on observations.

Observation
Maturity

indicator qij,t

Maturity
probability

Pr(Qijt ¼ 1 j qij,t)�
Gender

indicator hij,t

Gender
probability

Pr(Hij ¼ 1 j hij,t)�,�

No observation hij,t /

Uncertain 0
ð1� vÞhij;t

1� vhij;t
0 /

Not mature �1 0 0 /
Flowering 1 1 0 /
Seeds/fruits 1 1 1 1
Male or female flowers 1 1 0 or 1 0 or 1

Note: Q is maturation status, H is gender status, q and h are canopy maturation and gender
status observations, respectively, at time t for i trees on j plots.

� The probabilities are shown for the special case that there is a single observation per individual.
In fact, there are multiple status observations, the modeling of which is discussed in Methods.
Symbols are: h, the probability of being in the mature state; v, the probability of detecting mature
status; /, the female fraction of the population.

� Gender status is assumed static (H has subscript ij ), whereas there are multiple observations of
status for each individual (h has subscript ij,t).
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Y

k

Poisðsjk;t j gijk;tÞ: ð1Þ

Let g j,t ¼ [gj1,t, . . . , gjK,t] be the vector of expected seed

intensities for each seed trap in stand j, year t. Then,

gj;t ¼ Ajð1KcBj þ Fj;tf j;tÞ ð2Þ

where Aj is the vector of seed trap areas Ajk (m2), c is a

fitted parameter, Bj is the basal area of the species in

stand j, 1K is length-Kj vector of ones, Fj,t is the Kj by nj,t
matrix of dispersal kernel values, and fj,t is the length nj,t
vector of fecundities, where nj,t¼Ri Qij,t is the number of

fecund trees in stand j in year t. The first term allows

that seed may come from outside the mapped plot and is

taken to be proportional to basal area for the species,

with fitted parameter c. The second term is source

strength, a vector of fecundities fij,t multiplied by the

kernel with parameter u, a two-dimensional Student’s t

distribution, with element ijk being

FðrijkÞ ¼
1

puð1þ r2
ijk=uÞ2

ð3Þ

for distance rijk (Clark et al. 1999, 2004). Thus, expected

seed intensity depends on the latent state variables f,

discussed in Synthetic model development.

Maturation.—The probability of identifying the ma-

ture state is as follows:

pðqij;t ¼ 1 jQij;t ¼ 1Þ ¼ v ð4Þ

and failure to identify it is

pðqij;t ¼ 0 jQij;t ¼ 1Þ ¼ 1� v:

There are no false positives, p(qij,t ¼ 1 jQij,t ¼ 0) ¼ 0.

Because the transition cannot be directly observed, it is

modeled as a hidden Markov process (Synthetic model

development).

Survival.—The likelihood for survival status is

Bernoulliðzij;t j fij;tÞ ð5Þ

where zij,t ¼ 1 is the event that an individual survives,

and zij,t ¼ 0 if the individual dies. The survival

probability fij,t depends on growth rate and size,

discussed in Synthetic model development.

Synthetic model development

The process model assumes individuals are immature

when small, growth occurs each year, and, with

increasing size, trees make the transition to maturity,

after which reproduction can occur. Each year growth

accumulates with an associated risk of death. Diameter

and diameter increment are both predictors and

response variables, in the conditional sense: diameter

growth in year t is one of the covariates for growth in

year t þ 1, as well as maturation and fecundity. A key

feature of the process model is the assumption that

FIG. 5. Posterior densities for diameter Dij,t at left and diameter increment dij,t at right, represented by median (solid line) and
95% credible intervals (dashed lines) compared with observations (dots). Series vary in length, depending on when observations
began for the individual tree and its survival. Posterior densities are generally narrow where increment core data are available, and
vice versa. Numbers at right indicate individual i, plot j, and a unique order number in the database). These densities are used as
priors for each tree year in the analysis discussed here. This example is for Quercus, based on the analysis of Clark et al. (2007b).
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responses for trees in immature and mature states can

differ, allowing for the fact that mature individuals must

allocate to reproduction. We use techniques developed

previously to model fecundity conditional on underlying

status (Clark et al. 1998, 1999, 2004, LaDeau and Clark

2001, 2006) and extend them here to the joint growth/

fecundity/survival response. Because fecundity inference

is a goal, and seeds cannot be confidently identified to

the species level, we model genera, with species

differences within genera being specified by parameters

(see Clark et al. 2004). Here we describe the joint

modeling of demographic rates, which are the latent

states that generate data (see Data models).

Juvenile growth.—Immature trees grow and are

subject to mortality risk, but they do not produce seed.

Diameter growth for tree i of species h in stand j and

year t is delineated by

ln dhij;t ¼ xhij;t�1ah þ bhr;t þ bhij þ whij;t ð6aÞ

whij;t ; Nð0;r2Þ ð6bÞ

bhij ; N ð0; vbÞ ð6cÞ

where dij,t is the diameter increment (cm) from year t� 1

to year t:

xhij;t�1 ¼ ½ 1 ln Dhij;t�1 ln2 Dhij;t�1 ln khij;t�1 ln dhij;t�1 �
ð6dÞ

is the design vector for intercept, log diameter, log

diameter squared, log ECA, and the lag-1 term,

respectively, ah is the corresponding vector of fixed

effects parameters for species h, bhij is a random

individual effect, bhr,t are fixed year effects for year t in

region r, and whij,t is the process error. Within a region,

the year effects sum to zero, so they represent departures

from the overall mean. Elements of xij,t are estimates

and thus updated in the model as well (Appendix A).

There are three sets of fixed year effects r 2 f1, 2, 3g one
each for the Blue Ridge (C), Transition (M), and the

Piedmont (D; Table 3). Year effects capture interannual

variation on a regional scale, such as that related to

climate variation and masting. We use three sets of year

effects, not only because year effects could differ

between regions, but also sampling began in different

years. The full intercept is species interceptþ year within

region þ individual effect (random) þ year effect (zero

sum).

Maturation.—As long as individuals remain imma-

ture, Qhij,t ¼ 0, Eq. 6 is used to describe growth. With

increased size and light access individuals make the

transition to the mature state Qhij,t ¼ 1. Let hhij,t be a

latent state, the increasing probability of maturation

with diameter Dhij,t and exposed canopy area khij,t. Then,

pðQhij;t ¼ 1 jDhij;t; khij;tÞ

¼ hhij;t ¼
expðbh

h0 þ bh
h1Dhij;t þ bh

h2khij;tÞ
1þ expðbh

h0 þ bh
h1Dhij;t þ bh

h2khij;tÞ
ð7Þ

is a logit for the maturation probability. Thomas (1996)

used a logit to model maturation with stem diameter.

Our inclusion of canopy area recognizes that resources

can affect maturation (LaDeau and Clark 2001, Clark et

al. 2004). In the absence of observations, hhij,t is the

probability that an individual of diameter Dhij,t�1 and

exposed canopy area khij,t is mature. Observations

change this probability, depending not only on the

numbers of times that an individual is observed to be

immature or not, but also on when those observations

occurred. If there is a single year and observation, then

probabilities given in Table 8 apply (Clark et al. 2004).

Additional observations complicate the relationship.

For example, maturation has lower probability in year

t for an individual last observed to be immature in year t

� 1 than for an individual last observed to be immature

in year t � 5. Likewise, maturation has higher

probability in year t for an individual first observed to

be mature in year t þ 2 than for an individual first

observed to be mature in year t þ 10.

For dioecious species, the probability of being female

is /¼ p(H¼ 1). Because an individual is only designated

as male or female if certain, there are no false positive

identifications associated with hhij,t; however, most

observations are ‘‘uncertain,’’ hhij,t ¼ 0 (Table 8). The

joint probabilities of maturation status and observations

are detailed in Appendix A.

Mature growth and fecundity.—Once mature, seed

production depends on covariates, including diameter,

growth rate, and resources. There is some level of

synchronicity among individuals due to masting, climate

variation, or both, and there are individual differences

beyond those accounted for by covariates. There is error

in the model itself. Because both diameter growth and

fecundity are response variables, we include them

together as a multivariate regression within the state–

space model. This approach allows us to explicitly

include error covariance between growth and fecundity

beyond that which is accommodated by covariates. Let

yhij;t ¼ ½ ln dhij;t ln fhij;t � ð8aÞ

be the response vector consisting of ln(diameter incre-

ment) (measured in centimeters) and ln(fecundity) (seed

production potential). The response is modeled as

yhij;tþ1

ð1 3 2Þ
¼ xhij;t
ð1 3 pÞ

Ah
ðp 3 2Þ

þ br;t
ð1 3 2Þ

þ bhij
ð1 3 2Þ

þ ehij;t
ð1 3 2Þ

ð8bÞ

bhij ; N 2ð0;VbÞ ð8cÞ

ehij;t ; N 2ð0;RÞ ð8dÞ

where xhij,t is a design vector (Eq. 6d), Ah is matrix of

fixed effects parameters, br,t are fixed year effects, bhij are

random intercepts with covariance Vb, ehij,t is the vector
of errors, and R is the 2 3 2 covariance matrix. As with

juvenile growth, there is a sum-to-zero constraint on br,t
over years, for each r. This amounts to a state space

model in which diameter increment (and, thus, diameter)
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is both a predictor and a response, being updated each

year. Together, this represents a minimal model with
effects of size and resources (in this case, light
availability) on reproduction and growth. This design

matrix can accommodate additional main effects and
interactions (J. S. Clark, D. M. Bell, M. H. Hersh, and

L. Nichols, unpublished manuscript).
The rows of Ah (Eq. 8b) correspond to the elements in

xhij,t�1 (Eq. 6d). The columns of Ah correspond to the
elements of yhij,t (Eq. 8a). An example of Ah is shown
here, with labels for rows (predictors) and columns

(responses):

ln dt ln ft
intercept

ln Dt�1

ln2 Dt�1

ln kt�1

ln dt�1

A11

A21

A31

A41

A51

A12

A22

A32

A42

A52

2

66664

3

77775

:

ð8eÞ

Of course, year effects could have been included in Ah;
we sampled them separately to isolate the overall
intercept in Ah and impose a sum-to-zero constraint on

year effects (Appendix A).
With recent attention on spatial random effects (e.g.,

Banerjee et al. 2006), one could question why this
explicitly spatial model includes random effects that are

non-spatial (Eqs. 6c, 8b). The capacity to model spatial
correlation in random effects is important where the role
of space cannot be captured in the portion of the model

describing processes. For example, individual growth
rates could be either positively or negatively correlated

with those of neighbors, because they share the same
high (or low) resource patch or growth of one
suppresses growth of another. More powerful and

informative than spatial random effects is to actually
measure (or estimate directly) the process that would

produce such correlations. At the scale of individual
growth, the resource that varies and most strongly

affects growth is light availability. By making light
effects explicit, we learn about them directly, rather than
attempting to interpret them from a spatial covariance

matrix. It is straightforward to demonstrate that spatial
random effects are not needed here, by inspection of the

correlations between individual random effects with
distance. We find no such distance trend (Appendix A).
The lack of trend does not mean that growth rates are

uncorrelated. On the contrary, individuals are respond-
ing to many of the same variables. Rather, once the

factors that cause correlation are taken up in the process
model (in this case, light availability), there is no

residual correlation.
Survival.—Due to inadequacy of parametric survival

forms, we implemented the survival model of Clark et al.

(2007a, see also Metcalf et al. 2009, Vieilledent et al.
2009), which extends the nonparametric survival model

of Wyckoff and Clark (2000). Mortality risk declines
with tree vigor, which tends to be lowest in the small
trees that grow slowly in the shaded understory and for

large trees as they approach senescence (e.g., Platt et al.

1988, Uriarte et al. 2004). Thus, mortality risk both

decreases and increases with tree size, but for different

reasons. Our approach distinguishes effects of tree vigor

and tree size. The survival model is nonparametric,
allowing increase in mortality risk with decreasing

growth rate (a composite index of vigor; Kobe 1996,

Wyckoff and Clark 2000) and with increasing diameter

(Platt et al. 1988, Batista et al. 1998, Uriarte et al. 2004)

and strong nonlinearities in these relationships. We

impose only a monotonicity constraint, which is less

rigid than parametric models that assume not only
monotonicity, but also a specific functional form. In the

Bayesian implementation used here, monotonicity is

part of the prior specification. In the Clark et al. (2007a)

model (see also Metcalf et al. 2009a), each individual in

each year has a pair of risks (lhd, lhD) associated with

growth rate (monotonically decreasing) and diameter

(monotonically increasing), with survival probability
from year t � 1 to year t being

fhij;t ¼ 1� ðlhd þ lhD � lhdlhDÞ: ð9Þ

Latent states.—Each of the foregoing submodels

includes explicit state variables, including diameter Dhij,t,
diameter increment dhij,t, canopy area khij,t, fecundity

potential fhij,t, maturation status Qhij,t, gender Hhij,

survival probability fhij,t, and maturation probability

hhij,t (Fig. 3). Two of these variables are deterministic

transformations of other modeled variables and thus do

not need to be modeled themselves. This includes

survival probability fhij,t and maturation probability
hhij,t: we can simply evaluate them using Eqs. 9 and 7b,

respectively. Others are both predictors and responses

and are modeled with uncertainty, including dhij,t, khij,t,
fhij,t, Qhij,t, and Hhij. These are modeled together with

parameters based on the conditional relationships in this

section and data models of the previous section
(Appendix A).

Prior distributions

The analysis includes both informative and non-

informative prior distributions. Where possible, we used

informative prior distributions that are flat but truncat-

ed reflecting natural limits, to maximize transparency,
i.e., for clear identification of the contributions of prior

vs. likelihood. In Appendix A, we provide a detailed

summary of prior distributions and how they were

selected to balance information.

Computation

The posterior distribution was simulated with Me-
tropolis-within-Gibbs, based on conditional posteriors

that are discussed in Appendix A. The simulation was

initialized at prior mean values (diameter increments

and crown areas), random draws from priors, or

inversion of models based on priors (fecundities).

Extended chains of all parameters were examined, as

were samples of large numbers of latent variables. Note
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that, with the exception of random effects in growth

and fecundity, all variance parameters are given

informative priors, to insure effective mixing and

convergence (Natarajan and McCulloch 1998, Dunson

2009). Despite complexity, rapid convergence is facili-

tated by several features of the algorithm, including

integrating out random effects in the sampling of fixed

effects, an initialization of fecundities that is informed

by the process model, and an adaptive sampling

scheme, not only in terms of proposal size, but also

alternately drawing from likelihoods based on the

process and data sets. All computational details are

included in Appendix A.

MODEL EVALUATION

The evaluation of large models is challenging,

particularly with an increasing reliance on information

criteria as one of the few widely reported diagnostics.

Information criteria do not provide much guidance for

evaluation of models, and essentially none for large

models. Criteria such as Akaike information criterion

(AIC), Bayesian information criterion (BIC), and

deviance information criterion (DIC) are used to

compare the fits of two different models to the same

data set. They consist of a goodness-of-fit term and a

‘‘penalty’’ term for model size. For situations where

multiple models can and should be compared and

selected on the basis of their fit to a single data set,

these metrics based on deviance are worth consultation.

There are many situations where model selection should

not be based on a single number, even when models are

small enough to make such numbers interpretable

(Clark et al. 2004, Link and Barker 2006, Clark 2007).

Outside ecology such criteria do not play such a large

role (e.g., Gelman and Hill [2007] mention deviance-

based criteria only briefly, suggest caution, and dismiss

the low-DIC model in their single example). Many

models are built to represent known phenomena in

parsimonious ways, not provide the best fit to a

particular data set. For example, general circulation

models of the atmosphere and numerical weather

prediction models (Gel et al. 2004) are not selected

based on information criteria. In our case, the model is

limited to known phenomena; we include variation and

uncertainty at several scales, not because it might

improve the fit, but rather to provide a more compre-

hensive description. Maximizing the fit to any one data

set (i.e., the rationale for model selection by information

criteria) is not the point; rather we are interested in

combining their contributions, consciously sacrificing

the fit to any one in the interest of synthesis. Moreover,

for large models, the penalty for model size becomes

arbitrary. The number of parameters in a hierarchical

model cannot be objectively determined, and calcula-

tions of ‘‘effective parameters’’ (Spiegelhalter et al. 2002)

yield erratic results. The most important point here is

that information criteria for comparing fits of different

models to a data set is not the same as model evaluation,

which involves a larger set of issues.

Large models can suffer from a range of problems,

involving the underlying model, computation, and the

specific data sets (Geweke 2004, Cressie et al. 2009),

which information criteria do not address. Model

structure may not permit effective identifiability of

parameters (do data provide information on all param-

eters in the model?) or it may contain errors in logic

(mathematics). Computational issues involve construc-

tion of the Markov chain Monte Carlo model (MCMC;

can it efficiently explore the posterior?) and evaluation

of its behavior (has it converged?). Finally, determining

the extent to which the posterior distribution is informed

by different data sets and the prior is crucial to

interpreting output.

Simulation is one of the most powerful tools for

model evaluation (e.g., Gelman and Hill 2007, Clark and

Hersh 2009; Scott and Berger, in press), used to (1)

generate data sets from known parameters, which are

then compared with estimates from the model, and (2)

generate data sets from estimated parameters, which are

then compared with actual data. The first option is not

always practical for large models (Clark and Hersh

[2009] provide an example for a large network of species

interactions). The current application could not be

feasibly evaluated in this way. We made extensive use

of the second option, comparing predictive distributions

of data with observation from data used to fit the model

and external data. Here we illustrate how predictions

from different levels of the model can help can elucidate

the role of uncertainty at different levels in the model.

We supplement these results with prior/posterior com-

parisons posterior summaries that provide evidence of

identifiability.

Not reported here is extensive experimentation,

beginning with submodels in isolation and individual

data sets, progressively stepping up to the full analyses

of all sites and components operating together. We agree

with the recommendations of Craigmile et al. (2009) that

components of large models need independent evalua-

tion. We have done this for fecundity (Clark et al. 2004),

diameter growth (Clark et al. 2007b, Metcalf et al.

2009b), and mortality (Clark et al. 2007a, Metcalf et al.

2009a, Vieilledent et al. 2009).

Distribution of data

To confirm that experimental manipulations provided

a full range of covariates, particularly for tree size and

canopy exposure, we begin with this distribution.

Because of the large number of gaps in the canopy

followed over a number years (Fig. 2), we obtained good

representation of small individuals receiving high light

as well as other canopy area/diameter combinations

(Fig. 6). This 17-year study of 11 different stands

provides a broad range of light levels and tree sizes for a

large number of species. Experimental gap creation

helps break up the correlation between tree size and light
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availability. Although there is positive correlation for

the largest trees, with large individuals tending to receive

more light, we have many small individuals in high light

environments (Fig. 6). Moreover, due to the interven-

tion design, light is not redundant with individual

effects: if individuals remained in approximately the

same light environment throughout the study, it would

be difficult to separate the two. In this study, we have

many individuals in different light conditions, with

sufficient time to respond.

Parameter correlations

Strong correlation in parameter estimates can be

undesirable, sometimes indicating a weak capacity to

identify parameters and potential for inadequate mixing
of the MCMC. That does not mean that latent variables

should be uncorrelated; indeed quantifying such rela-

tionships is a goal of the analysis. Rather, we wish to

determine if some of the parameters are highly

correlated as indication of limited identifiability. We

did extensive analysis of posteriors, Fig. 7 showing an

example of correlation structure. Of 133 principle

parameters, involving 133 3 132/2¼ 8778 comparisons,

only a few have absolute value exceeding 0.5, and most

of these involve the monotonic sequence of mortality

bins. The positive correlations for elements of ld come

from the fact that they are sequential elements of a series

and must covary. Likewise, correlations in year effects

br,t are expected when there is masting and persistent

effects of variation on demography. Despite the large

number of parameters only a few show even intermedi-

ate levels of correlation.

Prior/posterior comparisons

To determine the extent to which estimates depend on

prior densities vs. other information entering the model,

we compared prior and posterior densities. A posterior

distribution that does not differ from the prior indicates

that the analysis has not updated prior knowledge.

Alternatively, large differences indicate ‘‘disagreement.’’

A full summary in provided in Appendix A.

Fig. 8 illustrates contributions of prior and data to

posterior and predictive distributions for maturation

and gender for Acer, which includes both monoecious

(A. barbatum, A. saccharum) and dioecious (A. rubrum,

A. pensylvanicum) species. In fact, A. rubrum is

polygamo-dioecious, having some individuals that are

male, some female, and some supporting both male and

female flowers. The estimate of female fraction for this

genus includes both female and monoecious individuals.

The marginal posteriors for the parameter vector bh

(Fig. 8a) are narrow and they differ from the prior (flat

green lines). The positive estimates for diameter and

canopy area indicate increasing maturation probability

with these covariates.

FIG. 6. Numbers of observations plotted against diameter and exposed canopy area, showing coverage of covariates that
predict growth and fecundity. With the exception of the largest trees, there is substantial representation of observations from small
trees with high light and vice versa. High values are yellow, low values are red, and contours are 1, 10, 100, and 1000.
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The estimates for the population-level maturation

relationship are given by predictions of h. These are

plotted against exposed canopy area k (for two values of

diameter in Fig. 8b) and against diameter D (for the

mean canopy area). The estimates of bh predict the

population-level relationship for h (smooth black lines in

Fig. 8b, c). The black histograms in Fig. 8b, c summarize

individual-level estimates. The population-level predic-

tions do not appear to run precisely through the

histograms of individual-level predictions, because the

individual-level predictions effectively marginalize over

diameter and canopy distributions for the entire

population, whereas the predictive mean curves are

conditional on the specific diameter and canopy values.

Note that the predictions for two values of k lie above

and below the histogram of individual level estimates in

Fig. 8b.

With increasing diameter and canopy area, larger

numbers of individuals are observed to be mature (red

histogram in Fig. 8b, c) and still more are estimated to

be mature (black histogram), because detection is

uncertain (horizontal dashed red lines). Note that the

posterior 95% credible interval for the estimate of v/ is

the expected fraction identified when trees are large

enough to all be mature. The 95% credible interval

(dashed red) roughly averages the red histogram of

observations. In contrast, the black histogram of

estimates approaches 1. This is the expected relationship

between observations, detection probability, and the

true states. The values approach zero for small

diameters (Fig. 8c), because small trees cannot repro-

duce. However, values do not approach zero for small

exposed canopy areas (Fig. 8b), because it is possible for

trees that are highly shaded to yield at least some fruit,

in most cases when they are large.

Gender inference improves with tree size, because

large trees are more likely to be reproductive, and

reproduction is the only evidence for gender. Of the four

species included in the analysis of Acer, two include

males (A. rubrum, A. pennsylvanicum). Gender observa-

tions are ‘‘unknown’’ for most, particularly individuals

in the smallest size classes. At small diameters, there

many estimates at zero, one, and the mean estimate of /
(Fig. 8e). Those estimated near zero (male) at small size

represent individuals that will grow sufficiently large

during the study to eventually have information

suggesting lack of reproduction, despite being of a size

where maturation probability is high. Those estimated

near one (female) at small size represent individuals of a

dioecious species that will later show evidence of

reproduction, thus providing evidence that they were

female throughout, and all individuals of the monoe-

cious A. barbatum and A. saccharum. Those clustered

near the posterior mean of / never have strong evidence

of reproduction or not and thus remain uncertain. This

includes individuals who are small throughout or are

large but far from seed traps, thus having little evidence

of reproductive status. Estimated probability of being

female tends to zero or one with increasing diameter

(Fig. 8d). With increasing confidence in maturation

status, we see a greater tendency to be female than to be

male (Fig. 8e). This tendency results from the fact that

two of the species in Acer are monoecious and thus are

included in female class, regardless of maturation status

or size.

The influence of truncated priors (Appendix A) on

estimates for the state space component of the model

(Eq. 8) is evident in posteriors for parameters from the

growth/fecundity state-space model (Fig. 9). Fig. 9 is

organized in rows and columns to match the structure of

parameter matrix Ah (Eq. 9e). Finding strong effects of

truncation points on posteriors is not undesirable: the

flat, truncated priors provide transparency, i.e., clear

distinction between contribution of prior and likelihood.

In light of the size and complexity of the model the

flexibility to assign hard boundaries to one or both limits

for these parameters and the transparency of prior

effects on posteriors was deemed an advantage. For this

example, we held the diameter effect D on growth rate d

(parameter A21) to be near zero (there is no prior

knowledge to suggest growth rate should respond

directly to size until trees become large), but assumed

that the effect of D on fecundity (parameter A22) should

fall between 1.5 and 3.5 (Prior parameter values).

Together these assumptions allow for a direct size effect

on fecundity that accords with allometric theory. Thus,

we allow for the fact that size is correlated with

fecundity, but that the effect of exposed canopy area

depends on allometry.

To allow for declining growth and fecundity with size,

we included the ln2D term in the model (parameter A31)

and constrained it to be negative. This term has

increasing influence with size. We did not have enough

large enough trees for all species to show clear effects of

large size on growth (posteriors truncated at the upper

zero boundary), but there was evidence for this negative

effect on fecundity for a number of species. Canopy

exposure k has a positive effect on both growth and

fecundity (A41, A42).

The lagged growth rate effect was constrained to be

near zero for growth (parameter A51), because we

wanted long-term trends in growth to be taken up by

year effects; the tendency for positive correlation in this

examples was constrained by the upper boundary at

0.01. However, we wanted to explicitly parameterize the

lag-1 effect of growth on fecundity (parameter A52),

because this could be important for demographic

prediction. We obtained a range of values from strongly

positive to strongly negative for the lag-1 effect of

growth on fecundity; for this example (Fig. 9) it is

negative.

Taken together, Fig. 9 illustrates the combined

contributions of prior and data. Clearly priors define

some hard and transparent limits that conform to

known relationships. On the other hand, posteriors

deviate substantially from the priors indicating the
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strong contribution of data. The transparency of

truncated priors provides an important input, without

sacrificing transparency or the role of data away from

boundaries.

Fixed-year effects for the state–space model summa-

rize year-to-year variation that is not taken up by

covariates and shared among individuals. There are

substantial differences between the three regions (Fig.

10). Those for Coweeta (black curves) extend back to

1992, whereas those for the Piedmont (green curves) and

Mars Hill (red curves) begin in 1999 and 2004,

respectively. Those for fecundity show a tendency for

FIG. 7. Correlations between estimates of population parameters for Fraxinus. Low correlations (between �0.5 and 0.5) are
omitted for clarity. Parameter names indicate fixed effects on adult growth and fecundity (A, Eqs. 8b and A.4), process error
covariance matrix on growth and fecundity (R, Eqs. 8d and A.5), fixed effects on juvenile growth (a, Eq. 6a), random effects
covariance matrix (Vb, Eqs. 8c and A.6), maturation probability (bh, Eqs. 7 and A.1), juvenile growth process error variance (r2,
Eq. 6b), dispersal (u, Eqs. 3 and A.11), maturity recognition (v, Eqs. 4 and A.2), out-of-plot fecundity contribution (c, Eqs. 2 and
A.11), female fraction (/, Eq. A.3), year effects on growth and fecundity (bt, Eqs. 8b and A.7), diameter effect on survival (lD, Eq.
9), and growth rate effect on survival (ld, Eq. 9). Note that Eqs. A.1–A.11 are in Appendix A.
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2–5 year mast cycles in some taxa (e.g., Fraxinus), but

not in others (e.g., Liriodendron). The regional differ-

ences are large and partly resulting from climate

differences (J. S. Clark, D. M. Bala, H. H. Hersh, and

L. Nichols, unpublished manuscript).

The posterior estimates for effects of diameter incre-

ment ld and diameter lD on survival show the flexibility

of the monotonicity assumptions (Fig. 11). The relation-

ship between growth increment and mortality risk is

highly nonlinear near the lowest growth rates (Fig.

11a, b). Apparently, trees reach a threshold of low

growth, below which mortality risk rises substantially.

The histogram of diameters when trees died in Fig. 11c

shows modes not only at the largest diameters, but also

the smallest. The latter mode results from the slow

growth at low light levels in the forest understory. The

priors help to discriminate the growth from size effects,

by recognizing that mortality risk declines with growth

rate (Fig. 11b), but increases with size (Fig. 11c). Beyond

this relationship already known from previous studies,

the prior does not prescribe the shapes of these

relationships. The positive correlations in estimates

observed for ld parameters (Fig. 7) result from monoto-

nicity.

Extensive comparisons of priors, observations, and

posteriors as summarized in Figs. 6–11 helped us

evaluate the model, assuring that estimates are sensible

and provide insight on contributions from observations

and priors. The latent states diameter growth, matura-

tion status, fecundity, and mortality risk are unobserved

but can be evaluated in more indirect ways that are

summarized in the next section.

Diagnostics involving latent state prediction

To provide further insight into model behavior we

predicted data and compared predictions with posterior

FIG. 8. Data and fitted models for maturation and gender for Acer. (a) Posterior (black) and prior (green) densities are shown
for the maturation parameters bh (Eq. 7). (b, c) Red histograms show the fraction of observations in diameter bins and exposed
canopy area bins, respectively, recognized as mature, i.e., for which qij,t ¼ 1. Black histograms show the fraction estimated to be
mature, i.e., those for which the estimates Qij,t¼ 1. The function h is shown for prior (green) and posterior (black) mean values of
bh. Horizontal dashed lines (red) are 95% CIs for v/, the probability of being both female and recognized as mature. (d, e) Circles
show posterior means for gender plotted against (d) diameter and against (e) posterior mean maturation probability.
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estimates of latent states and with observations.

Predictive distributions have the general form

pðR jX�;XÞ ¼
Z

pðR jX�; pÞpðp jXÞdp

where X is taken to be all data and priors entering the

model, p is a vector of parameters, and X* is taken to be

values for a scenario of X, i.e., those for which response

R is to be predicted. X could apply to a spatial

prediction grid, years in the past or the future, or

covariate values other than those for which data were

collected (Clark 2007). The integrand contains two

factors, the likelihood structure and posterior, respec-

tively. Predictive distributions are widely used to

evaluate model fit, examples including cross validation

and predictive loss (Gelfand and Ghosh 1998, Clark et

al. 2004, 2007b, Gelman and Hill 2007). Here we

describe some of these predictions and how they

compare to data or estimates of latent states.

Predictions of diameter growth were evaluated

against an independent data set of growth, obtained

from measurements of increment cores spanning de-

cades. These data were not used to fit the model. We

initialized the model and incremented year-by-year

predictive distributions, approximating p(dtþ1 jX�t , X )¼R
p(dtþ1 jX�t , p)p(p j X ) dp, where X is taken to be all

data and priors entering the model, and X�t is the

previously predicted diameter and increment and the

distribution of canopy exposure values kij,t contained in

the data. The integrand includes the state–space

structure of the model (Eqs. 6, 7, 8) and the posterior,

respectively. The integral is approximated by drawing at

random a row from the iteration-by-parameter matrix

of MCMC output. The tree is initially immature (1 cm

diameter) and subject to the growth rate in Eq. 6,

probability of maturation from Eq. 7, and risk of death

from Eq. 9. Vb determines the random individual effect.

The year effects are drawn at random from those

included in the study (they are part of the iteration-by-

parameter matrix of output). If the individual does not

survive, it is removed from the simulation. If it survives,

a Bernoulli trial with probability from Eq. 7 determines

the new maturation status. The next growth rate is

drawn from a univariate (Eq. 6) or bivariate normal

(Eq. 8) distribution, depending on maturation status.

The example in Fig. 12 is typical: we obtain good

coverage of size distributions for century-ahead predic-

tion. Note that the model contains no explicit age

information. And there is no attractor in the model that

would necessarily make it converge to a particular

diameter value. Moreover, these are not one-step ahead

predictions, as is often used to evaluate fits of time series

models, but rather 200-year-ahead predictions.

A similar approach to prediction was used to evaluate

other aspects of the model. Maturation status is partially

known, and fecundity is not observed, so we cannot

directly compare observations against model predic-

tions. However, we can extend the approach for

diameter growth to maturation status, comparing

estimates of maturation statuses of individual trees

plotted against their ages (not used to fit the model) with

the predictive mean distribution of maturation ages

based on the posterior distribution. This approach

differs from Fig. 8, where we show comparisons of

maturation involving tree size. Fig. 13 shows examples

of estimates (dots) plotted against with the predictive

means from the fitted model (smooth curves). The

important point here is that predictions are close to

individual estimates.

For fecundity, we evaluate predictions of seed rain.

We did this in two ways. Consider that seed rain can be

predicted from different levels in the model. The model

FIG. 8. Continued.
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generates estimates of latent states fij,t, which balance

information coming from seed rain data (Eqs. 1 and 2)

and the model covariates (Eq. 8). Trees close to seed

traps are heavily influenced by seed trap data (the kernel

is a weighting function). Standard errors for the

fecundity estimates for these trees are small (Fig. 4b).

Fecundity estimates for trees distant from seed traps

obtain most of their information from the model

covariates and have higher uncertainty (Fig. 4c).

Uncertainty increases as the number of mature trees

greatly exceeds the number of seed traps. Note that

when the number of seed traps exceeds the number of

trees we can solve Eq. 2 directly (Appendix A). As the

number of mature trees becomes large there are

increasingly more ways to satisfy a set of seed trap

observations, so standard errors will increase. Predictive

intervals help to evaluate the consequences of this

uncertainty. Based on these latent states for all trees in

plot j in year t, there is a likelihood for seed rain data at

location k in year t (Eqs. 1–3). Thus we can consider

how well the expected seed production for all trees at j in

year t predict seed rain observations at seed trap k in

year t, or p(sk,t jE[fj,t, Qj,t], X ) ¼
R

p(sk,t jE[fj,t, Qj,t],

u)p(u jX ) du, where X represents all data and priors, the

first factor in the integrand is the Poisson likelihood

(Eqs. 1 and 3) and the second is the marginal posterior

for u. This prediction is conditioned on fecundity

estimates. Alternatively, we could predict from a lower

FIG. 9. Comparison of priors (dashed lines) and posteriors (solid lines) for the fixed effects in the parameter matrix A for the
state space model (Eq. 4) for Liriodendron. The layout of plots matches Eq. 8e.
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level to include the uncertainty in (Qijt, fj,t) and in the

covariates X:

pðsk;t jXÞ ¼
Z

pðsk;t j f j;t;Qj;t; uÞpðf j;t;Qj;t jX 0; pÞ

3 pðX 0; u; p jXÞ dðf j;t;Qj;t; u; p;X
0Þ

where X0 represents the estimates for diameter, diameter

growth rate, and exposed canopy area, and the vector p
¼ (A, fbr,tg, fbijg, R).

Fig. 14 compares predictions from these two levels

with data (black) and for missing data (red), where the

horizontal axis is the prior mean, rather than an

observation. As expected, the predictions conditional

on mean estimates of fecundity (right) have narrow

predictive intervals: they include only a subset of the

uncertainty, i.e., that contributed by the seed data model

assuming known fecundity. Predictions that incorporate

the uncertainty in the state–space model itself (left) have

broader predictive intervals and provide a more realistic

prediction of uncertainty.

We conducted extensive comparisons between pre-

dictive intervals for latent states at the population

level, with the estimates for latent states available for

each individual tree year. These comparisons help

identify inconsistencies in the model; the predictive

intervals obtained by methods discussed above should

agree with the distributions not only of data (e.g., Fig.

14), but also of latent states being estimated in the

model. To illustrate, Fig. 15 includes predictive

intervals for growth, fecundity, and mortality risk of

Quercus where the latent states are represented in light

green and predictive intervals are in black (a dark

understory with k¼ 0.1), red (an intermediate exposure

level of k ¼ 40), and, for fecundity, dark green

(intermediate exposure, conditional on being mature).

The sources of uncertainty are parameter uncertainty,

random individual effects, year-to-year variation, and

process error. In general we find agreement between

estimates of latent states and the predicted variation

from the model. The latent states for fecund individ-

uals are covered by the predictive distributions

conditional on being mature (Fig. 15b; the large

number of dots along the bottom of the plot indicates

immature individuals). The black and red uncondi-

tional fecundity predictions marginalize over the

probability of being mature.

RESULTS

Summary of parameter estimates and species responses

Because light is a key resource for which species

compete, we discuss this parameter in relation to overall

variance in growth and fecundity response. The matrix

of fixed effects A (Eq. 2) contains parameters describing

the proportionate responses of diameter growth (A41)

and fecundity (A42) to exposed canopy area k. Species
showing large values have a large proportionate

response. Thus, species in the genera Betula, Quercus

(Q. velutina, Q. prinus), Pinus (P. strobus, P. rigida),

FIG. 10. Posterior medians and 95% CIs for year effects bt (Eq. 8b) for three species in the three regions. Separate year effects
were used for Blue Ridge (black), Mars Hill (red), and Piedmont (green). Note the scale difference: the range for fecundity is four
times that for diameter growth.
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Tilia, and Fraxinus have a large proportionate increase

in growth with increasing light levels, whereas species in

the genera Acer, Quercus (Q. phellos, Q. rubra), Fagus,

and Pinus (P. echinata, P. virginiana) have a small

proportionate increase (Fig. 16a). Likewise, Carpinus,

Cercis, and Fraxinus have a large proportionate increase

in fecundity with increasing light, whereas Liriodendron,

Quercus prinus, and Cornus florida have a small

proportionate increase with increasing light (Fig. 16b).

It is important to bear in mind that these are

proportionate, not absolute, responses.

Posterior distributions show species responses to

diameter, displayed in Fig. 17 as posterior means by

year for 200 Fraxinus trees selected at random in

different regions (Piedmont ¼ green, Appalachians ¼
red) and light levels (proportional to line thickness). The

effects of light are more easily seen from the predictive

distributions (Fig. 15), but the trends for individuals

over time provide a sense of variation within and among

individuals. Individuals in shade grow more slowly, are

less likely to be mature, and produce less seed.

When compared among species, mortality risk as a

function of growth rate shows a range of patterns (Fig.

18a). Some species had consistently low (Acer, Carya) or

high (Robinia, Cercis) mortality rates at the for all

growth rates. Liquidambar had among the highest

mortality rates at slow growth and among the lowest

mortality rates at high growth. Cornus had high

mortality rates at all growth rates, most likely due to

the spread of Anthracnose (Wyckoff and Clark 2000).

The differences among species are evident from Fig. 18b,

which shows the mortality rate for individuals growing

at 0.1 cm/yr, an intermediate growth rate for most

species.

Among species, maturation probability increases with

size at different rates for different species (Fig. 18c, e)

and with different sensitivities to light (Fig. 18d).

Maturation occurs at the smallest diameters for

understory species Cercis, Carpinus, and Cornus and at

largest sizes for Robinia, Quercus, Carya, and Pinus. It is

important to recognize that relationships are shown for

the mean ECA for the species in this study, which

depends on the distribution of data. In Fig. 18e, we show

the degree of increase in maturation diameter from

intermediate (ECA ¼ 20) to low light (ECA ¼ 1). The

largest differences are for Pinus, Liquidambar, and

Fraxinus.

Demographic rates

Most of the variables in the state vector Sij,t are

modeled as latent states, because they are not directly

observed or they are not observed every tree-year. The

conditional relationships for a latent state m have the

following general form:

pðSij;t½m�Þ} pðSðoÞij;t ½m� jSij;t½m�; poÞpðSij;t½m� j process model; pÞ
ð10Þ

where p and po are parameters for the process and

observations, and S
ðoÞ
ij;t is the set of observations. The

posterior distribution for each state variable represents a

balance of information coming from observations and

the process model. For diameter D, the data models

include diameter measurements and increment cores.

For the state fecundity f, the data model describes

transport of seeds from trees to seed traps. The second

factor in Eq. 5, the ‘‘process’’ for these two variables, is

Eq. 3. Together, the two factors on the right hand side

allow uncertainty associated with data and process,

making full use of prior information, including previous

studies and theory.

Summaries of latent state estimates can be comple-

mentary to those for parameter estimates and represent

an important component of our analysis. Parameters

describe relationships that apply to the species, including

overall responses to covariates, between years, and

variances. As is clear from Eq. 5, estimates of latent

states apply to an individual and year. Estimates for how

individuals depart from the overall response is used to

test hypotheses, based on summaries within individuals

over time, among individuals of a species, and among

FIG. 11. (a) Mortality data, plotted against growth rate, (b)
relative frequency of deaths (histogram) and posterior median
and 95% CI for ld taken at the mean diameter, and (c) relative
frequency of deaths (histogram) and posterior median and 95%
CI for lD taken at the mean diameter increment. The
relationships between growth rate and diameter and survival
are given in Eq. 9.
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individuals of different species (Table 1). For each

individual there is an estimate of the vector of latent

states for diameter growth dij, fecundity fij, and survival

probability fij. Each vector has length nij¼ Tij� tij, i.e.,

from the time of first observation until death or

censoring. There is a credible interval for each latent

state for each tree-year. Primarily based on estimates of

latent states we synthesize evidence for trade-offs within

populations and among species, and apply them to the

three hypotheses.

Among individuals (within populations).—We posed

the alternative hypotheses that populations show

negative or positive correlations among individuals

between demographic rates, calculated for individual

means (dij , fij ) (Table 2). Negative correlations are

expected if there are trade-offs in allocation (Fig. 1b).

Positive correlations are expected if populations are

dominated by healthy vs. unhealthy individuals (Fig.

1d). Broad overlap is expected (correlation near zero) if

individuals are regulated by large numbers of factors

(Fig. 1c).

We found correlations ranging from �0.5 to 0.5 and

large differences between species within the same genus.

Fig. 19 shows examples of both extremes. For A.

pennsylvanicum and Nyssa sylvatica individuals with

rapid growth have low fecundity, and vice versa, as

consistent with the trade-off hypothesis. Species with

positive correlation are consistent with the alternative

hypothesis. This correlation could depend on other

covariates. We examined whether negative correlations

were related to variation in fecundity, which is highest

for shade-tolerant species that tend to be reproductive in

both sun and shade, and several species in the genus

Pinus, as shown by the vertical axis in Fig. 19. We did

not find a tendency for negative correlation between

FIG. 13. Maturation age predictive means (smooth curves)
compared with individual estimates of trees aged by increment
cores (dots) for three species.

FIG. 12. Comparison of increment data from tree ring data not used in fitting the model (solid lines) and 95% predictive
distributions of tree diameter from the model (dashed lines). For predictions, year effects and exposed canopies areas were drawn at
random from estimated values.
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growth and fecundity to be related to variation in

fecundity. Many of the species with high variation

among individuals are dioecious, and males are not

included in the analysis (Nyssa, Acer rubrum, Fraxinus

americana).

In summary, among individuals, we find species

showing patterns expected if there are trade-offs among

individuals (negative correlation) and if individuals

differ primarily in overall health (positive correlation).

However, most species are dominated by low correlation

among individuals, showing that neither hypothesis

dominates and suggests that individuals respond to a

large number of factors.

Among species.—There is no evidence for trade-offs

among species in the dimensions typically considered in

demographic studies (Fig. 20), using calculations based

on species differences (d , f , f) for individuals subject to
different levels of canopy exposure k. In addition to

these demographic rates, we evaluated ‘‘colonization

potential,’’ estimated as the number of seeds dispersed

.50 m from the parent:
Z Z ‘

50

I

2p
fij;tKxðr juÞpð fij;t; uÞ dx dr

� �
dð fij;t; uÞ

¼
Z

fij;t

1þ 502=u
pð fij;t; uÞ dð fij;t; uÞ

where p( fij,t, u) is the posterior density for fecundity and

the dispersal parameter u (Eq. 3).

Even among mean values for species, we do not

observe negative correlations between high-light growth

and low-light survival, low-light growth and high-light

fecundity, high-light fecundity and low-light survival

(left panels of Fig. 20), or colonization at 50 m and low-

light mortality. The correlations among species mean

values are all weak, but positive, not negative. More-

over, the variation among individuals in these rates

overwhelms differences among species (right panels of

Fig. 20). The bars on the right side of Fig. 20 are not

error bars, but rather indicate 95% of the mean values

for individuals of each species (Table 1). Broad overlap

is inconsistent with the limiting similarity that would be

required if coexistence depended on partitioning of a few

niche axes (Fig. 1).

To determine the extent to which fecundity, growth,

and mortality risk change in combination with light

availability, we examined response vectors, averaged by

species (Fig. 21). Because these are log values they are

proportionate responses. The difference between demo-

graphic rates at low and high light provides evidence of

plasticity to respond to high resource conditions. For

mature trees, the species with the largest differences

between low and high light for fecundity are Ulmus

americana and Tsuga (Fig. 21a), those with the largest

differences for growth are Betula lenta and Tsuga

canadensis (Fig. 21a), and those with the largest

differences for mortality risk are Fagus and Liriodendron

(Fig. 21b, c). For Fagus, the magnitude of change in

mortality risk results from the fact that it is still able to

FIG. 14. Predictions for seed data from Liquidambar styraciflua conditioned (a) on mean estimates of covariates and (b) on
posterior mean estimates of fecundity on a log scale, so zeros are not shown. Predictive intervals are broader in panel (a) because
they integrate not only uncertainty associated with dispersal and sampling, but also in the state space model of fecundity. Red
circles are prior values on the horizontal axis.
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survive at extremely low growth rates (Fig. 22b, c). For

immature trees, species showing large proportionate

growth responses to light include Betula lenta, B.

alleghaniensis, Tsuga, Pinus rigida, and Acer barbatum.

Overall demographic response is summarized in Fig.

21d by the Euclidean distance in these three dimensions,

where they are shown for immature trees (black) and

mature trees (red). For immature trees, the largest

proportionate responses were for shade-tolerant species,

including species in the genera Acer, Betula, and Tsuga,

but also Pinus rigida. For large trees, rankings changed

due to the fact that some species showed large fecundity

responses to light availability (Ulmus and Pinus).

In summary, we find differences among species, but

not those that could explain coexistence by low

dimensional trade-offs. Species each show different

combinations of life history interactions, even when

viewed in the low-dimensional space accommodated by

this analysis. However, results do not show that species

differ in the specific ways (e.g., trade-offs) and to the

degree (e.g., limiting similarity) that would promote

coexistence (Fig. 1a). We do find the large variation

within individuals and populations consistent with high-

dimensional regulation of diversity (compare Figs. 1c

and 20), but summaries presented thus far do not

demonstrate that such regulation is occurring. If

variation is structured in a way that contributes to

coexistence then correlations among individuals of

different species should be less positive than are those

of the same species (Fig. 1e). The relevant correlations

are cd(i, i
0 ) from Table 2, where comparisons are done

for individuals i and i0 of the same and of different

species that occur on the same plot j. Here the evidence

is strong.

In Figs. 22 and 23, we evaluated correlations between

demographic rates for every pair of individuals that

occur on the same plot (Table 2) and compiled them in

histograms for all species pairs. These are correlations

FIG. 15. Posterior mean estimates of latent states (green dots) and predictive intervals for low (black lines) and high (red lines)
canopy exposure k. Included in panel (b) is a second set of predictive intervals for fecundity conditioned on mature status and high
canopy exposure (dark green line). Zero values (immature status) are jittered and plotted as 1’s to make them visible on this log
scale.
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in response between each pair of individuals over years

(Fig. 1e). The lower left panels (blue) are for growth

rates, and the upper right (black) for fecundity. These

correlations were overwhelmingly lower when compar-

ing individuals of different species (off-diagonal panels

of Fig. 22) than when comparing individuals of the

same species (diagonal panels of Fig. 23). Black boxes

indicate the highest average fecundity correlation in a

row, and blue boxes indicate the highest average

growth correlation in a column. For both growth and

fecundity, the correlations between individuals of the

same species that are growing in the same stand are

overwhelmingly higher, on average, than between

individuals of different species. This result is reason-

able, given that they most closely share physiology and

allocation characteristics.

DISCUSSION

Results establish that traditional trade-offs do not

explain the diversity of these forests, but high-dimen-

sional differences, which are evident at the individual

level, show the structure that is required if it is

responsible for coexistence. We found differences among

species in every dimension we examined, but there is also

broad overlap (Figs. 16, 18, 21). These species-level

differences are not consistent with trade-off assumptions

(Fig. 1a), showing not only lack of limiting similarity,

but also lack of the trade-offs in species means (Fig. 20).

The large variation among individuals is structured in a

way that can promote coexistence through high-dimen-

sional regulation. The comparisons of responses be-

tween individuals of the same and different species are

FIG. 16. Species comparisons of posterior densities for light response parameters: (a) growth; (b) fecundity. Species with the
highest values have the largest proportionate response to canopy exposure, and vice versa. See Table 4 for key to species
abbreviations.
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consistent with the hypothesis that species partition

environmental variation. Individuals respond more like

others of the same species in terms of both growth and

fecundity. Because growth determines size, and thus

light capture, and fecundity determines competition for

recruitment sites, these tendencies to compete more with

individuals of the same species can accumulate over

time, providing a mechanism to promote and maintain

diversity.

Trade-offs among species

If diversity maintenance results from partitioning one

or a few niche axes, there must be not only strict

parameter trade-offs, but also limiting similarity: trait

syndromes cannot be arbitrarily similar (MacArthur

and Levins 1964, Pacala and Tilman 1994; Fig. 1a).

Simple trade-offs do not emerge from our analysis,

which included high-light growth vs. low-light survival,

low-light growth vs. high-light fecundity, high-light

fecundity vs. low-light mortality, and colonization vs.

low light mortality. The correlations are near zero and

have the wrong sign (Fig. 20). By estimating observation

errors and variation within individuals and over time,

we show that variation among individuals of the same

species exceeds the variation of means among species

(Fig. 20, right-hand panels).

Instead of trade-offs in a few dimensions, species

partition environmental variation in ways that promote

coexistence in a manner consistent with many dimen-

sions of variation (Figs. 22 and 23). Individual

differences result when a large number of factors

contribute to diversity. Individual-scale inference shows

that interspecific correlations are lower than intraspecific

correlations, the principle requirement if species com-

pete more with their own species, and thus partition

environmental variation (Figs. 22 and 23). This result

does not challenge the view that low-dimensional trade-

offs can contribute to coexistence, only that they explain

diverse communities. Traditional trade-offs, including

those involving spatiotemporal variation, explain coex-

istence of a few competitors, not dozens to hundreds.

The species differences occur in many dimensions, most

of which cannot be directly observed in a single study.

The demonstration that those differences contribute to

coexistence requires individual-level data (replication at

the individual level, over time) and inference. If many

factors control diversity, species differences remain a

requirement, but there is no reason to expect them in a

few dimensions.

The observation of strong individual variation is

consistent with previous observations for reproduction

(Sharp and Sprague 1967, McCarthy and Quinn 1992,

Clark et al. 2004, Mitton and Duran 2004, LaDeau and

Clark 2006), growth (Clark et al. 2007b, Mohan et al.

2007), and mortality (Vaupel et al. 1979, Carey et al.

1992). Part of the variation among individuals can be

ascribed to covariates that can be measured or inferred

using models. The most readily observed examples

include site variation in light availability and soil

moisture. Additional variation may be captured with

random individual effects (Vaupel et al. 1979, Clark et

al. 2003, 2004, Ibáñez et al. 2008). The random effects

covariance matrix (Eq. 3b) summarizes this variation

among individuals that remains after accounting for

covariates. Random individual and temporal effects

(RITEs) exceed the variation explained by covariates;

the individual differences are the basis for the spread in

panels on the right-hand side of Fig. 20. Whereas

average demographic rates do not yield much insight

concerning mechanisms of coexistence, large variation

among individuals indicates that the species can be

doing well in some locations and poorly in others. This

is the expectation if niche differences are high dimen-

sional. If they contribute to coexistence, we expect

FIG. 17. Predictive mean demographic rates for 200 Fraxinus americana trees selected at random. Line thickness is scaled to
canopy exposure. Line colors are red for highest elevation and green for lowest elevation. Note the log scales.
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intraspecific correlations to exceed interspecific correla-

tions (Figs. 22 and 23).

The lack of evidence for low-dimensional trade-offs in

our study could be misinterpreted in several ways. First,

it is not inconsistent with studies that find correlations

between traits for small numbers of species. A trade-off

between high-light growth and low-light survival has

been observed for particular pairs of species (e.g.,

Kitajima 1994, Walters and Reich 1996, Dalling and

Hubbell 2002). We could extract examples of species

from our analysis showing such differences (e.g.,

Liquidambar grows faster than Tsuga in high light, but

suffers higher mortality risk in low light). The lack of

correlation in Fig. 20 does not deny such relationships

between selected pairs of species. Rather, it shows that

these trade-offs are not sufficiently general to explain

coexistence of large numbers of species.

While not inconsistent with correlations reported for

selected pairs of species, our results are inconsistent with

studies that find community-wide correlations. Welden

FIG. 18. (a) Posterior mean mortality risk plotted against diameter growth rate. (b) Posterior density for mortality risk at a
growth rate of 0.1 cm. (c) Posterior mean probability of maturation at different diameters. (d) Predictive density for increased light
exposure on mean maturation diameter. (e) Posterior density for diameter at a maturation probability of 0.5.
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et al. (1991, see also Wright 2002) and Gilbert et al.

(2006) find such correlations from tropical forests in

analyses containing as many or more species than

included here. Although many of the same species in

our study are also included in the analysis of Pacala et

al. (1996), and we present essentially the same trade-off

axes in Fig. 20, we do not find correlations. Differences

in demographic rates between sites could be substantial:

we should not expect to observe the same relationships

in the Southeast as did Pacala et al. (1996) in the

Northeast. The current analysis does not include

seedlings (only trees .2 m in height are included), so

some of the correlations reported by studies such as

Gilbert et al. (2006) could emerge when analysis of

seedlings is included (D. Bell, M. Hersh, I. Ibanes, and

J. S. Clark, unpublished manuscript). An additional

difference between these studies is the analysis. More-

over, these results are not the first to show lack of trade-

offs in low-light survival and high-light growth (Clark

and Clark 1992, Sipe and Bazzaz 1995).

A second potential misinterpretation of our results

concerns broad overlap among species (i.e., lack of

significant differences) in trait or demographic space

(Fig. 20), which can be taken as evidence of species

sameness. Neutral theory proposes that species do not

differ or that identical demographic rates and fitness

makes species differences unimportant. Empirical evi-

dence for this view comes from estimates of species-level

demographic rates. The detailed demographic inference

possible in this study reveals large differences among

species in every respect, all of which affect fitness,

including maturation schedules (Fig. 18), sex ratios (not

shown), growth, and fecundity (Figs. 10, 16, 21),

dependence on covariates (Figs. 16 and 18e), survival

(Fig. 18), and responses over time (Fig. 10). Moreover,

treatment of species identity as a random effect (Condit

et al. 2006) necessarily makes species appear more

similar than they actually are.

If we find that species differ in all of their

demographic schedules, and these schedules, by defini-

tion, determine population growth and fitness, how is it

possible that traditional inference can lead to the

conclusion that demographic rates and fitness values

do not importantly differ among species? Consider how

confusion can arise using the example case of coexis-

tence, simply for purposes of discussion. Neutral theory

proposes that species having the same average fitness

coexist by neutral drift. However, species that coexist by

partitioning the environment always have the same

average fitness, with r¼ 1/N dN/dt¼ 0 and R0¼ 1. The

fact that r ¼ 0 for all species simply means that

abundances are not changing; it provides no insight

concerning niche partitioning (Clark 2009). Species can

have the same average fitness, but at different abun-

dances and with individuals that are responding in many

ways. Differences in abundance are one of the critical

manifestations of species differences. Whereas the

average fitness values for coexisting species are the

same, the variation in fitness that is crucial for

coexistence is organized as differences among individu-

FIG. 19. Correlations within populations (among individuals) in growth and fecundity plotted against the standard deviation in
fecundity, including only mature and (for dioecious species) individuals with posterior probability of being female .0. Thick
dashed lines show species having correlation ,�0.2, and .0.2. Numbers of mature individuals that contributed to estimates are
indicated in parentheses.
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als. Averaged over a species, demographic rates can

appear similar simply because each species is most

abundant in locations where individuals have survived

to be observed. Without knowing how demographic

rates vary across the sites where individuals are found

and the high-dimensional variation that occurs there,

the average demographic rates do not provide much

insight about coexistence.

Recognition that high dimensionality could be im-

portant for diversity is not new (Hutchinson 1961, Levin

1998). Many hypotheses proposed and tested in recent

years bring additional dimensions to traditional mech-

anisms. Tilman (1982, 1988) included explicit resources.

Competition can vary with life history stage (Grubb

1977, Denslow 1987), and species may possess traits

(Tilman 1994, Bonsall et al. 2004), experience losses to

natural enemies or disturbance (Clark 1992, Pacala and

Crawley 1992), and/or forage in ways (MacArthur 1958,

Tilman 1988, Kohyama 1993, Huston and DeAngelis

1994) that effectively promote diversity. Predation and

competition can operate together (Chase et al. 2002,

Amarasekare 2007). The Janzen Connell effect could

FIG. 20. Relationship among species in terms of (a, b) capacity to grow fast at high light vs. survival in low light, (c, d) growth
in low light vs. fecundity in high light, (e, f ) fecundity in high light vs. survival in low light, and (g, h) colonization at long distances
vs. survival in low light. At left (a, c, e, g) are plotted means taken over all individuals of a species, (d , f , f). At right (b, d, f, h),
intervals span 95% of individual means (dij , fij , fij ) for a species and include only variation among individuals; they exclude
observation error and parameter uncertainty.
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result not only from host-specific natural enemies, but

also from host-specific combinations (Clark and Hersh

2009). These studies represent specific ways in which

interactions increase dimensionality.

Even a relatively small number of ‘‘factors’’ can

potentially provide many dimensions along which

species can differ. Temporal variability, either intrinsic

(Huisman and Weissing 1999) or extrinsic (Levins

1979, Armstrong and McGehee 1980), can effectively

increase dimensionality, resulting in different and

shifting combinations of limitations. Spatial variation

in just a few resources could contribute to coexistence

of a number of species (Tilman 1982). Physiological

trade-offs that could contribute to niche partitioning

FIG. 21. Light-response vectors by species for two size classes (mature and immature). Vectors point from demographic rates at
low light (suppressed in understory) to those for high light (exposed canopy area¼ 40 m2). Plots (a)–(c) show comparisons with
growth rate on the horizontal axis. Panel (d) shows the total response (Euclidean distance) for immature (black) and mature (red)
trees. Panel (e) is the comparison of responses for immature and mature trees. See Table 4 for key to species abbreviations.
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in many dimensions include carbon allocation con-

straints to growth, storage, and reproduction (Reznik

1985, Obeso 2002, Würth et al. 2005, Myers and

Kitajima 2007), interrelated constraints on leaf thick-

ness, longevity and nitrogen content (Wright et al.

2004), and wood architecture needed to balance

strength, hydraulic efficiency, and other attributes

(Chave et al. 2009).

The clear differences between correlations between

and within species (Figs. 22 and 23) indicate that

partitioning is occurring, but not along any one or a

few of the dimensions traditionally invoked to explain

FIG. 22. Histograms of correlations among individuals of the same (diagonal) and different (off-diagonal) species growing
together on the same plot for all species in the southern Appalachian sites. The lower left shows growth rate (blue); upper right is
fecundity (black). Each histogram is the comparison for species listed on the diagonal. See Table 4 for key to species abbreviations.
Missing panels are comparisons for which either of the pair has ,20 individuals at all sites. The vertical dashed line indicates zero
correlation. Framed plots have the highest average correlation for growth (blue) or fecundity (black). Species are presented in order
of abundance, from highest (acru) to lowest (ulru).
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diversity (Fig. 20). The species partitioning requires

individual scale data and inference.

Trade-offs within populations

The alternative hypotheses concerning trade-offs

within species (Fig. 1b–d) make predictions that our

modeling approach can evaluate, because we can

estimate latent states associated with individuals. On

the one hand, populations may consist of coexisting

phenotypes, with different individuals specializing in

different activities. In this case we expect negative

correlation among individuals in terms of their alloca-

tion to different activities. We observe this negative

correlation for some species, those to the left of Fig. 19.

Alternatively, individuals can vary in overall health

status that affects multiple demographic rates. We

observe positive correlations for species to the right of

Fig. 19. If populations are dominated by differences

between healthy and unhealthy individuals, then trade-

offs might be most important for the least healthy

individuals. For example, at high resource levels (e.g.,

high light) there could be both rapid growth and high

fecundity. By contrast, resource deprivation might

demand a trade-off: grow now and reproduce later.

The vertical axis in Fig. 19 does not show that species

characterized by negative correlation tend to also have

high variability in fecundity. The possibility that these

correlations could depend on individual health could be

explored in subsequent studies involving detailed mea-

surements on individuals of different species. However,

for most species the correlations are low, falling on the

interval (�0.3, 0.3), which is consistent with a large

number of regulating factors.

The finding that populations consist of individuals

with a large range of health statuses (Fig. 19) provides a

link to the species level result, which indicates the

importance of individual subjected to variation in many

dimensions (Figs. 22 and 23). This mixture of health

statuses reflects heterogeneity in controls that would be

needed if species differences at the individual level

contribute to coexistence.

CONCLUSIONS

The emphasis of biodiversity science on simple

explanations is critical for identifying generalities that

might explain pervasive patterns. It is responsible for a

deep understanding of how trade-offs in response to a

few factors can contribute to biodiversity and patterns

like succession. Recognition of the importance of life

history and resources owes much to the analysis of

simple models that isolate their impacts and to empirical

study of their potential importance in nature. At the

FIG. 23. The fraction of correlations between individuals of two species for which the correlation between individuals of the
same species is greater than those for individuals of different species.
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same time, the goal of a simple explanation for the

coexistence of large numbers of competing species can

become counterproductive, when failure to identify the

trade-offs required to justify a low-dimensional view of

nature leads to nonspecific explanations such as

‘‘stochasticity’’ or ‘‘equalizing forces’’ or simply failing

to adopt a realistic approach to current and future

preservation of species. As important as simplicity is,

many disciplines have embraced the need to study

processes that lack a low-dimensional interpretation

(O’Hagan and West 2009). Biodiversity is as complex as

the problems that have motivated other disciplines to

look toward models that accommodate more interac-

tions, human health being one obvious example. Simple

models have had an important role in ecology, but

additional progress on hard problems like biodiversity

now requires a more realistic approach. The hierarchical

approach applied here holds promise, identifying that

species do partition the environment in ways that can

promote diversity, but only if there are many ways in

which species differ. Productive study requires individ-

ual scale inference.

If large models are to provide guidance they need to

accommodate complexity in the simplest possible ways.

The insight concerning species differences here owes

much to the attention to how variation might be

structured and what that structure might reveal about

species interactions. Although the model is large, it

actually represents the antithesis of complexity, limiting

inference to a small number of relationships known to

have critical importance and using stochastic terms to

stand in for the relationships that cannot be observed.

Our results do not recommend an effort to ‘measure

everything,’ but instead focus on ways to move forward

with limited knowledge. Finding that variation among

individuals is structured in ways that would be required

to promote diversity indicates the importance of moving

beyond simple mechanisms.
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Valladares, F., and Ü. Niinemets. 2008. Shade tolerance, a key
plant feature of complex nature and consequences. Annual
Review of Ecology, Evolution, and Systematics 39:237–257.

Vaupel, J. W., K. G. Manton, and E. Stallard. 1979. The impact
of heterogeneity in individual frailty on the dynamics of
mortality. Demography 16:439–454.

Ver Hoef, J. M., and K. Frost. 2003. A Bayesian hierarchical
model for monitoring harbor seal changes in Prince William
Sound, Alaska. Environmental and Ecological Statistics 10:
201–209.

Vieilledent, G., B. Courbaud, G. Kunstler, J.-F. Dhôte, and
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APPENDIX A

Prior distributions, conditional relationships and distribution theory needed for algorithm development, algorithms used for
Metropolis within Gibbs, and some issues related to MCMC diagnostics (Ecological Archives M080-020-A1).

APPENDIX B

Parameter estimates, by species (Ecological Archives M080-020-A2).
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