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Abstract. Understanding the relative roles of climate and species interactions in
regulating population dynamics, one of the oldest challenges in ecology, is now a prerequisite
for predicting species responses to climate change. A lack of case studies limits our ability to
generalize about the factors that have regulated populations in the past and will be important
in the future. Here, we take a first step toward identifying the drivers of plant population
dynamics by studying the influence of climate and species interactions on the recruitment and
survival of ten forb species from a Kansas (USA) prairie. Combining a long-term demographic
data set with a Bayesian hierarchical-modeling approach, we fit models in which annual
survival and recruitment rates are driven by precipitation, temperature, and species
composition. Although the effects of these covariates differed among species, three general
patterns emerged. First, climate had a greater influence than species composition on historical
population dynamics. Second, forecasted increases in mean temperatures are likely to impact
the population growth of these species more than future changes in precipitation or
composition. Third, the significant effects of both climate and species composition on
recruitment suggest that range expansions will be particularly difficult to forecast. Based on
these patterns, we recommend field experiments to evaluate the ability of plant species to
recruit at expanding range margins under warmer temperatures.
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INTRODUCTION

A recurring debate in ecology concerns the impor-

tance of density-dependent vs. density-independent

factors in driving population dynamics. Hixon et al.

(2002) trace the first round of the debate back to 1902,

but the most heated exchange occurred in the 1950s,

when Andrewartha and Birch (1954) made a case for the

regulation of population dynamics by abiotic factors,

while Nicholson (1954) defended the view that interac-

tions between individuals control population abundanc-

es. Most ecologists today recognize the importance of

both biotic and abiotic processes and ask ‘‘What is the

relative contribution of biotic interactions and environ-

mental variables to population dynamics?’’ (e.g., Coul-

son et al. 2001, Ibañez et al. 2007).

Answering this question is of paramount importance

for predicting how plant and animal populations will

respond to climate change. Populations could respond

either directly to changes in climate variables or

indirectly if shifts in climate alter community composi-

tion and species interactions (Fig. 1). In some cases, the

indirect effects mediated by species interactions may

influence population dynamics more than the direct

effects of climate change (Dormann et al. 2004, Suttle et

al. 2007). Species interactions may be especially impor-

tant in the short term if long life spans or slow migration

rates of dominant species cause changes in community

composition to lag behind changes in climate.

Unfortunately, despite more than a century of

research, we still cannot generalize about the relative

role of biotic and abiotic factors in regulating popula-

tions. Because of the difficulties of addressing this topic

with either experiments (Dunnett and Grime 1999,

Callaway et al. 2002, Klanderud and Totland 2005) or

observational data and models (Stenseth et al. 1999,

Coulson et al. 2001), most studies have focused on single

species. We will need to accumulate many more species-

specific case studies before we can answer important

questions such as, How does the relative importance of

climate and species interactions vary across environ-

mental gradients and taxonomic groups? or, Do species

interactions have different effects on survival, growth,

and recruitment?

Along with generalizations about the relative impor-

tance of biotic and abiotic factors, we also should seek

to identify which abiotic factors are most important for

different kinds of species. This task is complicated

because climate variables can affect populations through

many pathways. For example, precipitation and tem-

perature interact to determine soil moisture, a key

resource for plant growth. But those same variables may
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also be involved in cueing phenology and germination

(Baskin and Baskin 2001, Menzel et al. 2001), poten-

tially important drivers of population growth. Such

‘‘nonresource environmental effects’’ (Grace 2001) may

lead to surprising effects of climate variability on plant

communities (Adler and Levine 2007). Regardless of the

underlying mechanisms, if patterns in the influence of

climate variables or in the relative importance of biotic

and abiotic drivers are correlated with species life history

traits (e.g., Jiguet et al. 2007), then we may be able to

forecast the effect of climate change on species even

when little information is available.

Here we take a first step towards identifying general

patterns in plant population regulation by studying the

influence of climate and species interactions on the

dynamics of 10 forb species from a Kansas (USA)

prairie. Combining a unique long-term data set with a

Bayesian hierarchical approach, we fit a series of

population models to address both a retrospective and

a prospective question (Caswell 2000). First, we

compare the amount of historical variability in plant

population dynamics that is explained by climate

variables vs. community composition variables. Next,

we identify the climate and composition covariates most

likely to influence population growth in the future.

Based on the results of these analyses, we speculate

about the effects of global change on the distribution

and abundance of prairie forbs and make recommen-

dations for research to improve future forecasts.

METHODS

Study site and data-set description

The study site is located two miles west of Hays,

Kansas, USA (38.88 N, 99.38 W), in native southern

mixed-grass prairie. Mean annual precipitation is 580

mm, with 80% falling April through September. Mean

annual temperature is 128C. Gradients in soil type

produce distinct plant communities (Albertson and

Tomanek 1965), ranging from a shortgrass community

on level uplands to communities dominated by taller

bluestem species on hill slopes and in swales.

In the early 1930s researchers from Fort Hays State

University established more than 50 permanent 1-m2

quadrats in these plant communities. Every summer

until 1972, with few exceptions, they used pantographs

(Hill 1920) to map the basal cover (the area of a plant in

contact with the soil surface) of all plants in each of the

quadrats (Albertson and Tomanek 1965). Most of the

quadrats were located inside livestock exclosures,

although 15 of the shortgrass quadrats did receive light

to moderate spring and summer grazing. The original

maps have been digitized and the data and metadata are

available in tabular or spatial formats along with

monthly precipitation and temperature data (Adler et

al. 2007). The unique combination of long temporal

extent and fine spatial resolution makes it possible to

analyze the fate of individual plants as mediated by

climate and interactions with intra- and interspecific

neighbors (e.g., Adler et al. 2006).

The data set spans a period of climatic extremes. It

includes the Great Drought of the 1930s when precip-

itation was below normal and temperature above

normal for almost a decade, the wettest year on record

at Hays (1951), and another severe drought in the 1950s

when the driest year on record occurred (Fig. 2a, b). This

climate variability caused large changes in the abun-

dance of the dominant perennial grasses (Albertson and

Tomanek 1965) (Fig. 2c). The goal of our analysis was

to tease apart the influences of these climatic and

compositional fluctuations on forb population dynam-

ics.

We analyzed the dynamics of 10 forb species (Table 1)

that were common enough in the data set to provide

sufficient sample size for model fitting. The densities of

all 10 species fluctuated considerably over the period of

record. Despite their apparent taxonomic and functional

similarity (Table 1), their dynamics varied: four species

increased in density with time (Fig. 3a), three species

reached their highest densities in the middle portion of

the time series (Fig. 3b), and three species peaked early

in the time series (Fig. 3c). Although perennial forbs

contribute only a fraction of the biomass in the grass-

dominated communities at Hays, they represent much of

the species diversity (Adler 2004). Because their densities

are low, the forbs may be more vulnerable to future

changes in climate than the dominant grasses.

Modeling approach

Our analysis involved five steps. First, we classified

each individual plant in each quadrat map as a survivor

or a new recruit. This gave us a record of survival and

recruitment across 35 year-to-year transitions. Second,

we fit a series of survival models incorporating climate

and species composition covariates. Next, we fit a series

of recruitment models incorporating the same covari-

FIG. 1. Conceptual model of the effects of climate and
species interactions on the abundance of a focal species.
Climate can influence the focal species directly (the solid arrow)
or indirectly, through its effects on other plants species (the
broken arrow). Our analysis compares the relative strength of
the two solid arrows, ignoring the broken arrows and other
factors that may influence the abundance of plant species such
as herbivory and disturbance.
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ates. Fourth, we used model comparisons to determine

the relative roles of climate and composition in
explaining historical variation in population densities,
our retrospective research objective. Finally, using the

survival and recruitment models that incorporated all
covariates, we conducted a perturbation analysis to

answer our prospective question about population
responses to future changes in the covariates. The
remainder of the Methods describes each of these steps

in detail.

We used the same short list of climate and composi-

tion covariates for all species. We took this approach to

facilitate cross-species comparisons, and because model

selection is not straightforward when using Bayesian

hierarchical models. Based on previous work (Adler et

al. 2006, Adler and Levine 2007), we chose five climate

covariates that we expected could have strong influences

on all species through their effects on either soil moisture

or physiological cues: growing season precipitation

(April–September), dormant-season precipitation (the

October–March period preceding the growing season),

annual precipitation in the previous year, mean grow-

ing-season temperature, and mean dormant-season

temperature. Precipitation is measured in millimeters

(mm) and temperature in degrees Celsius (8C). We chose

three composition covariates: the density of conspecifics,

the basal cover of the short C4 grasses (Bouteloua gracilis

and Buchloë dactyloides), and the basal cover of taller C4

grasses (primarily Andropogon gerardii, Schizachyrium

scoparium, and Bouteloua curtipendula). Basal cover is

measured as square centimeters (cm2). We included

conspecific density since density dependence is often

important in regulating population growth, and chose

the short grasses and tall grasses to represent interspe-

cific interactions since these are the two most common

functional groups at the site. Other species and

functional groups, such as annuals and C3 grasses, were

not abundant enough for reliable parameterization.

Tracking survivors and recruits

For perennial plants, population density (N ) depends

on survival (S) and recruitment (R) rates:

Ntþ1 ¼ SNt þ RNt: ð1Þ

Although it would be possible to use statistical models

to determine the effects of climate variables and

neighborhood composition on total population density,

we chose to analyze survival and recruitment separately,

since climate and composition covariates may impact

these life stages differently.

We used a computer program to identify survivors and

recruits based on their spatial coordinates (Lauenroth

and Adler, in press). Because quadrats in the Hays data

set were mapped using basal, not canopy, cover, the

single-stemmed forb species appear as points, not

polygons, and are described by density (number of stems

per square meter, stems/m2). The tracking program uses

two basic rules. First, a ‘‘new recruit’’ is defined as an

individual that appears in a location .5 cm from any

conspecific in the previous year. We chose 5 cm as the

critical distance after considering both mapping error

and the potential for vegetative growth (Fair et al. 1999).

Second, a ‘‘survivor’’ is an individual ,5 cm from the

location of a conspecific in the previous year. If more

than one individual was present in the neighborhood in

the previous year, the current year’s plant inherits the

identity of the closest ‘‘parent,’’ and only one individual

inherits that identity. This last contingency means that

FIG. 2. Values of the climate and composition covariates
used to model survival and recruitment rates, 1932–1972. The
dashed line in panel (a) shows mean annual precipitation. The
composition variables are the combined basal cover of short
grasses and tall grasses. The only significant linear trends are in
dormant season temperature (P¼ 0.047) and tall grass cover (P
¼ 0.015).
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the program tracks individual plants, not whole genets.

Most forbs in this study can reproduce vegetatively, but

our focus was on year-to-year changes in density.

Therefore, we classified all new stems as recruits,

regardless of the mode of reproduction.

Survival models

For each species, we assume that the survival (1) or

mortality (0) of individual i of age a in quadrat j from

year k � 1 to k (siajk) is a Bernoulli process with an

underlying survival probability of ŝiajk:

siajk ; BernoulliðŝiajkÞ: ð2Þ

In our ‘‘basic survival model,’’ we assume that the

survival probability is linked by the logit function to

age-dependent average survival, lsa, a quadrat random

effect, qsj, and an individual random effect, zsi:

logitðŝiajkÞ ¼ lsa þ qsj þ zsi: ð3Þ

We included two age classes in the average survival

term, with a ¼ 1 for one-year-old plants and a ¼ 2 for

older plants. Survival of these forb species is low enough

that few individual plants exceed two year life spans, and

survival probability does not vary strongly with age after

the first two years (Lauenroth and Adler, in press). The

quadrat random effect explains spatial variation in

survival among quadrats, probably caused by differenc-

es in soil depth. We assume that the quadrat random

effects are normally distributed with a mean of 0 and a
variance parameter describing quadrat-to-quadrat var-

iation:

qsj ; N ð0;rsqÞ: ð4Þ

We included the individual random effect to recognize

that multiple observations on an individual surviving

many years are not independent (for individuals that die

after their first year, we set the random effect equal to 0).

For individuals surviving more than one year, we

assume the random effects are normally distributed with

a mean of 0 and a fitted variance parameter:

zsi ; N ð0;rszÞ: ð5Þ

Note that none of the terms in this basic model can

explain year-to-year variation in survival probability.

The ‘‘climate model’’ builds on the basic model by

adding the five climate (CL) covariates described above

(see Modeling approach):

logitðŝiajkÞ ¼ lsa þ qsj þ zsi þ XCLkbsCL ð6Þ

where XCLk is the vector of climate covariates in year k

and bsCL is the vector of coefficients relating the climate

covariates to survival probability. In this model,

interannual variability in survival can be explained by

climatic variation.

The ‘‘composition model’’ builds on the basic model

by adding three species composition (CO) covariates

that vary among individual plants and among years (see

Modeling approach, above). These covariates are quan-

tified in the 10 cm radius neighborhoods surrounding

each individual plant. We write this model as follows:

logitðŝiajkÞ ¼ lsa þ qsj þ zsi þ XsCOik�1bsCO ð7Þ

whereXsCOik�1 is the vector of composition covariates for

plant i in year k� 1 and bsCO is the vector of coefficients

relating the composition covariates to survival probabil-

ity. These coefficients can have negative (competition) or

positive (facilitative) effects on survival. In this model,

interannual variability in survival can be explained by

interannual variation in species composition.

Finally, the ‘‘full model’’ includes the elements of the

basic model as well as the climate and composition

effects together:

logitðŝiajkÞ ¼ lsa þ qsj þ zsi þ XCLkbsCL þ XsCOik�1bsCO:

ð8Þ

Here, interannual variability in survival can be explained

by both climate and composition covariates.

We gave all parameters diffuse priors. Mean survival

probabilities for the two age classes were drawn from a

normal distribution with a mean of zero and a variance

of 1000:

lsa ; N ð0; 1000Þ: ð9Þ

TABLE 1. The 10 study species (all are perennial forbs native to Kansas, USA).

Species Family
Species
code

Functional
group

Sample
size�

No.
quadrats�

Maximum life
span (yr)§

Cirsium undulatum Asteraceae ciun C3 632 25 9
Echinacea angustifolia Asteraceae ecan C3 417 7 11
Hedyotis nigricans Rubiaceae heni C3 731 17 7
Lesquerella ovalifolia Brassicaceae leov C3 941 6 14
Paronychia jamesii Caryophyllaceae paja C3 1064 8 15
Psoralea tenuiflora Fabaceae pste legume 3478 44 11
Ratibida columnifera Asteraceae raco C3 844 31 3
Solidago mollis Asteraceae somo C3 2144 21 11
Sphaeralcea coccinea Malvaceae spco C3 971 29 6
Thelesperma megapotamicum Asteraceae them C3 608 14 7

� The number of stems occurring in the data set.
� The number of quadrats in which each species occurred.
§ From Lauenroth and Adler (in press).
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The priors for each of the five climate and three

composition coefficients were also drawn from indepen-

dent normal distributions, with mean 0 and variance of

1000:

bsCLðiÞ; N ð0; 1000Þ i ¼ 1:5 ð10Þ
bsCOðiÞ; N 3ð0; 1000Þ i ¼ 1:3: ð11Þ

The variances for the quadrat and individual random

effects were drawn from inverse gamma distributions,

which is the conjugate prior for variance parameters

(Clark 2007: Appendix G):

rsq ; IGð0:5; 0:5Þ ð12Þ
rsz ; IGð0:5; 0:5Þ: ð13Þ

We fit the model using Markov chain Monte Carlo

(MCMC) implemented in WinBUGS 1.4 (Lunn et al.

2000). We used a hierarchical Bayesian approach because

we wished to include quadrat and individual random

effects and acknowledge sampling error in response

variables as well as covariates (in the case of parents in

recruitment models). Achieving these goals was impos-

sible using classical statistics (Ellison 2004, Clark 2005).

For each of the 10 species and four models, we ran three

chains and chose initial values to represent different

portions of parameter space. We checked convergence

using the Gelman-Rubin diagnostics (Brooks and Gel-

man 1998). Means and 95% credible intervals of

parameters of interest are estimated by averaging samples

from the MCMC runs after equilibrium is reached. The

credibility interval limits are the 2.5 and 97.5 percentiles

of the posterior distribution. Along with the parameter

estimates, we also calculated MCMC estimates of the

predicted survival probability for each plant.

Recruitment models

In contrast to the survival model, which applies to

individual plants, our data only allow us to observe the

process of recruitment at the quadrat level; we do not

know which parents produced the recruits we observed.

We assume that for each species the observed number of

recruits in quadrat j and year k (rjk) is distributed as a

Poisson with mean r̂jk:

rjk ; Poissonðr̂jkÞ: ð14Þ

We assume that mean recruit density depends on the

number of parents in the previous year contributing to

recruitment in that quadrat (pjk�1) and the quadrat and

year-specific fecundity of those parents ( fjk�1):

r̂jk ¼ fjk�1pjk�1: ð15Þ

The number of individuals of each species observed in

quadrat j and year k is only an approximate measure of

the number of parents contributing recruits to that

quadrat the following year. Recruits may also come

from plants located outside the quadrat or seeds in the

seed bank. To allow for these unobserved contributions,

we assume the the observed number of parents is a

Poisson realization of a latent ‘‘true parents’’ variable, p̂:

pjk ; Poissonð p̂jkÞ: ð16Þ

Our process model for the latent variable p̂ is simple,

with mean, quadrat-specific and year-specific parameters

for each species:

logð p̂jkÞ ¼ lp þ qpj þ ypk: ð17Þ
Our data do not make it possible to separate the many

different processes that contribute to recruitment.

FIG. 3. Observed mean densities per square meter of the 10
focal species from 1937 to 1972. Means were calculated across
all 1-m2 quadrats, so the densities are low for species with a
restricted distribution (Lesquerellla ovalifolia occurred in just
six quadrats while Psoralea tenuiflora occurred in 44 quadrats).
For definitions of species codes, see Table 1.
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Therefore, our fecundity term fjk�1 does not simply

describe seed production per individual, but rather the

per capita production of recruits, incorporating seed

production, germination, establishment and seedling

survival between the time when potential parents are

censused and the following year when new recruits are

observed. In the ‘‘basic recruitment model,’’ we assume

that this overall recruitment rate depends only on a

mean fecundity, lr, and quadrat random effects, qrj:

logð fjkÞ ¼ lr þ qrj: ð18Þ

We fit these parameters on a log-scale to ensure that per

capita recruit production is always positive.

The quadrat random effect in per capita recruit

production is normally distributed with a mean of 0

and a variance parameter describing quadrat-to-quadrat

variation:

qrj ; Nð0;rrjÞ: ð19Þ

While the basic recruitment model assumes that the per

capita recruitment rate is constant from year to year, the

‘‘climate recruitment model’’ explains interannual vari-

ability in the recruitment rate as a function of the same five

climate variables we used in the survival climate model:

logð fjkÞ ¼ lr þ qrj þ XCLkbrCLk ð20Þ

where XCLk is the vector of climate covariates for year k,

and brCL is the vector of coefficients relating the climate

variables to the recruitment rate.

The ‘‘composition recruitment model’’ assumes that

the recruitment rate varies as a function of the density of

conspecific parents in the quadrat, and the basal cover of

the short grasses and taller C4 grasses in the quadrat:

logð fjkÞ ¼ lr þ qrj þ XrCLk�1brCO ð21Þ

where XrCOk�1 is the vector of the covariates in year k�
1 (the r subscript emphasizes that these quadrat-level

covariates differ from the individual plant composition

covariates in the survival model), and brCO is the vector

of coefficients.

As for survival, the ‘‘full recruitment model’’ includes

all elements of the basic model in addition to the climate

and composition covariates:

logð fjkÞ ¼ lr þ qrj þ XCLkbrCLk þ XrCOk�1brCO: ð22Þ

We assigned the following diffuse priors:

lr ; N ð0; 100Þ ð23Þ
bsCLðiÞ; N ð0; 100Þ i ¼ 1:5 ð24Þ

bsCOðiÞ; N ð0; 100Þ i ¼ 1:3 ð25Þ

rrq ; IGð0:5; 0:5Þ ð26Þ
lp ; N ð0; 10Þ ð27Þ
qpj ; N ð0; 10Þ ð28Þ

qyk ; N ð0; 10Þ: ð29Þ

The prior variances are lower than for survival because

the recruitment rate is fit on a log scale, so small effects

can cause large differences in predicted recruitment. We

used slightly more informative priors for the parameters

that predict the latent variable p̂ so that the predicted

values of parents would not differ greatly from observed

values. We fit the recruitment models using the same

MCMC approach described for the survival models.

Retrospective analysis

The goal of the retrospective analysis was to describe

the relative influence of the climate and composition

variables on the historical population dynamics of each

species. We used two approaches, the first based on model

selection and the second on a partitioning of deviance.

Deviance information criterion (DIC; Spiegelhalter et

al. 2002) is similar to model selection criterion such as

the Akaike information criterion (AIC), except that it is

designed for hierarchical models fit using MCMC

methods. Like AIC, it balances model fit and parsimony.

We used DIC to compare the basic, climate, composi-

tion, and full versions of the survival and recruitment

models for each species. If DIC indicated that the full

model was superior, we concluded that both climate and

composition covariates were important for explaining

variation in the survival or recruitment rates. But if the

climate model was superior, for example, we concluded

that the climate covariates were more effective than the

composition covariates in explaining interannual varia-

tion in the vital rate of interest.

With linear models, the coefficient of determination,R2,

can be used to partition the variance explained by different

groups of covariates—the climate and composition

variables in our case (Legendre and Legendre 1998). If J

is theR2 of the climate model,K theR2 of the composition

model, andL theR2 of the full model, thenM¼JþK�L,

where M is the overlap of J and K, or the amount of

variance explained by both the climate or composition

variables (presumably due to correlations among the

covariates). The portion of variance uniquely explained by

the climate variables is J� M, and the portion uniquely

explained by the composition variables is K�M.

Applying this approach to our models is complicated

by their nonlinear link functions, the inclusion of

random effects and (in the case of the recruitment

model) the presence of two likelihoods (both recruits

and their parents are stochastic). Fortunately, Zheng

(2000) provides a goodness-of-fit measure called D, the

proportional reduction in deviance, which is appropriate

for generalized linear models with random effects:

D ¼ 1� devI

devN

ð30Þ

where devI is the deviance of the model of interest and

devN is the deviance of the null model. We used the basic

survival and recruitment models as our null models,

meaning that the random effects were included. We then

calculated D for the climate, composition, and full
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models, giving the proportional reduction in deviance

compared to the basic model. Finally, we used the

variance-partitioning approach described above, substi-

tuting the values of D for R2, to calculate the unique

portion of deviance explained by the climate and

composition covariates.

We calculated deviance for the survival and recruit-

ment models using the means of the predicted values

drawn from the MCMC simulations and assuming

Bernoulli and Poisson distributions, respectively. The

log-likelihood used in this calculation of deviance is only

one piece of the full posterior used in the model fitting.

In other words, the deviances and proportional reduc-

tions in deviance are not appropriate for comparing or

evaluating the fits of the hierarchical models. Instead, we

use them only to compare the relative influence of

climate and composition on historical variation in

survival and recruitment rates. We extended the

approach to total population density by summing the

predicted number of survivors and recruits for each

quadrat in each year and then comparing the predicted

number of individuals in each quadrat (resulting from

both survival and recruitment) with the observed

densities to calculate deviance, assuming a Poisson

distribution for the counts.

Prospective analysis

Evaluating how future changes in explanatory vari-

ables will impact population dynamics cannot be done

with a retrospective approach, which is sensitive to the

distribution of the covariates in the observed record. To

evaluate potential impacts of changes in the covariates,

we therefore conducted a perturbation analysis, using

the invasion exponent (the log of the low-density growth

rate) as a measure of population performance (Caswell

and Takada 2004). We use the invasion exponent instead

of equilibrium population growth rates (often used in

linear matrix models) because our models contain

density-dependent, nonlinear processes. The invasion

exponent represents the trajectory of the population at

low density: values .0 indicate that the population can

increase from low abundance and persist, while values

�0 suggest the population will go extinct.

To estimate the invasion exponent for each species, we

initialized a population with a single one-year-old plant.

We then calculated the survival probability for this plant

and the expected number of recruits it should produce

using the full model. To incorporate parameter uncer-

tainty, we estimated survival and recruitment 1000

times, each time drawing parameters from the posterior

distribution (all values were drawn from one randomly

selected iteration of the MCMC sequence to preserve

correlations among parameters). Population growth

means and 95% predictive intervals were then estimated

by summing the 1000 values of survival and recruitment.

We first performed these calculations of the invasion

exponent for each species using the historical means of

the climate and composition covariates. We then

calculated a series of new invasion exponents assuming

proportional increases in the value of each covariate. We

increased the three precipitation variables 10% above

their respective means, but increased the growing-season

and dormant-season temperature variables by 1.28C,

which is 10% of the mean annual temperature (otherwise

the change in the dormant-season temperature, with a

mean near 38C, would have been very small). For each

species, we increased short grass and tall grass cover by

10% of their observed means from the quadrats in which

each species occurred. We used the same values of these

covariates for calculating both survival and recruitment.

The 10% increases in climate and composition variables

fall within the observed ranges of variability for all the

covariates.

RESULTS

Parameter estimates for all four survival and recruit-

ment models and all 10 species converged, based on the

Gelman-Rubin diagnostics (all r̂ , 1.1). Mean param-

eter values and 95% credible intervals from the full

survival and recruitment models are shown in Appendix

A. The precipitation and temperature covariates had

different effects on different species (Appendix A). We

found no clear patterns in the direction of these climate

effects. Conspecific density had no significant effect on

survival for any species but had a significant negative

effect on recruitment for 5 of the 10 species (Appendix

A). Grass cover had both positive and negative effects.

For some species, grass cover had opposite effects on

survival and recruitment rates. For example, for both

Hedyotis nigricans and Psoralea tenuiflora, basal cover

of short grasses and taller grasses had significant

negative effects on survival and significant positive

effects on recruitment. Across all 10 species, we observed

12 significant composition effects on recruitment, and 8

effects were positive (Appendix A). In contrast, for

survival three of the five significant effects were negative.

The models only explained a portion of the spatial and

temporal variability in population density (Appendix B),

highlighting the importance of unobserved processes

and the strength of stochasticity at fine scales.

For 2 of the 10 species, the basic survival model

outperformed models with covariates, based on compar-

isons of DIC (deviance information criterion) (Table 2).

For four species, the climate survival model had the

lowest DIC, and for the remaining four species the full

survival model, containing climate and composition

covariates, had the lowest DIC. The composition survival

model was never selected. For recruitment, the full model

was selected for 9 out of 10 species, while the composition

model had the lowest DIC for one species (Table 2). The

climate recruitment model was never selected.

In our analysis of proportional reductions in deviance,

we found that composition covariates never reduced

deviance in survival more than 2.5%, while the climate

variables explained up to 9% of deviance in survival (Fig.

4a). However, for most species, the deviance explained
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was very low. The pattern was different for recruitment

and population density. Composition covariates reduced

up to 6% of deviance in recruitment and, for four species,

composition reduced deviance more than did climate

(Fig. 4b). On the other hand, climate reduced deviance

(up to 12%) more than composition for six species.

Deviance in overall population density closely followed

the recruitment patterns, with climate producing larger

reductions in deviance but composition exerting a

stronger effect on four species (Fig. 4c). The reduction

in deviance that could not be assigned to either climate

and composition covariates due to co-linearity was never

more than 3%. In fact, this overlap was often slightly

negative, suggesting that the explanatory power of these

variables increased when both sets were included.

The perturbation analysis showed that, for every

species, a 10% increase in growing-season and/or

dormant-season temperature would have stronger im-

pacts on population performance than proportional

changes in precipitation or species composition (Fig. 5).

Four of the 10 species responded more to dormant-

season temperature than growing-season temperature.

In almost every case, changes in overall population

growth were driven far more by responses at the

recruitment stage than at the survival stage (Fig. 5).

The direction of the covariate effects varied dramatically

among species. Surprisingly, increases in growing-

season precipitation reduced population growth for

four species. The predicted mean invasion exponents

were well below 0 for Paronychia jamesii, Ratibida

columnifera, and Sphaeralcea coccinea, indicating a

trajectory to local extinction. These species were all at

low abundance at the end of the period of record, and

two of the three showed decreasing trends with time

(Fig. 3).

DISCUSSION

Three general patterns emerged from our analyses.

First, climate had a stronger influence than composition

on historical population dynamics. Second, our models

TABLE 2. Model comparison based on deviance information criteria (DIC; lower values of DIC indicate a superior model).

Species

Survival models Recruitment models

Basic Climate Competition Full Basic Climate Competition Full

Cirsium undulatum 423.1 428.9 424.3 430.2 2651.4 2641.9 2652.1 2639.7
Echinacea angustifolia 445.3 450.7 448.6 453.9 1342.1 1341.0 1322.3 1322.5
Hedyotis nigricans 641.3 638.4 636.6 632.3 2052.4 2023.1 2043.8 2010.7
Lesquerella ovalifolia 769.7 756.0 769.6 757.1 1260.4 1223.8 1192.7 1154.0
Paronychia jamesii 1080.8 1073.3 1083.7 1076.5 2036.2 2022.4 2022.2 2009.0
Psoralea tenuiflora 2076.6 2057.4 2072.9 2051.9 8320.8 8198.5 8225.1 8089.3
Ratibida columnifera 697.2 637.9 686.5 636.9 3672.0 3486.2 3640.8 3483.8
Solidago mollis 1801.4 1799.3 1797.9 1796.7 6719.2 6681.1 6672.7 6636.0
Sphaeralcea coccinea 857.2 833.2 856.5 837.4 4491.8 4491.2 4407.7 4398.8
Thelesperma megapotamicum 431.5 425.5 435.0 429.0 1980.5 1968.5 1957.8 1936.1

Notes: For each species, the best survival and recruitment models are shown in bold. The ‘‘Basic’’ models contain only random
effects, the ‘‘Climate’’ models incorporate climatic covariates, the ‘‘Composition’’ models add information on the basal cover of
short grasses and tall grasses, and the ‘‘Full’’ models include both climate and composition variables.

FIG. 4. Percentage reductions in deviance. Points show percentage reductions in deviance, relative to the basic models, by
models that include climate and composition variables (the basal cover of short grasses and tall grasses). Species above the dotted
1:1 lines are more influenced by composition covariates than climate covariates, whereas species below the 1:1 lines are more
influenced by climate covariates. Separate results are shown for (a) the survival model, (b) the recruitment model, and (c) overall
population density, which combines survival and recruitment. Species codes are defined in Table 1.
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predict that the large increases in mean temperatures

forecast for the region are likely to impact the

population growth rates of the diverse forb species in

mixed-grass prairies. Third, the significant effects of

both climate and composition at the recruitment stage

imply that range expansions will be difficult to predict.

However, our correlative models only explained a small

portion of historical variability in population dynamics,

despite the fine spatial resolution and long temporal

extent of our data set. Therefore, these patterns should

FIG. 5. Predicted changes in the invasion exponent (the log of the low-density population growth rate) in response to a 10%
increase in each of the covariates. The solid bars show the predicted invasion exponents as deviations from the historical mean, and
the white and gray bars show the relative contributions of changes in survival and recruitment, respectively. Lowercase letter code:
‘‘a’’ indicates that the 95% prediction interval on the invasion exponent does not overlap the historical mean; ‘‘b’’ indicates the
survival and recruitment coefficients with 95% credible intervals that do not overlap zero. The vertical dotted lines help visually
separate the types of variables. The climate variables are growing-season precipitation (GroP), dormant-season precipitation
(DormP), annual precipitation in the previous year (LagP), growing-season temperature (GroT), and dormant-season temperature
(DormT). Both temperature variables were increased by 10% of the mean annual temperature. The composition variables shown
are the combined basal cover of the short grasses (‘‘Short’’) and tall grasses (‘‘Tall’’).
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not be viewed as conclusions but rather as hypotheses to

guide future research and improve forecasts of how

climate change will impact plant populations.

The importance of climate in historical dynamics

Our results indicate that climate played a more

important role than composition in driving the popula-

tion dynamics of prairie forbs over three decades in the

last century. For 6 of the 10 species (Fig. 4), climate

covariates reduced model deviance more than composi-

tion covariates (although for 3 species neither set of

covariates had much explanatory power). In addition,

climate covariates reduced deviance .5% for three

species, whereas composition only reduced deviance

.5% for one species (Fig. 4c). These findings are

consistent with previous studies showing that weather

had stronger effects than species interactions on plant

communities (Fowler 1986, Sacchi and Price 1992).

Despite the importance of climate, composition

sometimes played a significant role due to its influence

on recruitment. At the recruitment stage, the best model

included composition for every species, whereas com-

position covariates were included for only 5 of the 10

species at the survival stage (Table 2). This result implies

that interactions with the dominant grasses have

stronger effects on seedlings than on established plants.

While these interactions were often positive at the

recruitment stage, negative interactions were more

common at the survival stage, implying that competition

may overwhelm facilitation as plants mature (reviewed

by Callaway and Walker [1997]).

Our models do not shed light on the mechanisms

causing these responses. We speculate that positive

interactions arise due to higher soil moisture under plant

canopies, whereas negative interactions may involve

competition for water in deeper soil layers. The water-

limited nature of these subhumid grasslands supports

this hypothesis. However, some species that were

positively correlated with grass cover, such as P.

tenuiflora, responded negatively to growing-season

precipitation, complicating the argument for water

limitation as the critical factor. Perhaps higher precip-

itation in some months correlates with greater light

limitation, fungal growth, or herbivore pressure, or the

balance between facilitation and competition shifts with

precipitation, an interaction that our models did not

include. Definitive answers to these questions will

require field experiments.

Global warming and the structure

of mixed-grass prairie communities

Our prospective analysis illustrates that small changes

in mean temperatures, during both growing and

dormant seasons, could have larger effects on popula-

tion growth rates than proportional changes in mean

precipitation or species composition. Furthermore,

increases in temperature are expected with a high degree

of confidence while regional forecasts for future changes

in precipitation remain extremely uncertain (Christensen

et al. 2007), and we know even less about how

community composition will change. In fact, mean

temperatures in Kansas (USA) are expected to rise more

than 38C (Christensen et al. 2007), much higher than the

1.28C increase we used in the perturbation analysis. The

sensitivity of our models to temperature combined with

the likelihood of large increases in temperature suggests

that warming will have significant impacts on the

distributions and relative abundances of these prairie

forb species.

Although our results indicate that warming is likely to

affect most species, the direction of the effect varies. For

example, six species responded positively to increases in

dormant season temperature and four species responded

negatively. It may seem surprising that 10 apparently

similar prairie forbs could respond so differently to one

environmental signal. Typical functional-type classifica-

tions would lump most, if not all, of our 10 species in

one group (e.g., Hille Ris Lambers et al. 2004).

However, temperature can influence plant populations

through many different mechanisms. High temperatures

affect water balance by increasing evaporative demand,

but could also affect phenology (Menzel et al. 2001) and

cue germination (Baskin and Baskin 2001, Crawley

2004). The potential for temperature to influence these

different processes changes seasonally. In the summer

growing season, when temperatures are high, effects on

water balance should be strong. In the dormant season,

when evaporative demand is low, temperature should

have more important effects on phenology and germi-

nation. Because most of our species were sensitive to

dormant-season temperatures, these latter mechanisms

deserve further attention.

Whether future changes in precipitation or species

composition will also significantly influence forb popu-

lations depends on how much these covariates change.

Large changes in precipitation and species composition

are certainly possible (e.g., Seager et al. 2007). The Hays

data set (Kansas, USA) demonstrates that the basal

cover of the dominant grasses can vary 50% over

decadal periods. Over the spatial scale of whole species

ranges, both precipitation and species composition can

vary much more. However, current predictions in

central North America predict ,10% changes in

precipitation (Christensen et al. 2007, Zhang et al.

2007). With so much current uncertainty, clear predic-

tions will not be possible until precipitation forecasts

improve and responses of dominant species are better

understood.

Range expansions will be difficult to predict

Our results also suggest that the magnitude and rate

of geographic range shifts in response to global warming

will be difficult to forecast. Composition had a

considerable influence on the historical recruitment

dynamics of many species. Furthermore, future changes

in both climate and composition will affect overall
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population growth primarily through the response of

recruitment, rather than survival (Fig. 5). In other

words, the effects of climate and composition on

population dynamics will depend on age structure

(Hampe and Petit 2005). At expanding range margins,

age structure is dominated by young individuals and

population growth depends on recruitment, the stage at

which our forbs were most influenced by composition.

In addition, as species move into new habitats, they will

encounter dramatic changes in species composition.

Currently, we cannot predict the direction of these

potentially strong novel interactions. The bottom line is

that the ability of species to extend their ranges in

response to global warming may not be well predicted

by temperature increases alone. In contrast, our survival

models sometimes performed best without composition

covariates and survival rates were relatively unrespon-

sive to changes in mean temperature and precipitation,

suggesting that dynamics at the contracting margin of

species ranges may be easier to predict.

Future directions

Long-term data sets provide an opportunity to

forecast the future effects of climate change based on

historical responses to climate variability. To comple-

ment this correlative approach, we need a better

understanding of the mechanistic relationships between

climate and plant demography. In our statistical models,

we used the same set of climate and composition

covariates for all 10 focal species because we had little

species-specific information. This may explain why

climate and composition covariates only explained a

small portion of interannual variability in vital rates at

the quadrat scale (also see Ibañez et al. 2007).

Knowledge of how temperature, precipitation, and plant

cover combine to influence resource availability and

physiological cues will aid model development, and may

also explain why the 10 focal species in this study,

despite belonging to one functional group, responded so

differently to temporal variability in climate and

composition.

The patterns we have described should help guide the

design of new experiments aimed at forecasting changes

in the abundance and distribution of plant species. Our

analyses demonstrate that future changes in mean

temperatures, especially in the dormant season, are

likely to have strong effects on the population growth

rates of prairie forbs. In addition, the effects of climate

and composition on population growth were driven

primarily by responses at the recruitment stage. Taken

together, these results highlight the need for field

experiments that test the ability of plant species to

recruit in novel habitats under warmer temperatures.
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APPENDIX A

A table presenting mean survival and recruitment parameter values and upper and lower 95% credibility-interval limits, by study
species (Ecological Archives E089-177-A1).

APPENDIX B

A figure depicting observed and predicted population density for the 10 study species (Ecological Archives E089-177-A2).
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