MAGLEY 2011

Keynote Speech 3

Laurence E. Blow

MaglevTransport, Inc., USA

Status of Maglev Projects in the USA

Status of Maglev Projects in the USA

Laurence E. (Larry) Blow MaglevTransport, Inc. www.maglevtransport.com

Maglev 2011 Conference, Daejeon, Korea
October 10-13, 2011

Systems of Interest

- High-speed maglev
 - Intercity passengers
- Low-speed maglev
 - Urban passengers
- Other systems:
 - Emerging system in Colorado
 - Research project at Old Dominion Univ.
 - Innovative approaches

Summary

- High-speed maglev projects are awaiting funding or slowly drifting away; Colo. is new
- Low-speed technologies remain under study,
 but construction projects are elusive
- Innovative approaches are always active
- > 2008 2011 has been a waiting game
 - U.S. Administration is negative toward maglev compared with conventional high-speed rail (using incremental upgrades)
- Near-term economic conditions are challenging

High-speed Maglevs

- Transrapid (Germany)
- Superconducting Maglev (Japan)

Transrapid

- Technology deployed in Shanghai in 2004
- Maglev Deployment Program (MDP):
 - Atlanta, GA Chattanooga, TN
 - Baltimore, MD Washington, DC
 - Las Vegas, NV Anaheim, CA
 - Los Angeles, CA
 - Pittsburgh, PA
- Other project areas:
 - Chattanooga Nashville, TN
 - Orange County, CA
- US\$90M planned in 2008 never appeared
- Awaiting a go-ahead on any project

Atlanta - Chattanooga

- MDP pre-construction planning in 2000-2002
- Tier I EIS begun in 2008
- GDOT/AECOM lead
- Tier II EIS funds awarded
- Technology selection to occur during Tier II EIS
- Significant new funding expected in 2012
- Active

- MDP pre-construction planning in 2000
- DEIS in 2003, draft FEIS submitted 2007
- MTA/KCI-PB team lead
- Opportunity for new federal funds in 2012
- Original study inactive

Las Vegas - Anaheim

- MDP pre-construction planning 1999-2003
- EIS work: 2003-2007
- CNSSTC, American Magline Group lead
- Owed US\$45M from \$90M funds...Awaiting contract
- Current plan:
 - IOS starts in either NV or CA
 Tech transfer, construction funding agreements in place with Chinese,
 German and U.S. firms
- Active

- MDP planning in 2000
 - Initial engineering, EIS work completed
 - SCAG analysis in 2009: technology-neutral, "High-speed Regional Transport" project
 - **Duplicates CA HSR**
 - Not funded
 - Pending

Pittsburgh, PA MDP planning in 2000 DEIS, FEIS approved in 2007-09 WESTWORELAND COUNTY ALLEGHENT PennDOT, PAAC, Maglev Inc. lead Project oriented as industrial development vs. transport project July, 2011: MLI declared bankruptcy Inactive

Chattanooga - Nashville

- 2005: Statewide HSR feasibility study
 - 2008: Maglev feasibility study completed
 - Feasibility confirmed
 - Costs in normal ranges
- 2010: Full A-C-N corridor establ<u>ished</u>
- Active

Orangeline, Los Angeles

- Private initiative, begun by 13 cities in 2002
- Today, US\$240M available under "Measure R" plus future federal funds
- Orangeline Development Authority (OLDA) lead
- Open to all systems, not just maglev
- Active

Superconducting Maglev (SCM)

- Central Japan Railway (JRC): SCM a "revolutionary concept," should be promoted internationally
- 2009: U.S.-Japan Maglev office formed to assess int'l markets
- CFS from 1997: Maglev in the Northeast Corridor has best performance and economics
- Keys to success: Public-private partnerships, financing and U.S. government approvals

Active

SC Maglev @ 500 km/h Typhoon Roke, September 21, 2011

Low-speed Maglevs

- AMT
- General Atomics
- ▶ HSST/Linimo
- Maglev 2000
- MagneMotion
- Magplane

American Maglev Technology

- EMS Suspension, LIM
- Cargo and passenger
- Undergoing full-scale tests on 600-m track
- Promoting projects in Brazil, Canada, India, Mexico, Puerto Rico, Spain and the U.S.
- Active

Test facility near Atlanta, GA

General Atomics Urban Maglev

- Halbach array (PM) suspension, LSM
- 4.5-mile (7.2-km) "CALU" campus shuttle:
 - Technical feasibility verified
 - Initial EIS completed
- Completed all federal technical objectives
- Ready for demonstration and deployment
- Active

Target speed: 100 mph/160+ km/h Max. Acceleration: 1.6 m/sec² (.16 g) Max. Gradient: 7% in CALU application

HSST / Linimo Urban Maglev

- Most mature system
- Operational in Nagoya since 2005
- EMS Suspension, LIM propulsion
- Analyzed for use in Colorado, Hawaii
- No U.S. projects
- ▶ Inactive

Federal Urban Maglev Goals
Top speed: 100 mph/160+ km/h
Max. Acceleration: 1.6 m/sec²
Max. Braking: 3.6 m/sec²
Max. Gradient: 10%

Max. Noise Level: 70 dBA

Maglev 2000

- 2nd generation system
- HTS magnets
 - EDS suspension
 - LSM propulsion
 - High-speed electronic switching
- Florida MDP project
- Needs a full-scale testing facility
- Active

Vision: National Maglev Network

- · Covers 28.8K miles/46.3K km
- Connects 174 metro areas
- Serves 230+ million people within 15 miles of a station

MagneMotion

- Permanent Magnet EMS
- High-efficiency, large-gap suspension
- ▶ FTA-supported since 2001
- Testing underway at fullscale 50-m test track in Devens, MA
- Nov., 2011: Begin tests on outdoor 75-m track at ODU, Norfolk VA
- Active

Target speeds:

Urban: 160 km/h (100 mph) Intercity: 430 km/h (267 mph)

Magplane

- Common track for single urban, intercity vehicles
- EDS PM suspension, LSM mounted in track
- Planned 19-mile (30-km) route for Beijing
- Mining application in construction, Inner Mongolia
- No U.S. projects
- ▶ Inactive

Top speed: 60 -300 mph Banking: +/- 10⁰ Passive or mechanical switching

Other Systems

- Emerging project in Colorado
- Research project at Old Dominion University
- Innovative approaches

"Advanced Guideway System" in Colorado

US\$2.3M, 18-month feasibility study for the I-70 Mountain Corridor (190km/120mi west of Denver)

<u>Purpose</u>: Identify alignments, stations and technologies to implement an AGS system – "a high-speed monorail or maglev"

Procurement expected in November, 2011

Old Dominion University

- Research opportunity following stalled AMT campus shuttle in 2003
- MagneMotion joint venture: multiple test vehicles at full speeds on existing guideway
- US\$8M for hardware development & testing

Active

Planned MM bogie and LSM stators mounted on ODU girder

Speed goal: 40 mph / 64 km/h

Innovative Approaches

- Maglev subsystems can be adapted to conventional rail applications
 - Maglev 2000/MERRI, Fastransit, MagneMotion
 - Shapery Enterprises:

LSM propulsion technology can be used to propel conventional vehicles suspended by wheels, such as intercity rail, commuter rail, light rail and monorail systems.

Summary

- High-speed maglev projects are awaiting funding or slowly drifting away; Colo. is new
- Low-speed technologies remain under study,
 but construction projects are elusive
- > Innovative approaches are always active
- > 2008 2011 has been a waiting game
 - U.S. Administration is negative toward maglev compared with conventional high-speed rail
- Near-term economic conditions are challenging