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Detectors for Discrete-Time Signals in 
Non-Gaussian Noise 

JAMES H. M ILLER, STUDENT MEMBER, IEEE, AND JOHN B. THOMAS, FELLOW, IEEE 

A6struct-The structure and  performance of a  class of nonl inear 
detectors for discrete-time signals in additive white noise are investigated. 
The  detectors considered consist of a  zero-memory nonlinearity (ZNL) 
fol lowed by a  linear filter whose output is compared with a  threshold. 
That this class of detectors is a  reasonable one  to study is apparent  
from the fact that both the Neyman-Pearson opt imum and  the locally 
opt imum (i.e., weak-signal opt imum) detectors for statistically inde- 
pendent  noise samples can be  put into this form. 

The  measure of detector per formance used is the asymptotic relative 
efficiency (ARE) of the nonl inear detector under  study with respect to a  
linear detector appropriate for the same detection problem. A general  
expression for this ARE is given along with the result that the non-  
linearity maximizing this expression is any  linear function of the 
nonlinearity in the appropriate constant-signal locally opt imum detector. 

To  illustrate the structure and  performance of these nonl inear detectors 
for a  wide range of non-Gaussian noise distributions, three general  
c lasses of symmetric, unimodal, univariate probability density functions 
are introduced that are general izations of the Gaussian, Cauchy,  and  
beta distributions. 

I. INTRODUCTION 

A CONSIDERABLE body of knowledge exists on  the 
use of statistical decision theory to test for the presence 

or absence of a  known signal in additive noise. However, in 
most of this work, Gaussian noise is assumed eventually 
since other assumptions usually lead to mathematical dif- 
ficulties. In this paper  we consider a  class of detectors for 
signals in additive noise that is specifically not assumed to 
be  Gaussian. 

An intuitively reasonable detector structure for a  known 
discrete-time signal in additive white’ noise is a  zero- 
memory nonlinearity (ZNL) followed by a  linear filter 
whose output is then compared to some threshold. That this 
basic structure deserves further investigation is apparent 
from examining the structures of the Neyman-Pearson 
opt imum and  locally (weak-signal) opt imum detectors for 
a  given signal in additive white noise, both of which have 
the postulated form of a  ZNL, which is trivial for Gaussian 
noise, followed by a  linear filter. 

F ig. 1  gives the most general  mode l of the detectors to 
be  considered in this paper. In this figure, vij is a  sequence 
of inputs to the detector. The  ZNL denoted by gi( *) may 
be  time  varying, as indicated by the subscript i, al though 
most of the detectors considered here have a  fixed non-  
linearity g(e). The  system h( *) is a  discrete-time causal 
linear filter having a  finite-duration impulse response 
{h(i): i = 1,2;*- ,M}. The  input signal may be  either con- 
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’ By white noise, we shall mean  noise in which distinct samples are 
statistically independent.  

stant or time  varying, and  up  to N independent copies of 
the received signal may be  available (from different diversity 
channels, etc.). (In weak-signal situations, a  large number  of 
copies N may be  needed  to give satisfactory system per- 
formance.) The  resulting N outputs of the filter /z(e) are 
summed,  and  the output from the summer is compared to 
a  fixed threshold T chosen to give the desired false-alarm 
probability. 

II. CONSTANT SIGNAL CASE 

A. Optimum and Locally Optimum Detectors 

Consider the following hypothesis-testing problem repre- 
senting the detection of a  constant signal in additive white 
noise : 

Ho(‘). . Vi = 12i 

H,(l): Vi = 8 + ni, i = 1,2;**,N. (1) 

For convenience, the signal 0  will always be  assumed 
positive. The  noises {ni: i = 1,2, * * * ,N} are assumed to be  
a  set of mutually statistically independent,  identically dis- 
tributed, real-valued random variables with a  common pdf 
f,(x). The  variance, if it exists, of a  single noise sample IEi 
is denoted by a,‘. 

From the Neyman-Pearson lemma [l, p. 2011, the opti- 
mum test for Ho(‘) versus H,(l) in the sense of maximizing 
the detection probability for a  fixed false-alarm probability 
compares the likelihood ratio 

A(u) = fl(mx4 (2) 
with some threshold Tl chosen to achieve the desired prob- 
ability of false alarm. Herefi(u) is the pdf of the observation 
vector u  = [vl,v2;~~ ,vN] under  hypothesis Hi”‘. Hypoth- 
esis H,(l) or HI(‘) is chosen according to the rule 

A(u) > Tl => I&(‘) 
< Tl =E- Ho(‘). 

Because of the statistical independence of the noise, the 
pdf’s of the observation vectors under  the hypothesis and  
alternative are, respectively, 

fOt”> = if! fnt”i) (34 

and 

fl(u> = it1 f.(Oi - (3. (3b) 

From (2) and  (3), we obtain the opt imum test for H,(l) 
versus H,(l) : 

t opt =  
> Tl => HIC’) 
< Tl =s H,,(l) (4) 



242 IEEE TRANSACTIONS ON INFORMATION THEORY, MARCH 1972 

( 1 signal 
present 

HI 

(vij) 
g (.) (gi(“i.)) h(.) 

I 
j=l 

(no signal) 

Fig. 1. General detector structure. 

where the nonlinearity g,,,(x) is defined by 

gOptW = In LUx - ~>/LCx)l. (5) 
This test has the structure shown in Fig. 2 with g( -) the 
go,,(-) of (5). Note that the structure of Fig. 2 is merely 
a special case of that in Fig. 1. 

Rather than maximizing the detection probability for a 
fixed false-alarm probability, the locally optimum detector 
for H,(l) versus H,(l) maximizes the slope of the power 
function at the origin while keeping a fixed false-alarm 
probability. From this requirement it can be shown [l, 
pp. 235-2361 that the locally optimum test is 

(6) 

Using asymptotic relative efficiency, Capon [2] showed 
that, as signal strength approaches zero, the optimum and 
locally optimum detectors have equivalent performance. 
For the hypothesis-testing problem of (l), with observation 
pdf’s given by (3a) and (3b), the locally optimum detector 
has the form 

(7) 
where the locally optimum nonlinearity g,,(x) is defined by 

dx) P -.L’Wlf,(x> = $ In f.(x - @ I (8) 
e=o 

It is clear that the locally optimum detector of (7) also has 
the structure of Fig. 2. Solving the first-order differential 
equation (8) gives 

fXx> = K ev (s,” g(y) &) (9) 

as the noise pdf for which a given ZNL g(x) is locally 
optimum. 

Although the result of (9) is in itself perhaps only of 
academic interest, it does allow one to derive the relation 
between the optimum and locally optimum nonlinearities. 
By substituting (9) into (5), one obtains 

goptb) = s 

x 
g,,(y) dy. m  

x-e 
From this relationship it is clear that if 0 is small enough 

(1) “I 
YES 

Fig. 2. Detector structure for constant signals. 

and if gJy) is continuous, of one sign, and nearly constant 
in the interval x - 6 I y 5 x, then the value of the 
optimum nonlinearity g&x) is approximately a constant 
multiple of g,(x), that is, 

a&) = 89,,(x). (11) 
From this discussion, it is easy to show certain properties 
that the ZNLs gopt(x) and g,,,(x) must have if they are to 
correspond to noise pdf’s of continuous-valued random 
variables that are symmetric and unimodal in the weak 
sense that if 

1x21 ’ IXlL then f.(x2) 5 f.W. (12) 
From (9) any such locally optimum nonlinearity g,,(x) must 
be odd symmetric about x = 0 so that 

sd-xl = -s1oc4 for all x (13) 
and be nonnegative for positive x and nonpositive for 
negative x. The following four properties of the Neyman- 
Pearson optimum nonlinearity gopt(x) for a positive signal 
6 and a symmetric unimodal noise pdff,(x) can be derived 
easily from (10) and (13): 

goptw) = 0 (144 
g&x) is a strictly increasing function of x, 

o<x<e (1W 

goptcw) - ~1 = -~optCw2) + xl for all x (14~) 

( 
2 0, go& < 0 x > 812 

3 x < e/2. (144 
From the sets of properties in (13) and (14), it is clear 
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that the opt imum and  locally opt imum nonlinearities 
g,,,(x) and  g,,(x) can differ considerably for x in the interval 
[O$]. However, for x < 0  and  x > 8, the two ZNLs will 
be  quite similar qualitatively (except for a  constant of pro- 
portionality 0) if the conditions for the approximation of 
(11) to (10) are valid. The  graphs in Section IV of corre- 
sponding opt imum and  locally opt imum nonlinearities for 
specific noise densities should further clarify this discussion. 

attains an  extremum (actually, a  maximum) when the 
nonlinearity g(x) is chosen as 

Q(x) = agdx) + 4 a # 0. (17) 

This g^(x) maximizes AREnd,ld provided that the noise 
densityf,(x) satisfies the following two conditions: 

0  < a”2  = var (x) < co 

B. Comparing the Nonlinear Detector of Fig. 2  to a Linear 
Detector Using ARE 

o< r m LL’(x>12K(x)1-1 dx < 00. (18) 
J-m 

For the problem of testing H,(l) versus HI(l), it was 
shown in the previous section that both opt imum and  
locally opt imum detectors can be  designed by using the 
structure of F ig. 2. This structure, with g(a) some ap- 
propriately chosen nonlinearity, is also suitable as a  
subopt imum detector for the problem. Henceforth, for con- 
venience, a  detector having the structure of F ig. 2  will be  
called a  constant-signal nonlinear detector. 

Furthermore, the maximum value of ARE,,,,,, denoted by 
P, is 

O” 

A convenient measure of performance for such detectors 
is their asymptotic relative efficiency (ARE) with respect to 
some reference detector [2]. If Ni(cQ,B) denotes the number  
of samples detector Di requires to achieve a  false-alarm 
probability c( and  detection probability at least equal  to fl 
with signal strength 0, the asymptotic relative efficiency of 
a  detector D, with respect to a  reference detector D, is2 

p  4  max ARE,,,,, = u”’ K’W12D,W1-’ dx. (19) 
e(x) s -CC 

It should be  noted that the second condition in (18) is 
exactly that required by Capon [2] to ensure that the test 
statistic tl, of the locally opt imum detector of (7) is asymp- 
totically normal and  thus that the use of ARE is justifiable. 
Moreover, the fact that AREnd,Ld will achieve an  extremum 
if the nonlinearity g(x) is chosen to be  the locally opt imum 
nonlinearity gl,,(x), should not be  surprising since both 
asymptotic relative efficiency and  the locally opt imum 
detector are small-signal concepts. 

(15) 

A convenient choice for the reference detector is the linear 
detector Did, which results when we place g(x) = x in 
F ig. 2. If the noise is Gaussian, both the opt imum and  the 
locally opt imum detectors are equivalent to D,,. The  ex- 
pression for the ARE of the constant-signal nonlinear 
detector D,, with respect to the linear detector Did is3 

III. TIME-VARYING SIGNAL CASE 

A. Optimum and Locally Optimum Detectors 

When  the signal is time  varying instead of constant, the 
hypothesis testing problem of (1) may be  replaced by 
Ho(‘): 0.. = n.. 

LJ IJ 

Hl(‘): Ui j  = esi + ni j ,  i = 1,2;** ,M; ,j = 1,2;..,N 

(20) 

where the double subscripts are used to reflect the mu ltiple- 
channel  nature of the problem. The  signal 0[sl,s2,. . 1  ,sIM] is 
of finite duration M. The  second subscript j indexes the N 
different channels over which the time-varying signal is 
available to the receiver. All the noises nij both within one  
channel  and  between different channels are assumed to be  
statistically independent.  

ARE,,,,, = d[j%  g’(xVn(x) dx12 ~- 
fZcc g’(xlf,(x) dx - [f”, g(x$(x)dxj’ * 

(16) 
This expression is used to evaluate the performance of 
opt imum and  subopt imum detectors for various noise pdf’s 
in Section IV. 

C. The Nonlinearity g(x) That Maximizes ARE,,,,, 
For a  fixed noise pdff,(x),the larger the value of ARE,,,,,, 

the better suited (asymptotically) is the corresponding non-  
linear detector for detecting a  constant signal in that 
particular noise. For the class of continuous, once dif- 
ferentiable noise pdf’s, it can be  shown4 that ARE,,+, 

z As pointed out in the Introduction, in weak-signal situations, a  
large number  N of samples may be  needed  to achieve satisfactory 
system performance. Thus the concept  of asymptotic relative efficiency 
in which the number  of samples N approaches infinity is an  appropriate 
measure of per formance for such systems. 

3  Details of this calculation are given in [3] however,  a  similar 
calculation partially based  on  work done  by  Rudnick [4] appears  in 
Helstrom [5]. 

4  A proof of this fact was given by  Helstrom [5] based  on  the prior 
work of Rudnick [4]. An alternative proof using the calculus of 

The  pdf of the (multiple channel) observation vector V, 
where 

v ’ [ull,’ * ‘,%fl,~lZ,’ * * ,“M2,’ ’ ‘,UIN,’ ’ ‘,%fN] 

under  the hypothesis H,(‘) is thus 

fO(V = fi fi fkvij> 
j=l i=l 

(214 

while under  alternative HI(‘) it is 

fl(V = fi fi fnCvij - hi). @lb) 
j=l i=l 

Hence the log-likelihood-ratio test for H,,(‘) versus HI(‘) is 

variations appears  ifi [f]. 
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where the time-varying nonlinearity gi(X) is defined as 

giCx) A ln Cf,(X - %Y.fXx)l. (23) 
This test has the structure of Fig. 1 with the linear system 
h( *) shown in that figure being a summer over the duration 
of the basic signal. Although the nonlinearity gi(X) of (23) 
is simply the optimum nonlinearity g&x) of (5) with the 
parameter 8 replaced by 8si, the fact that it is time varying 
makes detector implementation more complicated.5 

detector D,, that results when we place g(x) = x in the 
detector of Fig. 1. The linear filter in D,, is denoted by h(s). 

The ARE of the time-varying-signal nonlinear detector 
with respect to the modified linear detector, denoted by 
ARE,,,,,> can be calculated in the same manner as for the 
constant signal by allowing the number of different channels 
N to approach infinity. Since the calculation is nearly 
identical to that of (16), no details are given here [3]. The 
final result is 

ARE,,,,, = ~~“[EW(nJ>l” [x:1 sih(M + 1 - i)]” CE”=, h2(M + 1 - i) 
(E{g’(nij)} - [E{g(nij)}]‘) [C ElSi&(M + 1 - i)]” CE”=, h2(M + 1 - i) * 

(26) 

Use of the locally optimum, rather than the Neyman- 
Pearson optimum, detector avoids the problem of im- 
plementing a time-varying nonlinearity. Applying the locally 
optimum test of (6) to the pdf’s ye(V) and fl(V) of (21a) 
and (21b) gives 

where gl,( *) has been defined by (8). The locally optimum 
detector for time-varying signals thus has the structure of 
Fig. 1, but with a fixed nonlinearity gi(x) = g,,(x) for all i. 
The received data from each channel are first passed through 
gi,(*) and then through a discrete-time linear system with 
the impulse response 

h(i) = :+1-i> 
L 

i = 1,2;.*,M 
otherwise. (25) 

Finally, the filter outputs from all N channels are summed 
and compared to a threshold. Note that the linear system 
h(i) is a matched filter for the extraction of Si from additive 
white Gaussian noise. Hence, just as for a constant signal, 
the locally optimum detector for a signal in white non- 
Gaussian noise consists of the locally optimum nonlinearity 
followed by the optimum detector structure for the same 
signal in white Gaussian noise. 

B. ARE of the Time-Varying-Signal Nonlinear Detector of 
Fig. I and Relation to the Locally Optimum Detector 

The preceding discussion suggests that suboptimum, as 
well as optimum and locally optimum, detectors for a 
known time-varying signal in white non-Gaussian noise 
m ight use the structure of Fig. 1, which will henceforth be 
called a time-varying-signal nonlinear detector D,,. This 
section gives the performance of this detector, as measured 
by asymptotic relative efficiency. Because of the difficulty of 
implementing time-varying nonlinearities and to simplify 
results, the nonlinearity in Fig. 1 is assumed time invariant, 
that is, gi(X) = g(x) for all i. 

An appropriate detector to which the time-varying-signal 
nonlinear detector may be compared is the modljied linear 

5 Alternatively, as in Algazi and Lerner [6] or Rappaport and 
Kurz [7], one can pass both the received signal and the received 
signal from which 8si has been subtracted through the nonlinearity 
In [,f,(.)] and thus avoid a time-varying nonlinearity. 

Note that this last equation factors into the product of 
two terms. The first term is of the same form as the constant- 
signal ARE,,,i, of (16), depending only on the nonlinearity 
g(e) and the noise statistics. The second term depends only 
on the filters and signal; furthermore, it is equal to 1 if the 
two filters h(a) and fi( *) are identical. Thus, for fixed filters 
h(a) and fi( *), the nonlinearity g( *) that maximizes ARE,,,,, 
is the same as that maximizing ARE,,,,,, namely the locally 
optimum nonlinearity gi,(*) [or some linear function of it 
as in (17)]. Moreover, one can easily show that for a fixed 
filter h( *) in the modified linear detector, the second term 
in AREtn,mI is maximized by picking the filter h(s) in the 
time-varying signal nonlinear detector to be matched, in 
the sense of (25), to the signal {si: i = 1,2; * *,M}. These 
two results show that, for a fixed modified linear detector, 
ARE,,,,, is maximized by picking the time-varying non- 
linear detector to be the locally optimum detector of (24). 
As in the constant-signal case, this result should not be 
surprising. 

IV. EXAMPLES 

In Sections II and III the importance of the Neyman- 
Pearson optimum nonlinearity g&x) and the locally opti- 
mum nonlinearity g,,(x) in detectors for constant and time- 
varying signals was demonstrated. To show the various 
forms these nonlinearities may take, plots of g&x) and 
g,,(x) are given for various members of three classes of 
symmetric unimodal noise pdf’s. These three classes are 
generalizations of the Gaussian, Cauchy, and beta distribu- 
tions. Also because the maximum value of the constant- 
signal ARE,, , Id is equal to the expression p of (19) and 
because the maximum value of the corresponding time- 
varying-signal quantity ARE,,,,, is proportional to p, plots 
of p as a function of the parameters in these generalized 
distributions are given. 

A. Generalized Gaussian Noise 

This class has a symmetric unimodal density obtained by 
generalizing the Gaussian density [S] to obtain a variable 
rate of exponential decay and is given by 

f,(x) = [cv(wWWl41 exp { - Cr(~,,4lxl]“> (274 
where for convenience we have defined 

q(o,c) h a-‘[r(3/c)/r(l/c)]“’ G-4 
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Fig. 3. General ized Gaussian pdf’s (u,,’ = 1). 

where c is a  positive parameter controlling the rate of 
decay, r( *) is the gamma function, and  on2  is the noise 
variance. Note that for c = 2  this density reduces to the 
Gaussian density, whereas for c = 1  it becomes the Laplace 
density. Furthermore, according to Algazi and  Lerner [6], 
densities representative of certain atmospheric impulse 
noises can be  obtained by picking 0.1 < c < 0.6. The  
density of (27) is illustrated in F ig. 3  for values of afi2 = 1  .O 
and  c = 0.5, 1.0, 1.5, 2.0, and  3.0. 

Substituting the general ized Gaussian pdf of (27) into (5) 
for g,,,(x) gives 

%&> = t-rl(%,c)lcw - lx - W I 
while substituting (27) into (8) gives6 

(28) 

I,, = c[q((~,,c)]~(x[(~-~) sgn (x). (29) 
Normalized plots of these two nonlinearities are given in 
F igs. 4  and  5  for values of c = 0.5, 1.0, 1.5, 2.0, and  3.0 
and  a  value of 0  = 0.5. Note that as predicted by (lo), the 
nonlinearities g,,,(x) and  g,,(x) corresponding to the same 
value of c are quite similar qualitatively. Also note that 
g&x) and  g,,(x) satisfy (13) and  (14). For c = 2, the noise 
is Gaussian, and  both nonlinearities become linear, as ex- 
pected. For c = 1, the noise has the Laplace distribution, 
and  the locally opt imum nonlinearity is a  hard lim iter, 
which corresponds to the known result [9] that the sign 
detector is locally opt imum for Laplace noise. Also it is 
clear that the case c = 1  is a  dividing line between two quite 
different types of behavior of g&x) and  g,,,(x) for large 
1x1; for rates of decay off,(x) slower than exp (- alxl) both 

6  sgn (.) is the signurn function, 
+1; 

sgn  (4 =  _  1. I 1 
x20 
x -c 0. 

6 c-3 I 

3l -6 
t 
I 

Fig. 4. Normalized Neyman-Pearson opt imum nonlinearities for 
general ized Gaussian noise (19 = 0.5). 

Fig. 5. Normalized locally opt imum nonlinearities for general ized 
Gaussian noise. 

nonlinearities approach zero for large 1x1, while for more 
rapid decays they approach infinity [see also (9)]. 

Substituting the density of (27) into the expression for p  
of (19) gives 

p  = c21-(3/c)I(2 - I/c)[l-(l/~)]-~. (30) 
From this expression it thus follows that the condition (18) 
to assure a  finite p  is simply that c > 3. Hence for all 
values of c > 4, (30) gives the maximum ARE obtainable. 
This equation is plotted as a  function of c in F ig. 6. Note 
that p  achieves its m inimum possible value of 1.0 only for 
the Gaussian noise case of c = 2  when the locally opt imum 
nonlinear filter is the linear filter g(x) = cx, and  the linear 
detector is being compared to itself. 

To  demonstrate the loss in performance resulting from 
the use of a  subopt imum detector, the ARE of the linear 
detector with respect to the symmetrized sign detector, 
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Fig. 6. 
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C 

P and ARE,,,,, for generalized Gaussian noise as a function 
of parameter c. 

denoted by ARE,,,,,, is also given in this figure. The sym- 
metrized sign detector is obtained by picking as the non- 
linearity g(x) in the constant-signal nonlinear detector a 
hard lim iter, i.e., 

called generalized Cauchy and takes the form7 

f,(x) = hhwwcm- l/=w + w/w91 
- { 1 + [~(cr,c)~x~]“/v}-“+ l’=) (34) 

where c and v are positive parameters. Note that for c = 2 
and v = 3 we have the Cauchy density.8 It is shown in [3] 
that as the parameter v in the distribution of (34) approaches 
infinity, the resulting distribution approaches the generalized 
Gaussian distribution of (27). The parameter c2 in (34) 
approaches the variance of the generalized Gaussian distri- 
bution as v approaches infinity (see [12]); however, for 
finite v, the variance of the generalized Cauchy distribution 
is not c2 but rather, as also shown in [3], 

an2 = var (x) = +W-(v - 2/c)/r(v)]. (35) 

Unlike the generalized Gaussian density, which always has 
a variance, the preceding variance of the generalized Cauchy 
density will be finite only if cv > 2. To illustrate the density 
of (34), a set of curves is given in Fig. 7 for o2 = 1.0, 
v = 10, and c = 0.5, 1.0, 1.5, 2.0, and 3.0. 

Evidence that the generalized Cauchy density (34) is a 
reasonable one to consider in communication problems is 
provided by the densities proposed by Mertz [13] and Hall 
[14] for the amplitude distribution of impulse noise. Mertz 
assumed that the pdf of the noise amplitude is given by 

fin,(x) = VOX + h)- (v+l) 9 x20 (36) 

g(x) = I;: 1 ) 
x<o where h is a “small” constant and v ranges from just over 2 
x>o (3la) to about 5. A symmetric unimodal pdf whose amplitude has 

where c is any positive constant. Since the derivative of this 
this pdf is 

nonlinearity is f”(X) = (1/2)vh”(h + Ixl)-(“+l) (37) 
g’(x) = 2c 6(x) (31b) 

where 6(a) is the Dirac delta function, we get upon sub- 
stituting (31a) and (31b) into (16) the well-known result for 
a symmetric unimodal noise pdf 

ARE,,,,, = 4a,2f,2(0) 

or for the generalized Gaussian density of (27) 

(32) 

ARE sd,ld = C2r(3/C>[r(i/C>i-3 (33) 

a result obtained previously [8]. From Fig. 6 we see that p 
and ARE,, , Id have the common value of 2 at c = 1; for all 
other c, the quantity p is larger than AREsd,id, dramatically 
so for c near + or c >> 1. (The coincidence at c = 1 is to be 
expected since the optimum nonlinear detector for c = 1 
(Laplace noise) is the sign detector.) 

but this equation is precisely the pdf of (34) with c = 1 and 
u2 = 2h2/v2. 

Analogous to (36), the probability density of the ampli- 
tude of noise having the generalized Cauchy density of (34) 
can be shown easily to be, for x 2 0, 

J;,,(X) = hbm-u/cm- WV + uwwi 
. (1 + [~(u,c)x]=/v)-++ “‘I. (38) 

This equation serves to generalize the Mertz hyperbolic 
noise amplitude density of (36). 

Hall [14] proposed a somewhat different model from 
that of Mertz and showed that it agrees well with the 
measured statistics of atmospheric impulse noise. The model 
assumes that the noise process n(t) has the form 

n(t) = a(t)z(t) (39) 
B. Generalized Cauchy Noise where z(t) is zero-mean Gaussian with variance aI2 and 

It was desired to find a useful class of noise distributions u(t) is a process slowly varying compared to z(t) and 
with algebraic rather than exponential decay of f,(x) for 
large x and that would approach the generalized Gaussian 
as some parameter in the distribution approaches infinity, ’ The special case of (34) with c = 2 is called the t distribution [ll] 

much as the Student’s t distribution can be made to ap- 
with 2~ degrees of freedom, location parameter zero? and precision l/o. 

* The Cauchy noise density itself has been used m  several previous 

preach Gaussian [lo]. The resulting distribution will be papers, such as [7], to represent severe noise despite its pathological 
nature, i.e., infinite variance. 
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f” (x) 
- 5.0 

-- 4.0 

-- 3.0 

x 
-3.0 -2.0 -1.0 0  1.0 2.0 3.0 

Fig. 7. General ized Cauchy pdf’s (a2 = 1, v =  10). 

independent of z(t). At any fixed time  to, the random vari- 
able b 4 l/a(t,J is assumed to have the “two-sided” chi 
distribution 

fb(b) = (m/2)“‘%-” [l+z/2)]-1jbl”-1 exp [-mb2/202]. 

(40) 
From (39) and  (40) it then follows [14] that the first-order 
pdf of n  L  n(te) is 

f,(x) = r(e/2)(r[(e - 1)/2]}-1y(0-1W’Z[yZ + x2]-e’2  
(41) 
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where y p  ml” oIla and  8  a  m + 1  > 1. This density is 
the special case of (34) where c = 2, v = (0 - 1)/2, and  
a2  = y*/p - 1). 

Substituting the density of (34) into (5) gives 

%& = v + 1  In -.I + [r(w>l41”/v 
c 1  + Cr(dlx - f4]“/v (42) 

while substituting this density into (8) gives 

g, (x) = (c+ ~lv)C~~~,c)lcl~l~c~l~ sgn (4 0  1 + cyI(~,c)IxIIc/v (43) 

By comparing the general ized Cauchy locally opt imum 
nonlinearity of (43) with the corresponding nonlinearity 
for general ized Gaussian noise (29), we find, as expected, 
that for a  fixed value of X, as v + co, the nonlinearity of 
(43) approaches that of (29). However, on  keeping vfixed 
in (43) and  letting 1x1 -+ co, one  has 

lim  g,,(x) = 0. (44) 
I-4”~ 

Thus, whatever the finite positive values of parameters c 
and  v in the general ized Cauchy density, the corresponding 
locally opt imum (and Neyman-Pearson optimum) non- 
linearity approaches zero as 1x1 approaches infinity. To  
show this difference in behavior for the general ized Cauchy 
distribution as compared to the general ized Gaussian, 
curves are given in F igs. 8  and  9, respectively, for the 
normalized opt imum and  locally opt imum nonlinearities 
when g2  = 1.0, 6  = 0.5, v = 10.0, and  c takes on  the 
values of 0.5, 1  .O, 1.5, 2.0, and  3.0 as were used in F igs. 4  
and  5. From these curves, it is apparent that the behavior 
for small 1x1 is quite similar to that of the general ized 
Gaussian density, while the behavior for large 1x1 is quite 
different. 

It is shown in [3] that substituting the general ized Cauchy 

------ 1.5 

-10 -6 -6 -4 -2 0.5+ ! : : : I I : I I : : 1  0.5 
I 4  6  6  IO 

I. 5-‘---- X 

Fig. 8. Normalized Neyman-Pearson opt imum nonlinearities for general ized Cauchy noise (a2 = 1, 0  =  0.5, v =  10). 
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6 

-10 -6 -6 -4 -2 1, 

2.0 

Fig. 9. Normalized locally optimum nonlinearities for generalized Cauchy noise (a2 = 1, v = 10). 

density of (34) into (19) gives 

p = (cv + 1)” 

r(3/c)l-(2 - l/C)r(V - 2/c)r(v + i/c)r(v + 2/c) 
r~(i/c)P(v)r(v + 2 + i/c) 

(45) 
subject to the conditions that cv > 2 and that c > 4. Note 
that this second condition is also required for the p of 
generalized Gaussian noise to be finite. Curves of p as a 
function of c, computed from (45), are given in Fig. 10 for 
values of v = 1, 3, 5, and 20. Also included in this figure 
for comparison purposes is the curve for v = cc (gen- 
eralized Gaussian noise) obtained from (30). The general 
appearance of the curves for finite v (generalized Cauchy 
noise) is much like that for infinite v (generalized Gaussian 
noise), except for the v = 1 curve, which becomes infinite 
ate = 2. 

C. Generalized Beta Noise 

As with the Cauchy density, a symmetric unimodal beta- 
type density was desired in order to investigate the forms of 
the nonlinearities g,,,(x) and g,,(x) and the performance, 
as measured by p, to be expected for noise pdf’s having 
nonzero values only over a finite interval. It was again 
decided to make this density approach the generalized 
Gaussian density of (27) as one of the parameters in the 
density approaches infinity. The generalized beta density 
chosen has the form 

a [v-9+ + i + 2/c)p-(v + i + I/~)] 

* (1 - [~(6,C)IXI]C/V}(Y+1’c) (46) 
for 1x1 I v”‘/rl(a,c), where c and v are positive parameters. 

.O 

Fig. 10. p as a function of parameter c in the generalized Cauchy 
density. 

The densityf,(x) is zero elsewhere. Note that the support 
of this density must increase with increasing v. In [3] it is 
shown that as the parameter v in the distribution of (46) 
approaches infinity, the resulting distribution approaches 
generalized Gaussian. The variance of the density of (46) is 
also calculated in [3] as 

0 2 = Oz[vW(v + i + 2/c)/r(v + i + 4/c)]. (47) ” 
Unlike the variance of generalized Cauchy noise, this 
variance is finite for all positive c and v. However, as for 
generalized Cauchy noise, as v .+ co, on2 --f 0’. Fig. 11 
gives plots of the density of (46) for o2 = 1.0, v = 10.0, 
and c = 0.5, 1.0, 1.5, 2.0, and 3.0. 
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Fig. 11. General ized beta pdf’s (a’ = 1, v =  10). 

-0.5 

x 

Substituting (46) into (5) gives 

= -vllc p 
-++<xx- 
Y(fJ,C> yI(v) 

LO, elsewhere. (48) 
Note particularly the ranges of x wherein g,,,(x) becomes 
infinite. These regions correspond to values of x for which 
the signal is either certain to be  absent or certain to be  
present. The  nonlinearity g&x) for the hypothesis-testing 
problem H,(l) versus H,(l) or Ho(‘) versus H1c2) will 
obviously always have this property of becoming infinite 
near  the ends of each interval containing the support of 
any density having finite support. 

Substituting (46) into (8) gives, for 1x1 I vi@/q(o,c), 

g, cx) = CC + lIV)[v(~,c)]c(xI(c- ‘) sgn (x) 0  
1  - CrbJ,c>lxJ]‘/v 

(49) 

and  zero elsewhere. Again for fixed x, as v -+ co, this non-  
linearity approaches that for general ized Gaussian noise 
[(29)]. Furthermore, it has the value + co at x = vl”/yl(a,c) 
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Fig. 12. Normalized Neyman-Pearson opt imum nonlinearities for 
general ized beta noise (c* =  1, 0  =  0.5, v =  10). 

and the value - cc at x = - vl”/q(a,c), which correspond 
to the regions of infinite value of the opt imum nonlinearity 
of (48). 

F igs. 12  and  13  are plots of the opt imum and  locally 
opt imum nonlinearities, respectively, for general ized beta 
noise with values of v = 10, o2  = 1, 0  = 0.5, and  c = 0.5, 
1.0, 1.5, 2.0, and  3.0. Note the similarity for small 1x1 to 
the corresponding plots for general ized Gaussian noise and  
for general ized Cauchy noise. However, for larger 1x1 
nearer the endpoints +v”‘/q(cr,c), both of the general ized 
beta nonlinearities clearly increase very rapidly in absolute 
value and  thus have very different appearances from the 
nonlinearities previously considered. 

It is shown in [3] that substituting the general ized beta 
density of (46) into (19) for p  gives 

p  = (cv + 1)2 

. r(3/c)r(2 - i/c)r(v - I + i/c)P(v + 1  f 2/c) 
r2(i/C)r(v + qr(v + i + i/q+ + 1  + 41~) * 

(50) 
The  conditions on  c and  v for the validity of this expression 
are c > 5  and  v + l/c > 1. Curves of p  as a  function of c, 
computed from (50) are given in F ig. 14  for values of 
v = 0.5, 1.0, 1.3, 2.0, 3.0, 5.0, and  20.0. For comparison 
purposes, the v = co (general ized Gaussian) curve obtained 
from (30) is also plotted. Again the curves for finite v are 
very similar to that for infinite v, except for the v = 0.5 
curve, which becomes infinite at c = 2. 
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Fig. 13. Normalized locally optimum nonlinearities for generalized 
beta noise (a’ = 1, v = 10). 

V. CONCLUDING COMMENTS 

In summary, the optimum and locally optimum non- 
linearities and resulting maximum ARES have been given 
for three general classes of probability densities that include 
as special cases many of the noise pdf’s frequently assumed 
in detection theory. From the examples it is clear that the 
form of the nonlinearity depends in surprisingly critical 
ways on the exact noise density. This strong dependence 
leads to the little-studied question of how much perfor- 
mance is degraded by small errors in the assumed noise 
density. 

Several comments should be made on the applicability to 
real-world situations of the model used here for the received 
data. First, we have not considered the effect of a restricted 
receiver bandwidth. With only a lim ited bandwidth avail- 
able, the m inimum possible sampling rate of the received 
analog waveform is in turn fixed. In such a case, the 
assumption of independent noise samples may be violated, 
and the structure of an optimum detector could differ 
considerably from those discussed here. 

Second, we have assumed the noise statistics as given at 
the input to the detector nonlinearity. However, in practice 
the bandwidths and shapes of the receiver RF and IF 
filters, which are often partially under the designer’s con- 
trol, can alter considerably the statistics of the non-Gaussian 
noise at this point. The effect of this additional set of 
parameters on system performance in non-Gaussian noise 
has been considered for linear receivers by Engel [15] and 
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Fig. 14. p as a function of parameter c in the generalized beta density. 

for somewhat more general receivers by Bello and Esposito 
cm 
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