

Global budget of tropospheric ozone • O₃ is supplied to the troposphere by transport from stratosphere Local production of O_3 by reactions of peroxy radicals with NO: $HO_2 + NO \rightarrow OH + NO_2$ [R1] $CH_3O_2 + NO \rightarrow CH_3O + NO_2$ [R2] $RO_2 + NO \rightarrow RO + NO_2$ [R3] followed by photolysis of NO₂ $NO_2 + hv \rightarrow NO + O$ $O + O_2 + M \rightarrow O_3 + M$ $P(O_3) = (k_1 [HO_2] + k_2 [CH_3O_2] + k_3 [RO_2])[NO]$ Loss of O₃ by dry deposition (reaction with organic material at the earth's surface) and photochemical reactions: $\begin{array}{c} (O_3 + h_V \rightarrow O_2 + O(^1D)] \\ O(^1D) + H_2O \rightarrow OH + OH \ [R4] \end{array}$ $HO_2 + O_3 \rightarrow OH + 2O_2$ [R5] $OH + O_3 \rightarrow HO_2 + O_2$ [R6] $L(O_3) = k_4 [H_2O][O(^1D)] + k_5 [HO_2][O_3] + k_6 [OH][O_3] + L_{deposition}$

ble 11-4 Present-Day Global Budget of Tropospheric Ozone		
	$Tg O_3 yr^{-1}$	
Sources	3400-5700	
Chemical production	3000-4600	
$HO_2 + NO$	(70%)	
$CH_{3}O_{2} + NO$	(20%)	
$RO_2 + NO$	(10%)	
Transport from stratosphere	400-1100	
Sinks	3400-5700	
Chemical loss	3000-4200	
$O(^{1}D) + H_{2}O$	(40%)	
$HO_2 + O_3$	(40%)	
$OH + O_3$	(10%)	
others	(10%)	
Dry deposition	500-1500	

Sources	CH ₄ (Tg/yr)	CO (Tg/yr)	NMHC (Tg C/yr)	NO _x (Tg N/yr)
Energy use	110 (65-155)	500 (300-900)	70 (60-100)	22 (20-24) 0.5 (0.2-1)
Biomass burning	40 (10-70)	500 (400-700)	40 (30-90)	8 (3-13)
Vegetation		100 (00-100)	400 (250-1150)	7 (5-12)
f ightning				5 (2-20)
Ruminants	85 (60-105)			
Rice naddies	80 (30-120)			
Animal wastes	30 (15-45)			
Landfills	40 (20-60)			
NH ₃ oxidation				0.9 (0-1.6)
N ₂ O breakdown*				0.6 (0.4-1)
Domestic sewage	25 (20-30)			
Wetlands	145 (115-175)			
Oceans	10 (5-15)	50 (20-200)	50 (20-150)	
Freshwaters	5 (1-10)			
CH₄ hydrates	10 (5-15)			
Termites	20 (1-40)		F(D (240 1400)	44 (20.72)
fotal	600 (520-680)	1150 (780-1960)	560 (340-1490)	44 (30-73)
 NO_y produced in the s 	stratosphere and transported	to the troposphere.		
bution from pogenic sour	~ 70%	~ 85%	~ 20%	~ 70%

