ASTR 509: Physical Foundations of Astrophysics III: Stellar Dynamics

Željko Ivezić, University of Washington, Winter Quarter 2005

Midterm Exam

Each of the three problems is worth 10 points. You have 60 minutes.

Problem 1

a) Describe the equations of motion and essential characteristics of the motion in a spherical potential, $\Phi(R)$, and in an axisymmetric potential $\Phi(R, z)$.
(hint: in cylindrical coordinates $a_{R}=\ddot{R}-R \dot{\phi}^{2}, a_{\phi}=2 \dot{R} \dot{\phi}+R \ddot{\phi}$)
b) Sketch the zero-velocity curve for a star that is at $(x, y, z)=\left(R_{c}, 0,0\right)$ for $t=0$, with a velocity $\left(v_{x}, v_{y}, v_{z}\right)=\left(\sqrt{3} v_{o}, 0,0\right)$, in the potential

$$
\begin{equation*}
\Phi(R, z)=\frac{v_{o}^{2}}{2}\left[\left(\frac{R}{R_{c}}\right)^{2}+\frac{|z|}{H}\right]-\Phi_{o} \tag{1}
\end{equation*}
$$

c) Sketch the surface of section (i.e. \dot{R} vs. R diagram for $z=0$) for this star.

Problem 2

The epicycle approximation for a body in nearly-circular orbit is

$$
\begin{equation*}
R \approx R_{g}+X \cos (\kappa t+\Psi) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\phi_{o}+\Omega_{g} t-\frac{2 \Omega_{g} X}{\kappa R_{g}} \sin (\kappa t+\Psi) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa^{2}=\left(R \frac{\mathrm{~d} \Omega^{2}}{\mathrm{~d} R}+4 \Omega^{2}\right)_{R=R_{g}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega^{2}=\frac{1}{R}\left(\frac{\partial \Phi}{\partial R}\right)_{(R, z=0)} \tag{5}
\end{equation*}
$$

The radius of the circular orbit, R_{g}, is defined as the minimum of the effective potential

$$
\begin{equation*}
\Phi_{\mathrm{eff}}=\Phi+\frac{L_{z}^{2}}{2 R^{2}} . \tag{6}
\end{equation*}
$$

a) How accurate is the epicycle approximation for motion in a harmonic potential $\Phi(R, z)=\alpha R^{2}+\beta z^{2}$? Why?
b) A star is in a Keplerian orbit described by $\phi(t=0)=0$ and

$$
\begin{equation*}
R=\frac{p}{1+\epsilon \cos (\phi)} . \tag{7}
\end{equation*}
$$

Use the epicycle approximation to determine $v_{R}(t)=\dot{R}$ (hint: determine R_{g} and X by requiring perfect agreement between the exact and approximate solutions for $\phi=0$ and $\phi=\Pi$. Sketch the surface of section using this result.
c) Use the epicycle approximation to find out whether closed orbits are possible in a Plummer potential

$$
\begin{equation*}
\Phi=-\frac{\mathrm{GM}}{\left(R^{2}+b^{2}\right)^{1 / 2}} \tag{8}
\end{equation*}
$$

for $b \neq 0$.

Problem 3

Given a logarithmic potential

$$
\begin{equation*}
\Phi(R, z)=-\frac{v_{o}^{2}}{2} \ln \left(\frac{R_{c}^{2}+R^{2}+\alpha z^{2}}{R_{c}^{2}}\right)-v_{o}^{2} \tag{9}
\end{equation*}
$$

a) Sketch the behavior of the circular velocity as a function of R / R_{c}.
b) Are non-circular orbits possible in this potential? (hint: use the epicycle approximation)
c) A particle is released at $t=0$ from $(x, y, z)=\left(R_{c}, 0,0\right)$ with a velocity $\left(v_{x}, v_{y}, v_{z}\right)=$ $\left(0, v_{1}, 0\right)$. Sketch the orbits for $v_{1}=v_{0} / 2, \sqrt{2} v_{0} / 2, v_{o}$, and $\sqrt{2} v_{o}$.

